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Single particle spectrum of a nucleon in the harmonic oscillator
mean field with spin-orbit coupling - a semiclassical view
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We have presented the single, particle spectrum for a particle in a mean-field of an isotropic harmonic oscillator with~l · ~s coupling based on
our semiclassical approach. It has been seen that this spectrum, without~l · ~s coupling, exactly matches with the quantum mechanical one
(without nuclear constraints). In this case, periodicity conditions give only pendulating orbits coinciding withl = 0 axis, which fully supports
the observations reported by Bohr and Mottelson [28]. The orbits withl ≥ 0 are generated by reflecting the particle from the nuclear surface,
R0, instead of infinity, which is the usual nuclear constraint. The mean-field strength is fixed by virial theorem. The resulting spectrum
compares reasonably with the quantum spectrum for a particle enclosed in a perfectly reflecting walls. The variation of particle number with
energy helps us to identify the significant quantum numbers ‘n’ and ‘l’ in this semiclassical method. Finally, the~l · ~s coupling splits each
level and the splitting width of these levels compares well with that of nuclear splitting. Thus the complete nuclear shell model (with magic
numbers) is reproduced without any fitting parameter.
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1. Introduction

During the past decade, a variety of nuclear phenomena like
magnetic rotation [1], chiral twin bands [2], shape coexis-
tence [3,4], superheavy elements [5] and superdeformation
[6] have been observed, which originate from single-particle
and collective motion as well as their interplay. Tradition-
ally, Strutinsky’s shell correction method [7] has been one
of the central approaches for calculation of potential energy
surfaces [8,9,2], which is a key to understand these phenom-
ena. This method, also known as the macroscopic plus mi-
croscopic approach, obtains the fluctuating part of the level
density (the shell correction term) arising from the quantal
shell correction energy. Parallel to Strutinsk’s method, semi-
classical methods have been developed [10-12], which can
explain successfully the features of both ordered and chaotic
quantum systems. Recently, the mixing of deuteron states
(3S1 and 3D1) with tensor interaction has been semiclassi-
cally analyzed [13].

One such semiclassical technique, known as periodic or-
bit theory (POT), was initiated nearly four decades ago by
Gutzwiller [10], it has emerged as one of the most powerful
methods of understanding the quantum spectra. Semiclassi-
cal trace formula, the as developed by Gutzwiller [14] for the
fluctuating part of level density of a quantum system is given
by

δg(E) =
1
π~

∑

PO

TPPO√
det|M̃PO − I |

× cos
(SPO

~
− σPO

π

2

)
(1)

The left-hand side of Eq. (1) is a quantum mechanical
quantity, whereas the right-hand side contains only the clas-
sical quantities. Here,TPPO represents the time period of the
primitive periodic orbit, andM̃PO is the monodromy stability
matrix. The oscillations are controlled by actionSPO of each
periodic orbit andσPO is a Maslov index. This trace formula
is, however, applicable if all the periodic orbits are isolated.

Subsequently, several extensions of Gutzwiller’s semi-
classical trace formula were made to include regular and
mixed dynamics for explaining quantum shell effects in many
physical systems [15-18]. One such generalization was re-
ported by Strutinskyet al. [19] to systems with continuous
symmetries by explicitly taking into account the degeneracy
of the classical orbits. This method was successfully applied
to phenomenological potentials used in nuclear physics [19],
yielding a semiclassical interpretation of ground-state defor-
mation as a function of particle number. One of us [20] has
also obtained an eigenvalue spectrum for a particle enclosed
in an infinitely high spheroidal cavity by using the formalism
of Strutinskyet al. On comparing this semiclassical eigen-
value spectrum with corresponding quantum mechanical val-
ues [21], we have established the importance and significant
contribution of planar (both in the axis of symmetry plane and
the equatorial plane) and 3-dimensional orbits for the normal
deformed and the superdeformed regions. Further, this semi-
classical method has been extended [22] to explain elegantly
the mass asymmetry in nuclear fission [23].

Amann and Brack [24] have developed trace formula
for a nuclear system in a 3-dimensional harmonic oscillator
mean-field with a spin-orbit interaction of Thomas type. In
the strong coupling limit, singularities occur in phase space
where the spin-orbit interaction locally becomes zero. These
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singularities impose severe restrictions on the applicability
of the trace formula. However, they have pointed out that the
leading orbits with shortest periods are free from singulari-
ties and lead to excellent results for the coarse-grained level
density, as long as bifurcations of these orbits are avoided.

It is worthwhile to mention here that Littlejohn and
Flynn [25] developed a semiclassical theory of systems with
multi-component wavefunctions and applied [26] it to the
WKB quantization of integrable spherical systems with the
standard spin-orbit interactions. Frisk and Guhr [27] have
studied the deformed systems with spin-orbit interaction
by approximating the Schrodinger equation semiclassically.
Here, the information about the periodic orbits is extracted
from the Fourier transform of the quantum mechanical spec-
tra.

The present work aims to obtain the complete spectrum
for a particle moving in an isotropic three-dimensional har-
monic oscillator mean-field with spin-orbit interaction. This
work is based on the formalism developed by Strutinskyet
al. [19]. The semiclassical interpretation for a nucleon in an
isotropic oscillator mean-field was first given by Bohr and
Mottelson [28]. They pointed out that only the pendulat-
ing orbits (also known as diametric orbits) are possible in
this potential. These orbits are traced by a particle by ex-
ecuting two radial oscillations for each angular motion (i.e.
(ωr/ωθ = 1/2). Such a trajectory coincides withl = 0 axis.
We will show that our periodicity condition confirms their ob-
servation, and the calculated eigenvalue spectrum is exactly
in agreement with a quantum mechanical one.

Further, the effect of spin-orbit coupling in the mean-field
arises only if there is a contribution of orbits withl ≥ 0. Such
trajectories are obtained in our trace formula by putting the
constraint that the particle is reflected atr = R0 (R0 being
the nuclear radius), instead of infinity. This is an ideal sit-
uation for the nuclear shell model, which states that a parti-
cle moving in harmonic oscillator mean-field is confined in
a spherical cavity of radiusR0. In this work, we have fixed
the potential strength with the help of virial theorem. The
complete formalism is free from singularities and does not
involve any fitting parameter.

A complete trace formula for a particle moving in a three-
dimensional harmonic isotropic oscillator mean-field with
spin-orbit coupling is given in Sec. 2. Section 3 is devoted
to results and discussion. The conclusions are summarized in
Sec. 4.

2. Trace formula for isotropic harmonic oscil-
lator mean-field with spin-orbit coupling

For the bound states of a single particle HamiltonianH, the
level density is generally defined as a sum of Dirac delta dis-
tributions,

g(E) =
∑

i

δ(E − Ei). (2)

This sum runs over all the eigen-energiesEi (including
degeneracies). It can split into a smooth and an oscillating
part:

g(E) = g̃(E) + δg(E). (3)

The oscillating component of the single particle level
densityδg(E), in cylindrical coordinates (ρ, φ, z) is given by

δg(E) =
1
π~2

∑

β,m

fβ,m sin

(
Sβ,m

~
+ αβ,m

)

×
"

dρdz
√
|pρρJ(PρPztβ,m; ρ′z′E)|ρ′,z′→ρ,z. (4)

The factor fβ,m equals to 1 for the diametric orbits and 2
for other orbits like triangles, squares, etc. The time-period
for the path from the initial point~r to the final point~r ′ for
energyE is defined as

tβ =
∂Sβ(~r ,~r ′,E)

∂E
. (5)

The quantityJ in Eq. (4) is the Jacobian of transforma-
tion between two sets of classical quantities (pρ,Pz, tβ,m) and
(ρ′, z′,E), which are related by the classical equations of mo-
tion. Here,β denotes the type of orbits andm is the number
of reoetitions of a given type of orbit.

The periodic orbit sum in Eq. (4) does not converge in
most cases. Since the maximum contribution to the gross
shell structure comes from the shortest periodic orbits. It has
now become customary to carry out a smooth truncation of
the contributions of the longer periodic orbits by folding the
level density with a Gaussian function [12] of widthγ,

δgav =
∑

β,m

δg(E) exp

[(
−γtβ,m

2~

)2]
(6)

The averaging widthγ is chosen to be larger than the
mean spacing between the energy levels within a shell, but
much smaller than the distance between the gross shells. This
averaging ensures that all longer paths are strongly damped
and only the shortest periodic orbits contribute to the oscillat-
ing part of the level density. Also, the effect of degeneracies
is included in Eq. (4) by using the prescription outlined in
Ref. [19].

We have approximated the nuclear mean-field by an
isotropic harmonic oscillator. The Hamiltonian for a single
particle of massM is expressed in terms of spherical polar
coordinates (r, θ, φ) and the conjugate momenta (pr , pθ, pφ)
as

H =
1

2M

[
P2

r +
1
r2

p2
θ +

1

r2 sin2 θ
p2
φ

]
+

1
2

Mω2R2. (7)

Equation (7) leads to a Hamilton-Jacobi equation, which
can be solved by using the separation of variable technique.
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Therefore, the classical dynamics of a particle is determined
by the following three partial actions:

sθ =

�
dθ

√
ε2 − l2z

sin2 θ
= 2π(ε − lz), (8)

sr =

�
dr

√
2ME − M2ω2r2 − ε

2

r2
, (9)

sφ = 2πlz. (10)

Here, ε and lz are the separation constants and are ob-
tained from the following periodicity conditions.

ωr

ωθ
=
∂sθ/∂ε
∂sr/∂ε

=
nr

nθ
(11)

ωφ

ωθ
= − 1

2π

[
∂sθ
∂lz

+
∂sr/∂lz
ωθ/ωr

]
=

nφ
nθ

(12)

The integration in ther-coordinate of Eq. (9) is obtained
analytically under two limiting approximations: (i) the upper
limit lies at infinity and (ii) it lies atR0. Both these cases are
discussed in the following subsections.

2.1. Case I: upper bound lies at infinity

The limits of radial integration are determined by the reflec-
tion points which, in turn, are obtained by solving the equa-
tion

p2
r = 2ME − M2ω2R2 − ε

2

r2
= 0. (13)

Since the radial coordinate is positive, so we consider the
following positive roots of equation (13) for the lower and
upper limits of the integration in Eq. (4.9).

rmin =

√
E

Mω2

[
1− √σ2

]
, (14)

rmax =

√
E

Mω2

[
1 +
√
σ2

]
, (15)

with σ2 = ε/(E/ω)2, a dimensionless constant. Thus the ac-
tion in the radial coordinate becomes

sr = π
E
ω

(1− √σ2). (16)

The first periodicity condition Eq. (11) impliesωr = 2ωθ,
i.e., only the pendulating orbits are possible, which confirms
the result of Bohr and Mottelson [28]. The second condition
fixesωθ = ωφ. These constraints clearly indicate that both
separation constantsε andlz are constants of motion.

Thus the total action in Eq. (4) is obtained as

sβ = nr sr + nθsθ + nφsφ = nrπ
E
ω
. (17)

The Maslov indexαβ,m in Eq. (4), plays a very crucial
role in the periodic sum as it decides the relative phase of
the various terms in the summation. Following Creagh and

Littlejohn [29] and Brack and Bhaduri [12], we obtain the
following Maslov indices for the pendulating orbits.

αβ,m = −3
2

mnrπ. (18)

Finally, the Jacobian in Eq. (4) is calculated numerically
using the procedure outlined in Ref. [20]. The calculations
of Jacobian involve the generalized radial, and axial coordi-
natesρ, z respectively and their generalized momenta. These
generalized coordinates are defined as :

ρ = r sinθ, z = r cosθ. (19)

The corresponding canonically conjugate momentapρ
andpz are

pρ =

√
2ME − M2ω2R2 − ε2

R2
sinθ

+
1
r

cosθ

√
ε2 − l2z

sin2 θ
(20)

pρ =

√
2ME − M2ω2R2 − ε2

R2
cosθ

− 1
r

cosθ

√
ε2 − l2z

sin2 θ
(21)

These quantities are inserted in Eq. (4) to calculate the
fluctuating part of the level density.

The smooth part of the density of states is calculated
within the Thomas-Fermi approximation and is given by

g̃(E) =
1

2π2

(2M
~2

)3/2 ∫
d3r

√
E − V(~r)Θ(E − V). (22)

The Eq. (22) has already been multiplied by a factor of
2 to include the spin degeneracy. For the harmonic oscillator
potential,V = (1/2)mω2r2, the integral is evaluated analyti-
cally, and we obtain ˜g(E) = E2/(~ω)3.

The harmonic potential with asymptotic reflection point
at infinity generates only the pendulating trajectory (i.e. l =

0. A significant contribution of~l · ~scoupling arises due to the
availability of trajectories withl , 0. Such trajectories with
l , 0 are obtained in our formalism by fixing the upper bound
atR0 (as discussed in the following subsection).

2.2. Case II: The upper reflection point atR0

In this case, the particle motion is bounded between an upper
limit provided by the radius of spherer = R0 and a lower
limit fixed at rmin (see Eq. (14)). It is worthwhile to mention
here that such a scenario corresponds to a particle enclosed in
a spherical cavity with perfectly reflecting walls. The radial
action, given by Eq. (9), becomes:

sr =
√

2MER0

[ √
1− σ1 − σ2 −

√
σ2

(
sin−1 1− 2σ2√

1− 4σ1σ2

+
π

2

)
− 1

2
√
σ1

(
sin−1 1− 2σ1√

1− 4σ1σ2
− π

2

)]
. (23)
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T I. A comparison of eigenvalues, in terms ofkR0, of an isotropic oscillator of Case II, without and with~l · ~s coupling.

n l Qmech. no.~l · ~s Scl. no.~l · ~s Scl. + ~l · ~s Scl.−~l · ~s
1 s 3.142 3.138 3.124 3.151

1 p 4.493 4.524 4.483 4.566

1 d 5.763 5.834 5.762 5.906

2 s 6.283 6.333 6.320 6.345

1 f 6.988 7.104 6.999 7.209

2 p 7.725 7.801 7.762 7.841

1 g 8.183 8.349 8.210 8.489

2 d 9.095 9.201 9.134 9.268

3 s 9.356 9.515 9.403 9.520

1 h 9.425 9.577 9.502 9.753

2 f 10.417 10.557 10.461 10.653

1 i 10.513 10.794 10.582 11.007

3 p 10.904 11.017 10.978 11.056

2 g 11.657 11.881 11.754 12.008

Here,σ1 = (Mω2R2
0)/2E is a dimensionless constant and

refers to potential strength. Another dimensionless constant
σ2 = ε2/(2MER2

0) is related to the separation constantε and
is fixed by the periodicity condition Eq. (11) as

1
2

[
sin−1 1− 2σ2√

1− 4σ1σ2
+
π

2

]
= π

nθ
nr
. (24)

The periodicity condition Eq. (12) givesωθ = ωφ, which
implies thatlz is again a constant of the motion. This gives us
the trajectories withl ≥ 0. The constant,σ1 is fixed by using
the virial theorem as discussed below.

We know that 2T =
∑

i pi q̇i (T is the kinetic energy of
the system;qi andpi are the generalized coordinates and mo-
menta, respectively). Integrating both sides concerning time
over a complete period of motion and also using the virial
theoremT̄ = V̄ we get

1
2
√
σ1

=
√

1− σ1 − σ2 − 1
2
√
σ1

×
[
sin−1 1− 2σ1√

1− 4σ1σ2
− π

2

]
. (25)

Here, the bar on the physical quantitiesT andV refer to
an average over a single period of motion. Thus the total ac-
tion in (4) is obtained as

Sβ =
√

2MER0nr

[ √
1− σ1 − σ2 − 1

2
√
σ1

×
(
sin−1 1− 2σ1√

1− 4σ1σ2
− π

2

)]
(26)

The Maslov indexαβ,m, in this case, is given by the fol-
lowing expressions:

For diametric orbits (l = 0 trajectories),

αβ,m = −3
2

mnrπ. (27)

For other orbits (l = 0 trajectories),

αβ,m = −3
2

mnrπ − (mnθ − 1)π +
3π
4

(28)

Here, also the Jacobian is calculated by using the proce-
dure as discussed in case I.

Next, the maximum limit for the repetition parameterm
in Eq. (4) is obtained by considering that the longest periodic
orbit, out of the permissible familiesβ, traverses only once in
the cavity. This fixes the repetition numbers of the individual
families concerning that of the largest one,i.e.

mmax =
Ll arg est

Lβ(nr ,nθ,nφ)
(29)

The length of the orbitLβ, is related to the actionSβ by
the relation

Sβ =
√

2MELβ. (30)

Thus, the fluctuating part of the level density is fully
established by including all the above mentioned terms in
Eq. (4).

Finally, the smooth part is obtained by using the spherical
cavity considerations [30]

g̃(E) =
1

4π2

(2M
~2

)3/2√
EV− 1

16π

(2M
~2

)
S

+
1

12π2

(2M
~2

)1/2 C√
E
, (31)

where,V, S, andC refer to the volume, surface area, and
radius of curvature of the spherical cavity, respectively.
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2.3. Inclusion of~l · ~scoupling term

The Hamiltonian,H, in Eq. (7) is modified by including the
~l · ~s coupling. This coupling term is defined as

~l · ~s =
1
2

[lxσx + lyσy + lzσz]. (32)

This equation is a 2× 2 matrix, which is diagonalized to
obtain two eigenvalues:

〈~l · ~s〉 = ±1
2

√
l2 − lz~. (33)

In spherical polar coordinates,l2 andlz are expressed as

l2 = p2
θ +

1

sin2 θ
p2
φ, (34)

lz = pφ. (35)

These generalized momenta are represented in terms of
derivative of partial actions concerning their generalized co-
ordinates, we have

〈~l · ~s〉 = ±1
2

√(dsθ
dθ

)2

+
1

sin2 θ

(dsθ
dθ

)2

− ~dsφ
dφ

. (36)

Further, using Eqs. (8-10), we get

〈~l · ~s〉 = ±1
2

√
ε2 − lz~ ≈ ±1

2
ε. (37)

The contribution oflz~/ε2 is extremely small and hence
can be neglected. We have fixed the coupling strengthκ as
follows:

κ = −λ
(
~

Mc

)2 1
r
∂V
∂r

= −λ√σ1 (38)

Remarkably, the spin-orbit coupling constant is related to
the harmonic oscillator potential constantσ1, which makes
our formalism free from the fitting procedure. Here,λ is a
dimensionless constant, and its value is taken equal to 0.2 for
a reasonable splitting in the eigenvalue spectrum.

The inclusion of~l · ~s coupling term modifies the energy
in the Hamilton Jacobi equation toE ± (κ/2)ε. This modi-
fied energy is used in Eq. (9) to obtain the radial actionsr ,
which is further used in obtaining the periodicity constraints
and hence the fluctuating part of the level density.

The periodicity condition (Eq. (11)) thus calculated by
using the formalism for the case I givesωr = (2ωθ/1∓(λ/2)).
This clearly indicates thatε is again a constant of the motion
and gives trajectories withl = 0. So, case I does not con-
tribute significantly to spin-orbit splitting. On the other hand,
this condition, within case II, gives

1
2

[
sin−1 1∓ λ√σ1σ2 − 2σ2√

(1∓ λ√σ1σ2)2 − 4σ1σ2

+
π

2

]
∓ 1

4
λ

×
[
sin−1 1∓ λ√σ1σ2 − 2σ2√

(1∓ λ√σ1σ2)2 − 4σ1σ2

− π
2

]
= π

nθ
nr

(39)

The mean-field strength also gets modified by the inclu-
sion of~l · ~s coupling as follows,

1
2
√
σ1

=

√
1∓ λ√σ1σ2 − σ1 − σ2 − 1

2
√
σ1

×
[
sin−1 1∓ λ√σ1σ2 − 2σ2√

(1∓ λ√σ1σ2)2 − 4σ1σ2

− π
2

]
(40)

These conditions together generate trajectories by vary-
ing nθ andnr , which correspond to orbits withl ≥ 0. There-
fore, the spin-orbit coupling shows up significant splitting in
our eigenvalue spectrum.

3. Results and discussion

Firstly, we discuss the semiclassical eigenvalue spectrum of
isotropic harmonic oscillator without~l · ~s coupling. Further,
the numerical results of case I are presented first. In this case,
we have variednθ from 1 to 500. The periodicity conditions
(Eqs. (11) and (12)) fixnr (= 2nθ) andnφ(= nθ), respectively.
Since only one type of orbits, known as diametric orbits are
involved, the repetition parameterm is kept equal to 1. The
averaging widthγ is chosen as 0.002 for proper convergence
of the sum in Eq. (4). Here, the energy is measured in units
of ~ω. The results ofg(E) vs. E are shown in Fig. 1. It
is interesting enough to note that the peak positions coincide
exactly with those of the quantum levelsEN = (N + (3/2))~ω

F 1. Total level densityg(E) vs. E in units of~ω for Case I of
isotropic oscillator.
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F 2. (a) Particle numberN vs. E in units of~ω for Case I of
isotropic oscillator. (b) Plot of Quantum results.

(with N = 0, 1, 2, 3 etc.) and peak heights resemble nearly
with the quantum mechanical degeneracies (1/2)(N + 1)(N +

2). Here, we would like to mention that the difference be-
tween the semiclassical eigenvalues and quantum mechani-
cal ones is 2× 10−3. An analytically exact result was already
obtained in Ref. [15] by modifying the Gutzwiller’s trace for-
mula for stable orbits. It is worthwhile to mention here that
the frequency ratios in our approach are fixed by the period-
icity conditions. Also, the trajectories fixed by the periodic-
ity conditions in our approach fully support the observation
made by Bohr and Mottelson [28] that only the pendulating
orbits are possible in an isotropic harmonic oscillator poten-
tial.

The number of particles are obtained by using the rela-
tion:

N =

EF∫

0

g(E)dE. (41)

Here,EF refers to energy corresponding to the peak po-
sition in Fig. 1 andg(E) is the total level density. The calcu-
lated results ofN vs. E are shown in Fig. 2. The quantum
mechanical results are also shown in this figure. A compari-
son of semiclassical results with those of quantum mechani-
cal ones shows a remarkable similarity in the variation ofN
vs. E. However, the semiclassical values are an order of mag-
nitude higher than the quantum mechanical values. This or-
der of magnitude can be reduced by incorporating the Pauli-
principle in the trace formula [31]; it is not included here.
The diametric trajectories correspond tol = 0 contribution

F 3. Total level densityg(E) vs. kR0 for Case II of isotropic
oscillator withκ = 0. The quantum results are also given for com-
parison.

and hence do not reproduce splitting by including the~l · ~s
coupling (as discussed above in Sec. 2.3).

To obtain the splitting due to~l · ~s coupling, we have
switched over to case II. In this case, we have varied both
nθ from 1 to 500 andnr from 2nθ to 500, whereasnφ is
fixed equal tonθ by using the periodicity condition Eq. (12).
These varied integers are used in Eq. (24) to obtain trajec-
tories with l ≥ 0. Further, we have solved simultaneously
the transcendental Eqs. (24) and (25) to ascertain the shapes
of trajectories possible in the harmonic oscillator mean-field.
Here,γ is again fixed equal to 0.002, and the upper limit of
the repeated orbits,mmax is obtained by Eq. (29). We have
already pointed out that this scenario resembles a spherical
cavity problem. Therefore, we have calculated the energies
in units of ~2/2MR2

0. The results ofg(E) vs kR0 (where
k =

√
2ME/~) are shown in Fig. 3. It is obvious that the

peak positions show a similar eigenvalue spectrum as ob-
served in a spherical cavity [30], and are fairly close to the
zeroes of Bessel functions (which are the quantum mechan-
ical results of a single particle confined in spherical poten-
tial well). Here, we would like to point out that for an exact
comparison with the quantum mechanical results, one has to
solve the quantum mechanical eigenvalue equation for such
a truncated mean field atR0.

The particle numbers are calculated by using Eq. (41) and
are shown in Fig. 4 as a function ofkR0. Here,FF in terms of
kR0 is varied continuously from 1 to 12. Again the calculated
N values are quite high as compared to quantum results,
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F 4. Particle numberN vs. kR0 for Case II of isotropic oscil-
lator with κ = 0.

which can be reduced by including Pauli-principle in the
trace formula. If we compare this plot with the quantum
numbers which are also identified at the top of this plot, the
following interesting features emerge:

(i) The significant gaps in thekR0 values are seen at the
usual magic numbers of the spherical well,i.e., 2, 8,
20, 34, 58, 92 and 138.

(ii) The relative difference in peak heights referring to the
quantum shells 1s, 1p 1d, 1f , 1g, 1h, and 1i is con-
stant and is equal to 1 unit each. The relative increase
of one unit in the peak height concerning its predeces-
sor refers to the increase in angular momentum by one
unit.

(iii) A sudden rise in the number peak among the nearest
neighbors indicate the existence of a shell with a dif-
ferent quantum number ‘n’.

(iv) The repetition of a particular shell occurs in the spec-
trum at a particular value ofkR0, if the relative ratio of
the peak heights coincides with their respective ratio
of kR0. For example, the ratio of peak heights of 2 and
1 is 2, which is the same as their ratios ofkR0 values.
Hence from this analysis, the quantum number ‘n’ can
be identified.

Another advantage of this study is to show the splitting of
the eigenvalue spectrum by including the~l · ~scoupling in the

F 5.Total level densityg(E) vs. kR0 for combination of Case
II and positive sign withk in ~l · ~s coupling.

F 6. Total level densityg(E) vs. kR0 for Case II and negative
sign withκ in ~l · ~s coupling.
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F 7. Total level densityg(E) vs. kR0 for Case II including
both positive and negative signs withκ in ~l · ~s coupling.

nuclear mean-field. The inclusion of~l · ~s coupling involves
positive as well as negative signs withκ in the quantities used
for calculation of the fluctuating part of the level density. Fig-
ures 5 and 6 show the results of total level density,g(E), as a
function of positive and negative signs withkR0 in Sec. 2.3),
respectively. These results are also tabulated in Table I to-
gether with the quantum mechanical results of the spherical
cavity without~l ·~scoupling. The semiclassical results without
~l ·~scoupling are also given in this table. On comparing the re-
sults of positive and negative contributions, it is observed that
the eigenvalues corresponding to negative sign are higher as
compared to those of positive sign. Further, a comparison of
these eigenvalues with the results of the harmonic oscillator
(Case II) having zero~l · ~s coupling shows that each level is
split into two. The splitting width of each level is consistent
with the quantum mechanical results as discussed below.

In nuclear system with~l ·~scoupling, we get two eigenval-
ues for each angular momentuml, which are equal to−κ × l
for j = l + (1/2) andκ × (l + 1) for j = l − (1/2). A sim-
ilar splitting is observed in our semiclassical approach. The
quantum spectrum does not split the eigenvalue correspond-
ing to l = 0 level, whereas in semiclassical calculations each
level is splitted into two. It is quite interesting to note in Ta-
ble I that, corresponding to each quantum mechanicals-state,
the semiclassical splitting is extremely small∼ 0.027 as com-
pared to other states. Also, the splitting width∆E is nearly
proportional to (2l + 1) thes-state splitting for eachl (where
l refers to the quantum number in Table I). It is a remarkable

F 8. Particle numberN vs. kR0 for Case II including both
positive and negative signs withκ in ~l · ~s coupling.

observation and fully supports the nuclear shell model spec-
trum. Further, it is noticed that the simultaneous solution of
Eqs. (39) and (40) with the minus sign gives the diametric
orbits, whereas no such trajectories are seen with the posi-
tive sign. These diametric orbits refer tol = 0 as pointed out
by Bohr and Mottelson [28]. Therefore, its absence in one
choice of sign (+), leads to a small splitting in thes-state.

Finally, the total level densityg(E) vskR0, including both
positive and negative signs withκ, is shown in Fig. 7, respec-
tively, by solid and dotted curves. The resultant eigenvalue
spectrum clearly shows the splitting.

The plot of the number of particles,vs kR0 with both pos-
itive and negative signs ofκ are shown by solid and dotted
curves, respectively, in Fig. 8. It is evident from this plot that
the dotted curve refers to the quantum mechanical case of
j = l − (1/2), whereas the solid curves refer toj = l + (1/2).
The number of particles shown by the dotted curve is less
than those of a solid curve in a particular shell, which again
supports the quantum mechanical observation. In order to get
a reasonable separation inkR0 at the magic numbers 28, 50,
etc., we have to adjust the splitting parameterλ, which we
have chosen equal to 0.2. Thus a complete semiclassical pic-
ture of the nuclear shell model is obtained, which will help
predic the next magic numbers.

4. Conclusion

A trace formula for the level density of an isotropic harmonic
oscillator with~l · ~s coupling is presented. Our formalism re-
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produces the eigenvalue spectrum of pure quantum oscillator
exactly. The contribution of angular momentum is generated
by terminating the upper limit at the nuclear radiusR0, which
fully reproduces the resultant nuclear spectrum with~l · ~scou-
pling. We have established the role of significant quantum
numbers ‘n’ and ‘l’ in this semiclassical method. The over-
all eigenvalue spectrum compares reasonably well with that
of the nuclear shell model (with magic numbers) without any
fitting parameter.
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