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Thermal properties of three-dimensional Morse potential
for some diatomic molecules via Euler-Maclaurin approximation
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The purpose of this study is to develop a method of calculating the vibration partition function of diatomic molecules for the Morse potential
energy. After a brief introduction about the eigensolutions obtained for the problem in question.Via the Euler-Maclaurin formula, we
determine the thermal properties for four diatomic molecules, such as H2, HCl, LiH, and CO. These different cases are exposed and explained
by the appropriate plots of the thermal properties. In addition, we show that our method to calculate the thermal properties can be used to
determine important thermodynamic quantities.
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1. Introduction

The molecules of polyatomic gases are considered to have
internal degrees of freedom that are related to internal (rota-
tional, vibrational, and electronic) energy states. At very low
temperatures, the degrees of freedom are frozen. By increas-
ing the temperature, the rotational modes are excited. The
vibrational modes are excited at higher temperatures, where,
normally, the rotational modes are completely excited. The
electronic modes are excited at the very highest temperatures.
A rational thermodynamic theory for a diatomic gas with one
excited mode was developed at first by Miiller and an ex-
tended thermodynamic theory by Kremer. Their approach
is based on the equations of the balance of mass, momen-
tum, and internal energy customary in thermodynamics and
is supplemented by a general equation of balance for the vi-
brational energy. These equations of balance and simple con-
stitutive equations give rise to field equations which a ther-
modynamic process must satisfy [1–5].

There has been an increasing interest in the study of the
partition function and its derivatives of diatomic molecules
because it is the essential link between the coordinates of mi-
croscopic systems and the thermodynamic properties. In the
atomic and molecular physics, the interaction between atoms
in diatomic and even in polyatomic molecules is usually de-
scribed by the Morse potential. The Morse potential gives
an excellent description of the interaction between the two
atoms in a diatomic molecule. The several studies show that
it yields an exactly solvent Schrödinger problem. Besides
this potential is the most simple and realistic anharmonic po-
tential model, which has been widely used in the descrip-
tion of the vibrational motion of diatomic molecules. Finally,
the exact solutions of the Schrodinger equation with Morse
potential based on the Pekeris approximation have been ob-

tained [6, 7]: In the last decade a large community of re-
searchers has been involved a search of approximate solu-
tions for wave equations (non-relativistic or relativistic) in-
cluding the centrifugal term and subject to different potential
functionsV (r). The main characteristic of these solutions
lies in the substitution of the centrifugal term by an approx-
imation so that one can obtain an equation, normally hyper-
geometric, which is solvable. Pekeris [8] is the pioneer in the
study. He managed to obtain analytic solutions for the radial
Schrodinger equation with the Morse potential [9], through
expansion for the centrifugal term.

Taking advantage of the exact energy spectrum of the
Morse potential, we could analytically obtain the individ-
ual partition function, and consequently the thermodynam-
ics functions can be deduced: analytical representations of
thermodynamic functions of gases over the whole tempera-
ture range from zero to the thermal dissociation limit have
aroused much interest in dealing with diatomic and poly-
atomic systems. Through the exact form of its spectrum of
energy, the vibration partition function, which is of great im-
portance to many issues in chemical physics and engineer-
ing, can be obtained. Following its definition, the molec-
ular vibrational partition function can be calculated by di-
rect summation over all possible vibrational energy levels.
Many efforts have been made to acquire explicit expressions
of partition function for molecular potential energy models
in diatomic and polyatomic molecules: in this context, and
also in the non-relativistic case, the investigation of thermo-
dynamic functions of some type of potentials such as Morse
and improved Manning-Rosen potentials, improved Rosen-
Morse and Tietz oscillators, through a partition function and
its derivatives with respect to temperature, were an important
field of research in the literature [9–14,18–25].
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Strekalov [15,16], derived a simple analytical formula for
the partition function of Morse oscillators. With the cumu-
lant expansion method, the approximation equally suitable
within the whole range of temperatures, where a molecule
exists as a bound system, has been obtained. Based on the
Poisson summation formula (see Appendix A) and in order to
reduce the errors with the experimental results, he proposed
an accurate closed-form expression for the partition function
in the case of the Morse oscillator. His approach becomes a
most useful method used to calculate the thermal properties
of some diatomic molecules for a different type of potentials
(see following Refs [9–14, 18–25]). Recently, in the same
context, another approach has been proposed: based on the
Euler-Maclaurin formula (see Appendix A), the author has
studied the case of the one-dimensional Morse potential in
its q-deformed version: the results found are promising [26].

Now, before to give the principal aims of our works, we
are in obligation to make some remarks about the difference
between both methods described above.

• The Poisson summation is an equation that relates the
Fourier series coefficients of the periodic summation
of a function to values of the function’s continuous
Fourier transform. For appropriate functionsf , the
Poisson summation formula may be stated as [17–19]:

+∞∑
n=−∞

f(n) =
+∞∑

n=−∞
f̂(n) (1)

wheref̂ is the Fourier transform off andn ∈ Z.

• The Euler-Maclaurin formula provides a powerful con-
nection between integrals and sums. It provides ex-
pressions for the difference between the sum and the
integral in terms of the higher derivativesf evaluated
at the endpoints of the interval. It has the following
definition [17–19]:

∞∑
n=0

f (n) =
1
2
f (0) +

∞∫

0

f (x) dx

−
∞∑

p=1

B2p

(2p)!
f (2p−1) (0) , (2)

whereB2p are the Bernoulli numbers,f (2p−1) is the
derivative of order(2p − 1). Both methods are basic
examples of deeper ideas. But at their core, the under-
lying ideas are very different.

• The Euler-Maclaurin formulas are used to give high
accuracy estimates of integrals in standard numerical
analysis methods, as discrete sums with understand-
able error terms are computable and estimable. Thus,
this method is the most important method for the sum-
mation of infinite series. Also, this formula is a bit
tedious to use, and the amount of work depends on the
derivatives.

• The Poisson summation is very different in nature. It
concerns Fourier series, or more fundamentally, the
Fourier transform. This looks superficially similar to
the integrals in Euler-Maclaurin summation, but the
underlying ideas are substantively different. So the
Poisson formula usually does not give an immediate
answer but is a transform allowing other procedures to
be applied.

Thus, the purpose of the present work is to give a simple an-
alytical expression of the partition function of the Morse po-
tential via the well-known Euler-Maclaurin method. This ap-
proach also enables one to estimate the influence of rotation-
vibration interaction effects on the thermal properties of di-
atomic molecules. Precisely, we obtain the basic thermody-
namic functions in terms of the vibrational quantum num-
ber l: in to our best knowledge, the study of these quanti-
ties by varying the quantum numbersl andn does not ex-
ist in the literature. The paper is organized as follows. In
Sec. 2, we review the eigensolutions of three-dimensional
Morse potential. Section 3 is devoted to deriving the vibra-
tional partition function of our problem in question in three
dimensions: through this function, all basic thermodynamic
functions, such as the partition function and vibrational spe-
cific heat, are obtained. Section 4 will be a conclusion.

2. The behavior of the eigenvalues of the
Morse potential in three dimensions

The time-independent Schrodinger equation for an arbitrary
potentialV (r) is given by

− ~
2

2µ
4ψ (r) = {E − V (r)}ψ (r) , (3)

with the total wave function and the three-dimensional Morse
potential are written as follows: [5,6]

ψ (r) =
1
r
Rnl (r)Y m

l (θ, φ) (4)

V (r) = D

{
e−2a(r−re)

− 2e−a(r−re)

}
, D > 0 a > 0, (5)

whereD is dissociation energy,re is the equilibrium inter-
nuclear distance anda is the parameter controlling the width
of the potential well. In order to solve Eq. (3), we first put
x = (r − re)/re and then rewrite the potential function in
terms ofx as follows

V (x) = D
(
e−2αx − 2e−αx

)
, α = are. (6)

Now, inserting Eqs. (6) and (4) into (3) we obtain{
− d2

dx2
− 2µre

~2

[
D

(
e−2αx − 2e−αx

)− Enl

]

+
l (l + 1)
(r + 1)2

}
Rnl (r) = 0, (7)

Rev. Mex. Fis.66 (1) 110–120



112 K. CHABI AND A. BOUMALI

wheren andl are the vibration-rotation quantum numbers,µ
is the reduced mass of the diatomic molecule, andEnl is the
appropriate energy eigenvalue. Now adopting the following
approximation [7,8]

1
(1 + x)2

w C0 + C1e
−αr + C2e

−2αr, (8)

with

C0 = 1
3
α

+
3
α2

, (9)

C1 =
4
α

6
α2

, (10)

C2 = − 1
α

+
3
α2

, (11)

and substituting (8) into (7), equation (7) is transformed into
(

d2

dx2
− η2e−2αx + 2ζ2e−αx − β2

1

)
Rnl (x) = 0, (12)

with

β2
1 = −2µr2

e

~2
Enl + l (l + 1) C0, (13)

ζ2 =
2µr2

e~2

D

l(l + 1)
2

C1, (14)

η2 =
2µr2

e~2

D
+ l(l + 1)C2. (15)

Solving Eq. (12), we found that the rotation-vibrational en-
ergy levels of the Morse potential for diatomic molecules are
given by [7]

Enl =
~2

2µr2
e

{
l (l + 1) C0 − α2

(
n +

1
2
− ζ2

ηα

)2
}

,

n = 0, 1, 2, . . . nmax, (16)

with nmax denotes the upper bound. In this stage, two re-
marks seem important to notice:

• Equation (16) is obtained by using the Pekeris approxi-
mation. The validity of this approximation depends on
the magnitude of the rotational quantum numberl: so
it is not reliable for higher values ofl [27].

• The closest to the maximum value allowed can be de-
termined by putting the following conditiondE/dn=0
[20–26]: following this condition, we obtain that

nmax =
ζ2

αη
− 1

2
, (17)

with ζ andη are defined by Eqs. (14) and (15).

TABLE I. Spectroscopic parameters of selected molecules used in
the present calculation.

Molecule µ(amu) D (eV) a(A−1) re

HCl 0.9801045 4.61907 2.38057 1.2746

H2 0.50391 4.7446 1.440558 0.7416

CO 6.8606719 11.2256 2.59441 1.1283

LiH 0.8801221 2.515287 1.7998368 1.5956

Now, we are ready (i) to compute the ro-vibrational energy
levels of diatomic molecules and (ii) to discuss our results
about the variation of the energies in different situations.
For convenience, we choose four molecules, H2, LiH, HCl,
and CO, which have been most widely studied in the litera-
ture. The spectroscopic parameters of selected molecules are
shown in Table I [27].

In Fig. 1, representative plots are given, with respect to
the vibrational quantum numberl at four selected values of
n = 0, 5, 10, 50 for H2, LiH, HCl and CO molecules. In
the other hand, Fig. 2 correspondings to the energy changes
for rotational quantum numbern at four selectedl values,
namely 0, 10, 20, 30. Following these figures, some remarks
can be made [28]:

• The choice of a fixed value ofn is a consequence
of the fact that this potential supports a limited num-
ber of bound states for these molecules; the estimated
nmax for our molecules under consideration are shown
in Table II; these values are obtained by using that
~c = 1973.269 eV, Å and 1amu = 931.5 × 106 eV
(Å)−1. Following this table, contrary to the case of H2,
the number of quantum levels are finite and decrease
with the quantum numberl.

• These figures allow us to obtain the allowed values ofl
leaving our spectrum of energy negative (bound states):
the positive values of energy mean that the state is in
continuum.

• Also, it is seen that the energiesEnl versusn plots
for different l become more closely spaced, with H2

showing maximum sparsity. The rate of increase
in energy, in general, increases as one move toward
H2 →CO→HCl→LiH, showing almost a linear behav-
ior for CO. On the other hand,Enl versusl plots for
all four molecules remain well separated. For a given
molecule,Enl versusl seems to change far less appre-
ciably asn progresses to higher values. As a special
case, we observe that the plots for HCl remain quite
similar to those in LiH.
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FIGURE 1. The ro-vibrational energy level to vibrational quantum numberl for different values of vibrational quantum numbern.

Finally, in order to understand well these observations,
we have plotted the vibrational energy level vs both vibra-
tional quantum numbers(n, l) in Figs. 3 and 4, following
these figures, we observe that the molecule CO shows a lin-
ear behavior, and both molecules HCl and LiH have a similar
variation. To our knowledge, such detailed energy plots have
not been presented, and we hope these results would be help-
ful for future studies: precisely, to show the interval when the
spectrum of energies becomes positive: this condition can be
used as a rule of the selection of allowed values ofl andn and
consequently, used them for calculating the thermal proper-
ties of these molecules.

3. Thermal properties of the Morse potential
for some Diatomic molecules in three di-
mensions

3.1. Vibrational partition function

As we know, all thermodynamic quantities can be obtained
from the partition functionZ; therefore, the partition func-
tion of the system is the starting point to derive all thermal
properties of the system in question. This function can be

calculated by direct summation over all possible vibrational
energy levels available to the system. Given the energy spec-
trum, the partition functionZ at finite temperatureT is ob-
tained through the Boltzmann factor is

Z =
∞∑

n=0

e−β(En−E0), (18)

with β = 1/kBT , wherekB is the Boltzmann constant.
Now in order to calculate theZ function, we use the

Euler-MacLaurin formula: according to this approach, the
sum transforms to the integral as follows (see Appendix A):

∞∑
n=0

f (x) =
1
2
f (0) +

∞∫

0

f (x) dx

−
∞∑

p=1

B2p

(2p)!
f (2p−1) (0) , (19)

whereB2p are the Bernoulli numbers, andf (2p−1) is the
derivative of order(2p− 1). Up top = 3, the partition func-
tion Z is written as
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FIGURE 2. The ro-vibrational energy level versus vibrational quantum numbern for different values of vibrational quantum numberl.

Z =
nmax∑
n=0

e−β(Enl−E0l) =
1
2

+

nmax∫

0

f (n) dn−
∞∑

p=1

B2p

(2p)!
f (2p−1) (0) , (20)

with B2 = 1/6 andB4 = −1/30 and

f (x) = e−β{Enl−E0l}. (21)

with Enl is given by Eq. (16). In what follows, all thermo-
dynamic properties of the three-dimensional Morse potential,
such as the free energy, the entropy, total energy, and the spe-
cific heat, can be obtained through the numerical partition
functionZ. These thermodynamic functions for the diatomic
molecules system can be calculated from the following ex-
pressions:

F = − 1
β

ln Z, (22)

U = −d ln Z,

dβ
(23)

S = ln Z − β
d ln Z

dβ
, (24)

Cv = β2 d2 ln Z

dβ2
. (25)

In our case, we focus only on the study on the partition func-
tion Z and the specific heatCv. The influence of the quantum
parameterl on these functions will be also examined.

3.2. Applications for some diatomic molecules

In the present work, we choose four diatomic molecules: H2,
HCl, LiH, and CO, which have been most widely studied in
the literature. The typical values of molecular constants for
the electronic state of these molecules are given in Table I.
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FIGURE 3. The vibrational energy level versus both vibrational quantum numbers(n, l)

FIGURE 4. The vibrational energy level versus both vibrational
quantum numbers(n, l) for four diatomic molecules H2, CO, HCl,
LiH.

With the aid of these values, the vibrational partition function
Z is determinate: via this function, the thermal properties of
these molecules can be found easily. These thermodynamic
functions are represented versus the inverse of temperature

TABLE II. The values ofnmax for H2, LiH, HCl and CO molecules.

l H2 HCl LiH CO

0 23 19 18 74

10 23 18 17 74

20 24 18 16 73

30 26 17 15 72

50 33 14 12 72

70 42 10 6 70

β = 1/kBT and the quantum numberl. The Fig. 4(d)
show some thermal quantities for the following diatomic
molecules, H2, HCl, LiH, and CO: from this figure, some
remarks can be made:

• The Fig. 4(a) shows both the partition functionZ and
the reduced specific heatCv/kB of H2 versusβ for
different values of vibrational quantum numberl: it re-
veals that for increasing inverse temperatureβ the par-
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FIGURE 5. Thermal properties for the following Diatomic molecules, H2, H Cl, LiH, and CO. (a) Both the vibrational partition functionZ
and the reduced specific heatC/kB of H2 as a function ofβ for different values of vibrational quantum numberl. (b) Both the vibrational
partition functionZ and the reduced specific heatC/kB of CO as a function ofβ for different values of vibrational quantum numberl. (c)
Both the vibrational partition functionZ and the reduced specific heatC/kB of HCl as a function ofβ for different values of vibrational
quantum numberl. (d) Both the vibrational partition functionZ and the reduced specific heatC/kBof LiH as a function ofβ for different
values of vibrational quantum numberl.
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FIGURE 6. Reduced specific heat function of H2, HCl, LiH and CO versusβ for bothl = 10 andl = 30.

tition function is decreased as well. The variation of
the reduced specific heat versusβ for various values
of l in the interval0 ≤ β ≤ 5 is shown in Fig.
5(a). We observe that theCv/kB first increases with
the increasingβ until it reaches the maximum value
βC = 1/kBTC and then decreases with it: we can
see that this maximum value,Tc, decreases whenl in-
creases (see Table II).

• The Fig. 5(b) shows both vibrational partition func-
tion Z and the reduced specific heatCv/kB of CO as
a function ofβ for different values of vibrational quan-
tum numberl: from this figure, we observe that both
the partition function andCv/kB are independent of
the parameterl: so, we can state that all states of this
molecule are identical.

• Finally, Figs. 5(c) and 5(d) show both the vibra-
tional partition functionZ and the reduced specific
heatCv/kB of HCl and LiH as a function ofβ for dif-
ferent values of the quantum numberl: from these fig-
ures, we observe that the behavior of both molecules is
identical. This comportment is because both molecules
have similar spectroscopic parameters (see Table I).

In Fig. 6 we show the behavior of the reduced specific
heat of the diatomic molecules H2, HCl, LiH, and CO for
two values ofl: from this figure, we observe that the specific
heat of H2, HCl is approximately the same, contrarily to the
case of the molecules LiH and CO where the difference is
well observed.

In Table III we show some values of the critical temper-
atureTC = 1/kBβC , and its variation with the parameterl:
as explained above, the condition of having the bound states
(negative spectrum of energy) leads to the limitation of the
quantum numberl: following this, the relative valueTC for
each molecule, isT H2

C = 8788 K (l ≤ 10), T HCl
C = 9355,

TABLE III. The values of the critical temperaturesTC (K) for the
four diatomic molecules.

l H2 CO HCl LiH

0 8788 20715 9355 5273

10 8788 20715 8923 5273

20 9667 20715 8923 4677

30 11600 20715 7582 3866

50 18711 20715 5202 2265

70 31353 20715 2521 773

8923, 8923 K forl = 0, 10, 20 (l ≤ 20), T LiH
C = 5273, 4677

K for l = 0, 20 (l ≤ 20) andT CO
C = 20715 K. The case of the

molecule CO requires some attention: all curves are identical
and independent of the quantum numberl. It means that all
states of the molecule CO can be considered as in the S state
(l = 0).

Also, we can see that the reduced vibrational specific heat
Cv/kB is more sensitive tonmax than the vibrational par-
tition function. The reason of this is twofold: (i) the spe-
cific heat depends upon the second derivative of the parti-
tion function and (ii) the expansion of the specific heat as a
function of l is very clear in the figure for the different types
of molecules: this enlargement can be explained by the de-
creases in the number of energy levelsnmax whenl decreases
except to the case of H2. Thus, for a system composed of di-
atomic molecules, a critical temperature valueTC appears.
This temperature means that the system becomes saturated
and can no longer absorb more energy because all its excited
states are occupied. We note here that this temperature was
at first mentioned by [26,29]. It corresponds to the maximum
in the specific heat curves. These curves show the anomalous
behavior of the specific heat when diatomic systems interact
under the Morse potential.
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Finally, the specific heat is an important physical quan-
tity for testing the existence of a transition phase, as well as
its nature (first or second-order). Recently, predictions of en-
tropy for diatomic molecules and gaseous substances have
been the subject of two recent studies [14, 15]. The authors
have been obtained the exact expression of the vibrational en-
tropy for (i) the improved Tietz oscillator and (ii) the Morse
and Manning-Rosen oscillators. According to the results ob-
tained by these authors, two remarks can be made: firstly, the
diatomic molecules are treated as rigid rotors, and the inter-
action between two molecules is neglect. On the other hand,
the specific heat values derived from experimental measure-
ments are a combination of the translational, rotational, and
vibrational specific heat. Thus, in order to compare our theo-
retical vibrational specific heat, it must have the experimental
data of the total specific heat at first. But, we stress, though,
as far as we know, we have not any data concerning the ex-
perimental values of the total specific heat that helps us to
make a comparison with our theoretical results.

4. Conclusion

In this work, by using the vibrational energies obtained in the
three-dimensional Morse potential, we have carried out a cal-
culation of the vibrational partition function of the Morse po-
tential for some diatomic molecules via the Euler-Maclaurin
approach. Via this function, we have derived explicit expres-
sions for the thermodynamic functions such as specific heat
Cv. We have analyzed the behavior of the specific heat: this
analysis shows the existence of a critical temperatureTC in
the curves of the specific heat: this temperature decreases
when l increases.

Appendix

A. Euler-Maclaurin formula and Poisson sum-
mation

A.1 Euler-Maclaurin Formula

In mathematics, the Euler-Maclaurin formula [31,32] is a for-
mula for the difference between an integral and a closely re-
lated sum. It can be used to approximate integrals by finite
sums, or conversely to evaluate finite sums and infinite series
using integrals and the machinery of calculus.

If m andn are natural numbers andf(x) is a complex
or real, valued continuous function for real numbersx in the
interval [m,n], then the integral

I =

m∫

n

f (x) dx, (A.1)

can be approximated by the sum (rectangle method)

S = f (m + 1) + . . . + f (n− 1) + f (n) . (A.2)

The Euler-Maclaurin formula provides expressions for the
difference between the sum and the integral in terms of the
higher derivativesf (k)(x) evaluated at the endpoints of the

interval, that is to say whenx = m andx = n. Thus, for p
a positive integer and a functionf(x) that is p times continu-
ously differentiable in the interval [m,n], we have

S − I =
p∑

k=1

Bk

k!

{
f (k−1) (n)− f (k−1) (m)

}
+ Rp, (A.3)

whereBk is the kth Bernoulli number andRp is an error term
which depends onn, m, p, andf and is usually small for suit-
able values ofp.

The formula is often written with the subscript taking
only even values since the odd Bernoulli numbers are zero
except forB1. In this case, we have

n∑

i=m

f (i) =

n∫

m

f (x) dx +
f (n) + f (m)

2
+

p
2∑

k=1

B2k

(2k)!

×
{

f (2k−1) (n)− f (2k−1) (n)
}

+ Rp (A.4)

Finally, in the context of computing asymptotic expansions
of sums and series, usually the most useful form of the Euler-
Maclaurin formula is

b∑
n=a

f (n) ∼
b∫

a

f (x) dx +
f (b) + f (a)

2
+

∞∑

k=1

B2k

(2k)!

×
{

f (2k−1) (b)− f (2k−1) (a)
}

. (A.5)

Now, whena = 0 andb = ∞, we have

∞∑
n=0

f (n) ∼
∞∫

0

f (x) dx +
f (0)

2

−
∞∑

k=1

B2k

(2k)!
f (2k−1) (0) . (A.6)

A.2 Poisson summation Formula

For appropriate functionsf , the Poisson summation formula
may be stated as:

+∞∑
n=−∞

f (n) =
+∞∑

n=−∞
f̂ (n) , (A.7)

where f̂ (n) is the Fourier transform off ; that is f̂ (n) =
F {f (n)}.

Consider the function

F (x) =
∑

n∈Z
f (x + n) .

This is a periodic function of period 1: therefore, we can take
its Fourier series expansion

F (x) =
∑

n∈Z
ane2πinx, (A.8)

where
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an =

1∫

0

F (x) e−2πinxdx =

1∫

0

∑

m∈Z
f (x + m) e−2πinxdx =

∑

m∈Z

1∫

0

f (x + m) e−2πinxdx

=
∑

m∈Z

1∫

0

f (x + m) e−2πin(x+m)d (x + m) =

+∞∫

−∞
f (t) e−2πintdt = f̂ (n) . (A.9)

Therefore:

+∞∑
n=−∞

f (x + n) = F (x) =
+∞∑

k=−∞
f̂ (n) e2πinx. (A.10)

and the result follows by evaluating atx = 0.

B. Vibrational partition function for some values of vibrational quantum number l

B.1 Case ofl = 0

ZH2 =
1
2

+
1

720
(−0.0626265β3 − 0.020674β2

)
+ 0.0330932β

+
e−4.54387β

(
9.51412erfi

(
2.13164

√
β
)− 9.51412erfi

(
0.0823662

√
β
))

√
β

. (B.1)

ZCO =
1
2

+
1

720
(−0.0273855β3 − 0.00370934β2

)
+ 0.0251184β

+
e−11.0743β

(
19.5686erfi

(
3.3278

√
β
)− 19.5686erfi

(
0.0217579

√
β
))

√
β

(B.2)

ZHCl =
1
2

+
1

720
(−0.0976538β3 − 0.0333989β2

)
+ 0.038375β

+
e−4.3858β

(
8.06064erfi

(
2.09423

√
β
)− 8.06064erfi

(
0.00527475

√
β
))

√
β

. (B.3)

ZLiH =
1
2

+
1

720
(−0.019802β3 − 0.0124903β2

)

+ 0.0225453β +
e−2.37809β

(
10.1031erfi

(
1.54211

√
β
)− 10.1031erfi

(
0.0508877

√
β
))

√
β

. (B.4)

B.2 Case ofl = 30

ZH2 =
1
2

+
1

720
(−0.0919104β3 − 0.0234941β2

)
+ 0.0376074β

+
e−5.86809β

(
9.51412erfi

(
2.42241

√
β
)− 9.51412erfi

(
0.000550072

√
β
))

√
β

. (B.5)

ZCO =
1
2

+
1

720
(−0.0268359β3 − 0.00368436β2

)
+ 0.0249493β

+
e−10.9256β

(
19.5686erfi

(
3.30539

√
β
)− 19.5686erfi

(
0.0446334

√
β
))

√
β

. (B.6)
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ZHCl =
1
2

+
1

720
(−0.0735999β3 − 0.0303945β2

)
+ 0.034923β

+
e−3.63224β

(
8.06064erfi

(
1.90584

√
β
)− 8.06064erfi

(
0.0367777

√
β
))

√
β

. (B.7)

ZLiH =
1
2

+
1

720
(−0.0134738β3 − 0.0109858β2

)
+ 0.0198297β

+
e−1.83971β

(
10.1031erfi

(
1.35636

√
β
)− 10.1031erfi

(
0.0405763

√
β
))

√
β

, (B.8)

with the imaginary error function, denoted erfi, is defined as [32]

erfi(x) =− ierf(ix) =
2√
π

x∫

0

et2dt. (B.9)
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