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Massless fermions localization on domain walls
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Massless fermions on scalar domain walls are considered. Two walls are established, corresponding to 5-dimensional static spacetime
asymptotically Anti de-Sitter, differentiated by the symmetry around the wall, and in each case, massless chiral fermions are coupled with
the wall by a Yukawa term. We identify a normalizable state associated to the migration of fermions toward the edge of the wall. This effect
is generated by the competition between the Yukawa interaction and the gravitational repulsion on the matter fields, and it is independent of
theZ2 symmetry of the wall.
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1. Introduction

A brane world corresponds to a 4-dimensional hypersurface
embedded in a high dimensional bulk, on which gravity is
localized [1, 2]. In the most general case, the 4-dimensional
sector can be generated by a scalar domain wall interpolating
between two asymptotic Anti de-Sitter (AdS) vacuums, with
different cosmological constants at each side of the wall,i.e.,
a solution to the coupled Einstein-Klein Gordon system with
a potential with a spontaneously broken discrete symmetry
[3-7]. The gravity fluctuations of this spacetime depend on
the wall’s thickness and are characterized by both a zero -
mode localized on the wall and a spectrum of massive states
propagating freely. In the thin- wall limit [6, 12], the gravi-
tational potential can be calculated, and Newtonian gravity is
recovered on the 4-dimensional sector of the scenario.

To localize the matter field, a Yukawa coupling between
the bulk fermions and the scalar field of the wall is required;
however, in this case, only one chiral massless state (left or
right) is localized, while the other is repelled by the gravita-
tional field of the wall [13–26]. Remarkably, we determined
that the minimum bound of the Yukawa constant, obtained
from conditions of normalization, is not sufficient to confine
the fermion in 4-dimensions with maximum probability on
the scalar wall.

On the other hand, it is well known that in the absence
of Z2 symmetry, the gravitational field of the brane shifts the
fermion toward the 5-dimensional sector with greater curva-
ture [22]. Here, we show that another shift-like effect ex-
ists, regardless of the reflection symmetry of the scenario.
For some values of the Yukawa coupling constant, the chi-
ral fermion can be shifted simultaneously at each side of the
wall, i.e., the bound state exhibits two relative maximums
close to the wall and hence the probability of finding the par-
ticle is greater around the wall rather than on it.

To rule out the relationship between the symmetry of the
scenario and the fermion’s migration, we consider two mod-

els differentiated by their reflection symmetry. The first one
corresponds to the member withZ2 symmetry of a family
of asymmetric domain walls [4], while the second one is an
intrinsically asymmetric wall family [9, 21]. In both cases,
when the fermion satisfies the normalization condition and it
is distributed (centered) around the wall, there are obtained
two peaks at each side of the wall, in the probability profile
of the fermion. For the other cases, where only the normal-
ization condition is satisfied, the fermion is always confined
outside the wall.

2. Set-up

Consider the coupled Einstein scalar field system in 5-
dimensions (latin indexa, b = 0, · · · , 4; greek indexµ, ν =
0, · · · , 3)

S =
∫

dx5√g

[
1
2
R− 1

2
gab∇aφ∇bφ− V (φ)

]
, (1)

where the metric is given by

ds2 = e2A(y)ηµνdxµdxν + dy2, (2)

which corresponds to a spacetime with plane parallel sym-
metry whose energy density is determined by

ρ = −3(2A′2 + A′′). (3)

Here and in the other sections, prime denotes the derivative
concerningy.

We are interested in AdS5 domain wall solutions, sce-
narios for which geometry is determined by a scalar fieldφ
interpolating between the negative minima of the potential
V (φ). It is well known that the full spectrum of the grav-
ity fluctuations of these scenarios is characterized by a zero
-mode localized on the wall,ψg ∼ e2A(y), and a continuum
of massive modes propagating freely through the whole 5-
dimensional bulk; see [9] for details.



78 R. GUERRERO, R.O. RODRIGUEZ, AND F. CARRERAS

The chiral massless fermions can also be localized on the
wall by a Yukawa coupling between the bulk fermions and the
scalar field,λΨ̄φΨ [21]. To evidence this, the Dirac equation
for the 5-dimensional spinor in the background (2) must be
considered

Γa∇aΨ(x, y) = λφ(y)Ψ(x, y). (4)

To obtain the coordinates representation of the motion
equation, it is common to rewriteΨ(x, y) in terms of its chi-
ral components left (L) and right (R), and factor its spatial
degrees of freedom, as shown below

Ψ(x, y) = ΨL(x)ψL(y) + ΨR(x)ψR(y), (5)

whereΨL
R(x) ≡ ±γ5ΨL

R(x), which satisfies the massless 4-
dimensional Dirac equation

iγµ∂µΨL
R(x) = 0. (6)

Thus, forψL
R(y) we have

(∂y + 2A′(y)± λφ(y))ψL
R(y) = 0; (7)

for which
ψL

R(y) = e−2A(y)∓λ
∫

φ(y) dy. (8)

For a domain wall solution,eA is an integrable and
asymptotically vanishing function, such that,e−A ∼ ek|y|

as|ky| À 1, with k =
√
|Λ|/6, i.e., gravitation produces a

repulsive effect on fermions. Hence, for the appropriate val-
ues ofλ one of theψL

R can be normalized. In particular, for
ψL in the largey limit, it is possible to see that

ψL(y) −→ e(2k−λφ0)|y|, (9)

whereφ(y = ±∞) = ±φ0 has been considered. Therefore

λ >
2k

φ0
≡ λ1 (10)

to cancel the repulsive effect generated by gravity.
The previous restriction for the Yukawa coupling is a nec-

essary condition, but not sufficient to ensure the confinement
of ψL on the wall. For some values ofλ, we found solutions
for ψL with two peaks at each side of the wall, generated
by the gravitational competition between the geometry of the
spacetime and the Yukawa interaction.

Let λ1 be the Yukawa critical constant from which (8)
is normalizable. Moreover, letλ2 be the Yukawa threshold
from which the maximum of (8) is on the wall (λ2 > λ1).
Then, forλ < λ1, the fermion is expelled from the thick
brane by the gravitational field of the wall; while forλ > λ2

the fermion is localized on the wall. On the other hand, the
sectorλ1 < λ < λ2 corresponds to a bounded probability
distribution with three critical points: a pair of maximums
around the wall and a minimum on it. So, the chiral zero -
mode of the matter fields is repelled by the thick brane and
keeps orbiting around it.

The critical boundλ2 can be determined by a saddle point
evaluation of (8). By assuming thatψL is peaked near the
brane,y = 0, and thatψ′L(0) = 0 andψ′′L (0) < 0, the follow-
ing is obtained

∞∫

−∞
dy ψL(y) '

[
2π

−2|A′′(0)|+ λφ′(0)

]1/2

ψL(0). (11)

Therefore, to preserve it as a real amount, the following is
required

λ > 2
|A′′(0)|
φ′(0)

≡ λ2 (12)

Now, to determinate the hierarchy betweenλ1 and λ2,
we will consider two specific solutions to the Einstein-Klein
Gordon system (1), differentiated by the reflection symmetry
of each scenario.

3. Symmetric walls

A solution to the coupled system (1) is given by

A(y) = −δ ln cosh
αy

δ
, (13)

φ(y) = φ0 arctan sinh
αy

δ
, φ0 =

√
3δ, (14)

and

V (φ) = 3α2

[(
1
2δ

+ 2
)

cos2
φ

φ0
− 2

]
. (15)

This solution was obtained in [4] and corresponds to a
two-parameter domain wall interpolating asymptotically be-
tween two AdS5 spacetime, with a cosmological constant
given byΛ = −6α2. Also, it is well known that the zero
mode of gravity fluctuations is normalizable, and hence stan-
dard gravitation can be recovered in 4-dimensions.

Concerning to the massless fermions, from (8)

ψL ∼ cosh2δ (αy/δ)

× exp
[
λ

δφ0

α

(
αy

δ
(2 arccot eαy/δ+arctan sinh αy/δ)

)]

× exp
[
iλ

δφ0

α

(
Li2(−ie−αy/δ)−Li2(ie−αy/δ)

)]
(16)

whereLin is the polylogarithm function of ordern given by

Lin(τ) ≡
∞∑

k=1

τk

kn
; (17)

and from (10) and (12) we find

λ1 =
4α

π
√

3δ
(18)

and
λ2 =

π

2
λ1, (19)

respectively.
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FIGURE 1. a) Massless fermionψL and energy densityρ for
λ1 < λ < λ2 and b)λ > λ2.

Figure 1 shows the fermions profile for some values of
λ. We observed that forλ > λ2, ψL is normalizable, with
maximum probability on the wall. On the other hand, if
λ1 < λ < λ2, a change occurs in the behavior ofψL ; in
this case, the competition between gravitational interaction
and Yukawa coupling divides the maximum of the profile into
two maximums around the wall;i.e., the fermions prefer to
orbit around the structure.

4. Asymmetric walls

Before considering a thick domain wall with different cos-
mological constants at each side of the wall,Λ+ andΛ−, it is
convenient to estimate the asymptotic behavior ofψL in this
scenario,i.e.,

ψL(y) −→ Θ(y)e(2k+−λ+ |φ+ |)y

+ Θ(−y)e−(2k−−λ− |φ− |)y, (20)

whereφ(y = ±∞) = φ± andk± =
√
|Λ±|/6 have been

considered.
Obtain a normalizable solution forψL , from (20) reads

λ > max{λ1+, λ1−}, λ1± =
2k±
|φ±| . (21)

Thus, two critical Yukawa constants associated withΛ± are
obtained, which are the result of the lack ofZ2 symmetry.

Now, suppose thatλ1− > λ1+ and thatλ1− > λ2 >
λ1+. In this case, althoughλ2 is greater than one of the
asymptotic constants, the migratory effect may not be present
becauseλ2 < λ1−. On the other hand, there is the possibility
thatλ2 > λ1−, and even though the fermion is normalizable,
it is more likely to orbit around the wall. To analyze this, let
us consider one specific solution for the domain wall.

An asymmetric solution is determined by

A(y) = −δ exp
(
−2 e−αy/δ

)

+ δEi
(
−2 e−αy/δ

)
+ βy, (22)

whereα andδ are positive constants and Ei is the exponential
integral given by

Ei(u) = −
∞∫

−u

e−t/t dt. (23)

The scalar field and potential for this scenario are

φ(y) = φ0 exp
(
− e−αy/δ

)
− ε (24)

and

V (φ) = 18
[
α

(φ + ε)
φ2

0

ln
(φ + ε)2

φ2
0

]2

− 6
[
α

(φ + ε)2

φ2
0

(
1− ln

(φ + ε)2

φ2
0

)]2

+ 6β

[
2α

(φ + ε)2

φ2
0

(
1− ln

(φ + ε)2

φ2
0

)
− β

]
. (25)

This solution was reported in [9] and it corresponds to a
two-parameter family of plane symmetric static domain walls
without Z2 symmetry. The scalar field interpolates between
two asymptotic vacua,φ− = −ε for y < 0 andφ+ = φ0 − ε
for y > 0, with different cosmological constants

Λ− = −6β2, Λ+ = −6(α− β)2, 0 < β/α < 1. (26)

Now, Eq. (8) provides that

ψL ∼ expλ

[
δ

α
φ0Ei

(
− e−αy/δ

)
+ εy

]

× exp
[
2δ exp(−2e−αy/δ)

− 2δEi
(
−2 e−αy/δ

)
− 2βy

]
. (27)

Notice that, constantsε andβ fix the asymptotic values of the
scalar field and the cosmological constants, in such a way
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FIGURE 2. Massless fermionψL shifted outside of energy density
ρ, for λ > λ2.

that, neither for the fermion nor for the graviton it is pos-
sible to find normalizable solutions asε = β = 0 because
φ− = Λ− = 0.

Now, to simplify we will consider the caseβ = 3α/e2,
where the wall is centered iny = 0, without loss of general-
ity. However, the location of the fermion is shifted concern-
ing the brane. To demonstrate this, let us calculateψL near
y = 0,

ψL(y) ∼ exp
[
− α

2eδ
(λφ0 − 8α) (y − y0)

2
]

+O(αy/δ)3 (28)

where

y0 ' eδλ

2α

(
ε− φ0/e

λφ0 − 8α

)
¿ 1. (29)

Thus, the wave function of the fermion is centered aty0 with
a width given by

√
eδ/

√
(λφ0 − 8α)α. The fermion’s shift

was verified numerically beyond the approximationαy/δ ¿
1, and the results are shown in Fig. 2.

Unlike in this article, the shift has previously been used
to locate fermions on the wall: in [27] where the spacetime
is flat with an orbifold geometryR4 ×S1; and in [22], where
the 5-dimensional spacetime is generated by a static double
domain wall, in order to have the graviton and the fermion in
different sub-walls.

For a scenario generated by a single wall with one non-
compact extra dimension, shifting the fermion does not favor
the creation of a brane world, since the maximum of proba-
bility is not on the wall. Therefore, in agreement with (29),
ε = φ0/e is required to center the fermion on the wall, and
under this circumstance, it is possible to evaluate the migra-
tory effect.

From (21) and (12), the following is obtained

λ1− =
6α

eφ0
, λ1+ =

(e2 − 3)
(e− 1)

2α

eφ0
(30)

FIGURE 3. a) Fermion zero modeψL and energy densityρ for
λ1 < λ < λ2 and b)λ > λ2.

and

λ2 =
8α

eφ0
(31)

in such a way thatλ2 > λ1− > λ1+.
In Fig. 3, we plot the zero-mode fermion for some values

of λ. For the migratory sector,λ1+ < λ < λ2, we can see
two interfaces associated with the bounded state ofψL . The
difference in the amplitude of the peaks is generated by the
gravitational repulsion applied on the fermions, which expels
them towards the region of the greater curvature. Forλ > λ2

the probability’s maximum is iny = 0, and therefore,ψL is
confined on the wall.

5. Discussion

The Yukawa coupling counteracts the repulsion exerted on
the fermions by the gravitation of the wall, such that, utiliz-
ing a critical value of the Yukawa constantλ > λ1 (obtained
by asymptotic analysis of the wave function), ensures the nor-
malization of one of the chiral states. However, we found a
range of values for the Yukawa constant,λ1 < λ < λ2 (by
the Laplace method), where the fermion is in a normalizable
state orbiting around the wall.

Rev. Mex. F́ıs. 66 (1) 77–81



MASSLESS FERMIONS LOCALIZATION ON DOMAIN WALLS 81

We calculated the Yukawa bounds,λ1 andλ2, in two sce-
narios generated by a thick domain wall with or without re-
flection symmetry.

On the domain wall solution with reflection symmetry
[4], A(y) andφ(y), the chiral massless fermionψL is nor-
malizable around the wall. On the other hand, the symmet-
ric wall is part of a family of asymmetric solutions where
A(y) → A(y) + βy andφ(y) → φ(y) − ε [22], and where
the zero-mode of the fermion is determined by

ψL(y) → ψL(y)e−(2β−λε)y, (32)

the fermion is shifted from the wall by the terme−2βy. There-
fore, it is not possible to evaluate the migratory effect on an-
other member of the family of solutions, different than the
Z2-limit case:(β, ε) → (0, 0).

To evaluate the migratory effect on a scenario withoutZ2

symmetry, an intrinsically asymmetric domain wall [9],A(y)
andφ(y), is required. This scenario is also a member of a
two-parameter family,A(y) + βy andφ(y) − ε, but without
theZ2-limit, and to ensure thatψL(y) is centered in the max-
imum ofρ(y), β = 3α/e2 andε = φ0/e must be utilized.

In both cases the constraints imposed on the fermion to
get it on the wall, lead to a hierarchy betweenλ2 and λ1,
such that, regardless of the scenario’s symmetry, the migra-
tory effect could be present.
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