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We have presented the single, particle spectrum for a particle in a mean-field of an isotropic harmonic oscilldi’tcﬂ’mzitrpling based on

our semiclassical approach. It has been seen that this spectrum, vﬁt@cﬂ)upling, exactly matches with the quantum mechanical one
(without nuclear constraints). In this case, periodicity conditions give only pendulating orbits coincidirigadthxis, which fully supports

the observations reported by Bohr and Mottelson [28]. The orbitsiwit are generated by reflecting the particle from the nuclear surface,

Ry, instead of infinity, which is the usual nuclear constraint. The mean-field strength is fixed by virial theorem. The resulting spectrum
compares reasonably with the quantum spectrum for a particle enclosed in a perfectly reflecting walls. The variation of particle number with
energy helps us to identify the significant quantum numbrand ‘I’ in this semiclassical method. Finally, tHTe§coupIing splits each

level and the splitting width of these levels compares well with that of nuclear splitting. Thus the complete nuclear shell model (with magic
numbers) is reproduced without any fitting parameter.
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1. Introduction The left-hand side of Eq. (1) is a quantum mechanical
quantity, whereas the right-hand side contains only the clas-
During the past decade, a variety of nuclear phenomena liksical quantities. Herélppo represents the time period of the
magnetic rotation [1], chiral twin bands [2], shape coexis-primitive periodic orbit, andVipo is the monodromy stability
tence [3,4], superheavy elements [5] and superdeformatiomatrix. The oscillations are controlled by actiSpo of each
[6] have been observed, which originate from single-particleperiodic orbit andrpg is a Maslov index. This trace formula
and collective motion as well as their interplay. Tradition- is, however, applicable if all the periodic orbits are isolated.
ally, Strutinsky's shell correction method [7] has peen one Subsequently, several extensions of Gutzwiller’s semi-
of the central approaches for calculation of potential energy.|assical trace formula were made to include regular and

surfaces [8,9,2], which is a key to understand these phenonl)ﬁixed dynamics for explaining quantum sheffiets in many

ena. Th_|s method, also k_nown as the macroscopic plus m physical systems [15-18]. One such generalization was re-
croscopic approach, obtains the fluctuating part of the leve orted by Strutinskyet al. [19] to systems with continuous

density (the shell correction term) arising from the quanta_lsymmetries by explicitly taking into account the degeneracy

shell correction energy. Parallel to Strutinsk’s method, SeMiw the classical orbits. This method was successfully applied

cally analyzed [13].' ) ) .. inaninfinitely high spheroidal cavity by using the formalism

~ One such semiclassical technique, known as periodic 0f5f Strytinskyet al On comparing this semiclassical eigen-
bit theory (POT), was initiated nearly four decades ago bY5)ye spectrum with corresponding quantum mechanical val-
Gutzwiller [10], it has emerged as one of the most powerful,eg 121, we have established the importance and significant
methods of understanding the quantum spectra. Semiclasgipntribution of planar (both in the axis of symmetry plane and
cal trace formula, the as developed by Gutzwiller [14] for theyhe equatorial plane) and 3-dimensional orbits for the normal
fluctuating part of level density of a quantum system is givenyeformed and the superdeformed regions. Further, this semi-

by classical method has been extended [22] to explain elegantly
the mass asymmetry in nuclear fission [23].

5-(E) = 1 Tepo
o(E) = EZ —deﬂM y Amann and Brack [24] have developed trace formula
PO PO for a nuclear system in a 3-dimensional harmonic oscillator
Spo 7T mean-field with a spin-orbit interaction of Thomas type. In
X COS| — — opo= Q) JoE o .
7} 2 the strong coupling limit, singularities occur in phase space

where the spin-orbit interaction locally becomes zero. These
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singularities impose severe restrictions on the applicability This sum runs over all the eigen-energigs(including

of the trace formula. However, they have pointed out that thelegeneracies). It can split into a smooth and an oscillating
leading orbits with shortest periods are free from singularipart:

ties and lead to excellent results for the coarse-grained level

density, as long as bifurcations of these orbits are avoided. o(E) = §(E) + 69(E). 3)

It is worthwhile to mention here that Littlejohn and
Flynn [25] developed a semiclassical theory of systems with  The oscillating component of the single particle level
multi-component wavefunctions and applied [26] it to the densitysg(E), in cylindrical coordinatesy ¢, 2) is given by
WKB quantization of integrable spherical systems with the S
standard spin-orbit interactions. Frisk and Guhr [27] have _ 1 [ =Bm
studied the deformed systems with spin-orbit interaction 09(E) = 7z ;ﬂl fﬁ,msm( +aﬁ’m)
by approximating the Schrodinger equation semiclassically. ’

Here, the information about the periodic orbits is extracted X f f dde\/I PopI(PoPetsm: 0’ ZE)lyr zpz  (4)
from the Fourier transform of the quantum mechanical spec-
tra.

The present work aims to obtain the complete spectrur?Or
for a particle moving in an isotropic three-dimensional har-
monic oscillator mean-field with spin-orbit interaction. This
work is based on the formalism developed by Strutineky
al. [19]. The semiclassical interpretation for a nucleon in an 8S,(P. 7", E)
isotropic oscillator mean-field was first given by Bohr and ty= —2 E —.
Mottelson [28]. They pointed out that only the pendulat- 9
ing orbits (also known as diametric orbits) are possible in The quantityd in Eq. (4) is the Jacobian of transforma-
this potential. These orbits are traced by a partiCle by €Xtion between two sets of classical quant|t|ﬁ§’ PZ’ tﬁ,m) and
ecuting two radial oscillations for each angular motiee.( (., z, E), which are related by the classical equations of mo-
(wr/wp = 1/2). Such a trajectory coincides with= 0 axis.  tjon. Here 8 denotes the type of orbits amdis the number
We will show that our periodicity condition confirms their ob- of reoetitions of a given type of orbit.

;ervation, and t_he calculated eigenva!ue spectrum is exactly The periodic orbit sum in Eq. (4) does not converge in
in agreement with a quantum mechanical one. most cases. Since the maximum contribution to the gross

Further, the #fect of spin-orbit coupling in the mean-field ghell structure comes from the shortest periodic orbits. It has
arises only if there is a contribution of orbits with 0. Such  now become customary to carry out a smooth truncation of
trajectories are obtained in our trace formula by putting thehe contributions of the longer periodic orbits by folding the

constraint that the particle is reflectedrat Ry (Ry being  |evel density with a Gaussian function [12] of widgh
the nuclear radius), instead of infinity. This is an ideal sit-

uation for the nuclear shell model, which states that a parti- Yam)\?

cle moving in harmonic oscillator mean-field is confined in 0Gav = Zég(E) exp[(—ﬁ) } )
a spherical cavity of radiuRy. In this work, we have fixed Aim
the potential strength with the help of virial theorem. The
complete formalism is free from singularities and does not o
involve any fitting parameter.

The factorfzm equals to 1 for the diametric orbits and 2
other orbits like triangles, squares, etc. The time-period
for the path from the initial point to the final pointr” for
energyE is defined as

®)

The averaging widthy is chosen to be larger than the
an spacing between the energy levels within a shell, but
. L much smaller than the distance between the gross shells. This
_ Acomplete trace formula for a particle moving in a three- 5y e 4 4ing ensures that all longer paths are strongly damped
dimensional harmonic isotropic oscillator mean-field with 5,4 o1y the shortest periodic orbits contribute to the oscillat-
spin-orbit coupl.lng is given in Sec. 2..Sect|on 3is de\{otedi_ng part of the level density. Also, thefect of degeneracies
to results and discussion. The conclusions are summarized I8 included in Eq. (4) by using the prescription outlined in
Sec. 4. Ref. [19].

We have approximated the nuclear mean-field by an
isotropic harmonic oscillator. The Hamiltonian for a single
particle of massM is expressed in terms of spherical polar
coordinatesr( 6, ¢) and the conjugate momentg; (ps, Py)

2. Trace formula for isotropic harmonic oscil-
lator mean-field with spin-orbit coupling

For the bound states of a single particle Hamiltoritanthe as
level density is generally defined as a sum of Dirac delta dis- 11, 1, o1 1.,
tributions, H=2ou 2Pt el T ZMw R ()
g(E) = Z o(E - E)). (2) Equation (7) leads to a Hamilton-Jacobi equation, which
i

can be solved by using the separation of variable technique.
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Therefore, the classical dynamics of a particle is determinedlittiejohn [29] and Brack and Bhaduri [12], we obtain the

by the following three partial actions:

f 12 B
Sg:ﬁd@ g2 — s = 2r(e - |),

8
S,:SEdr\/ZME—MZerZ—f—; 9
sy = 2l (10)

Here, e andl, are the separation constants and are ob-

tained from the following periodicity conditions.

wr  0%/0s n

= = = 11
[ar) 0S /0 Ny ( )
Wy 1 [6&; 65(/6IZ] Ny

Z_ | == 12
[ar) 2r [)lz Wy /Wy Ny ( )

The integration in the-coordinate of Eq. (9) is obtained
analytically under two limiting approximations: (i) the upper
limit lies at infinity and (ii) it lies atR,. Both these cases are

discussed in the following subsections.

2.1. Case I: upper bound lies at infinity

The limits of radial integration are determined by the reflec-
tion points which, in turn, are obtained by solving the equa-

tion

2
P2 = 2ME — M2W?R% — ‘:—2 - 0. (13)

Since the radial coordinate is positive, so we consider the  §(E) =
following positive roots of equation (13) for the lower and

upper limits of the integration in Eq. (4.9).

following Maslov indices for the pendulating orbits.

3
agm = —Emr}n. (18)

Finally, the Jacobian in Eq. (4) is calculated numerically
using the procedure outlined in Ref. [20]. The calculations
of Jacobian involve the generalized radial, and axial coordi-
natesp, zrespectively and their generalized momenta. These
generalized coordinates are defined as :

p =rsing, z=rcosb. (19)

The corresponding canonically conjugate momepsa
andp, are

2
b, = \/ZME — M20,2R2 — % sing

+ ! Cosh 4 |2 H
= 2 _
r Sirt 6

(20)
82
P, = 1/2ME - M2w2R? — =2 C0s0
1 12
— Zcosf4/e?2 - —2 21
r \ sinf o (1)

These guantities are inserted in Eq. (4) to calculate the
fluctuating part of the level density.

The smooth part of the density of states is calculated
within the Thomas-Fermi approximation and is given by

%(Zh_'\z")g/z f dcrvVE-VIOBE-V). (22

The Eq. (22) has already been multiplied by a factor of
2 to include the spin degeneracy. For the harmonic oscillator

E . _ 2.2 . . .
P 1- ’ 14 potential,V = (1/2)mw*r<, the integral is evaluated analyti-
m Mw? [1- Ve (14) cally, and we obtailg(E) = E2/(7w)°.
E The harmonic potential with asymptotic reflection point
Fmax = A / Moz [1 + \/a_z], (15)  atinfinity generates only the pendulating trajectdrg. (I =

0. A significant contribution of- Scoupling arises due to the
with o, = &/(E/w)?, a dimensionless constant. Thus the ac-availability of trajectories with # 0. Such trajectories with
tion in the radial coordinate becomes | # O are obtained in our formalism by fixing the upper bound
E atR, (as discussed in the following subsection).
S = ﬂ;(l — Vo).

The first periodicity condition Eq. (11) implies = 2wy,
i.e., only the pendulating orbits are possible, which confirmsIn this case, the particle motion is bounded between an upper
the result of Bohr and Mottelson [28]. The second conditionlimit provided by the radius of sphere= R, and a lower
fixeswy = wy. These constraints clearly indicate that both limit fixed atrmin (see Eq. (14)). Itis worthwhile to mention
separation constantsandl, are constants of motion. here that such a scenario corresponds to a particle enclosed in

Thus the total action in Eq. (4) is obtained as a spherical cavity with perfectly reflecting walls. The radial
action, given by Eq. (9), becomes:

(16)
2.2. Case ll: The upper reflection point atR,

E
= = — r
$ = NS + NgSo + NSy = Ner—. a7 . - \/2MEF?OI\/1—01—0-2— \/oTz(sin‘l - 20
The Maslov indexasm in Eq. (4), plays a very crucial 1= 4o
role in the periodic sum as it decides the relative phase of by 1 4 1-20 by
the various terms in the summation. Following Creagh and E) B 2\/(?1(3”1 VI— 40,0, h E)] (23)
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TasLe |. A comparison of eigenvalues, in termsld?%,, of an isotropic oscillator of Case I, without and Wﬁh§coupling.

n [ Qmech. nol- 8 Scl. no.l- 8 Scl.+1-8 Scl. -8
1 S 3.142 3.138 3.124 3.151
1 p 4.493 4.524 4.483 4.566
1 d 5.763 5.834 5.762 5.906
2 S 6.283 6.333 6.320 6.345
1 f 6.988 7.104 6.999 7.209
2 p 7.725 7.801 7.762 7.841
1 g 8.183 8.349 8.210 8.489
2 d 9.095 9.201 9.134 9.268
3 S 9.356 9.515 9.403 9.520
1 h 9.425 9.577 9.502 9.753
2 f 10.417 10.557 10.461 10.653
1 i 10.513 10.794 10.582 11.007
3 p 10.904 11.017 10.978 11.056
2 o] 11.657 11.881 11.754 12.008

Here,o1 = (szRg)/ZE is a dimensionless constant and For diametric orbitsl(= 0 trajectories),
refers to potential strength. Another dimensionless constant 3
o2 = £2/(2MER) is related to the separation constarsnd agm = —5Mmnr. (27)

s fixed by the periodicity condition Eq. (11) as
1S 1ix y periodicity " a- (1) For other orbitsl(= 0 trajectories),

1] . 1 1-20, Vg Ny 3 3r
Slsint ———— + S| =n—. 24 __2 _ _ el
5 a2 o (24) g = —5mnm - (M - L+ (28)

Here, also the Jacobian is calculated by using the proce-
dure as discussed in case I.
Next, the maximum limit for the repetition parametar
the virial theorem as discussed below. in Eq. (4) is obtained by considering that the longest periodic
orbit, out of the permissible familigg traverses only once in

We know that I = 3; pig (T is the kinetic energy of _ o . o
the systemg; andp; are the generalized coordinates and mo-the cavity. This fixes the repetition numbers of the individual

menta, respectively). Integrating both sides concerning tim(t,-amllles concerning that of the largest one,

The periodicity condition Eq. (12) gives, = w,, which
implies that, is again a constant of the motion. This gives us
the trajectories witth > 0. The constantr; is fixed by using

over a complete period of motion and also using the virial _ Liagest 29
theoremT =V we get Mhnax = Ls(nr, Ng, Ny) (29)
1 1 The length of the orbit, is related to the actioB; by

= Vl-oi-op- the relati

2\/0T1 2 \/OT]_ e relation
. 1-20 n Sp = V2MELg. (30)
XS ——— - . (25)
Vi-4o5i0p 2 Thus, the fluctuating part of the level density is fully

Here, the bar on the physical quantitBsnd\V refer to established by including all the above mentioned terms in

: : : Eq. (4).
an average over a single period of motion. Thus the total ac=" *. . . . .
tion in (4) is obtained as Finally, the smooth part is obtained by using the spherical

cavity considerations [30]

1 3/2
S = \/ZMEROH[\/l—O'l—O'Z— I | (ZM) = 1 (ZM)
r 2o 08 =22\7z) VEV- 15\ 72 B
. 1-201 71')] 1 /2M\2 C
1
x|sint ——— - = 26
( VI=doio, 2 (20) i 12772( 2 ) VE’ (D
The Maslov indexs, in this case, is given by the fol- where,V, S, andC refer to the volume, surface area, and
lowing expressions: radius of curvature of the spherical cavity, respectively.
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2.3. Inclusion ofl - Scoupling term The mean-field strength also gets modified by the inclu-

o . ) N ] ) sion of - 8coupling as follows,
The HamiltonianH, in Eq. (7) is modified by including the

I’ gcoupling. This coupling term is defined as 1 1
pling piing = (1T ANz - 01— 02 -
- 1 2 VO1 2 VO1
I S= Z[lxox + lyory + 1,07]. (32)
2 o 1F AJo102 — 20 s 40
This equation is a % 2 matrix, which is diagonalized to x| sin \/(1 . 2?10 “7| @9
obtain two eigenvalues: TANO102 102
S 1 " : ,
& =4 [12_ These conditions together generate trajectories by vary-
( §>_¢2w/I I,A. (33) g g J y vary

ing ng andn;, which correspond to orbits with> 0. There-

In spherical polar coordinatelé,andl, are expressed as ~ fore, the spin-orbit coupling shows up significant splitting in
our eigenvalue spectrum.

|2 2

= Py (34)

" Sirte PG>
l; = P (35) 3. Results and discussion

These generalized momenta are represented in terms ffrstly, we discuss the semiclassical eigenvalue spectrum of
derivative of partial actions concerning their generalized COjisotropic harmonic oscillator withotit s coupling. Further,
ordinates, we have the numerical results of case | are presented first. In this case,

1 g2 1 (s _ds we have variedh, from 1 to 500. The periodicity conditions
(8= ié \/( ) + ( ) h— (36)  (Egs. (11) and (12)) fix, (= 2ny) andny(= ny), respectively.

d¢ sin? 9\ do d¢ Since only one type of orbits, known as diametric orbits are

Further, using Egs. (8-10), we get involveq, thg rept_atition parameteris kept equal to 1. The
averaging widthy is chosen as 0.002 for proper convergence
(i9 = J_r} /82 N i}& (37) of the sum in Eqg. (4). Here, the energy is measured in units

2 2 of fiw. The results ofy(E) vs. E are shown in Fig. 1. It

The contribution of;#/£2 is extremely small and hence is interesting enough to note that the peak positions coincide
can be neglected. We have fixed the coupling strergth  €xactly with those of the quantum levély = (N +(3/2))hw
follows:

I \210V 6.00*
o= =(57) 75 =4 (38) Case
Remarkably, the spin-orbit coupling constant is related to
the harmonic oscillator potential constant, which makes 40d0* -

our formalism free from the fitting procedure. Hereis a
dimensionless constant, and its value is taken equal to 0.2 for
a reasonable splitting in the eigenvalue spectrum. 2000’ F

The inclusion ofl - 8 coupling term modifies the energy
in the Hamilton Jacobi equation © + (x/2)e. This modi- I ‘
fied energy is used in Eqg. (9) to obtain the radial actgn wk | ’
which is further used in obtaining the periodicity constraints
and hence the fluctuating part of the level density.

The periodicity condition (Eq. (11)) thus calculated by .
using the formalism for the case | gives = (2wy/15(1/2)). 20x'0
This clearly indicates thatis again a constant of the motion
and gives trajectories with= 0. So, case | does not con-
tribute significantly to spin-orbit splitting. On the other hand, -4, 0x10*
this condition, within case Il, gives

a(E)
1

%[Sin‘l 1F Ayo102 — 20 + 71} T %/1 Sl
\/(1 T+ A\o102)? — b1 ) 2 4 5 B N1
_ 3 E (fin)
x | sin™? 1% Avouos - 20 z ™ (39)
v LY )
2 n Ficure 1. Total level densityg(E) vs. E in units of7iw for Case | of

\/(1¢/1\/O'10'2)2—40'10'2

isotropic oscillator.
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Ficure 2. (a) Particle numbeN vs. E in units of iw for Case | of ‘ . .
isotropic oscillator. (b) Plot of Quantum results. Ficure 3. Total level denSlt}g(E) VS. kR) for Case Il of isotropic
oscillator withx = 0. The quantum results are also given for com-

(with N = 0, 1, 2, 3 etc.) and peak heights resemble nearlyparison.

with the quantum mechanical degeneracig®)N + 1)(N + .

2). Here, we would like to mention that thefidirence be- and hence do not reproduce splitting by including khes
tween the semiclassical eigenvalues and quantum mecharsioupling (as discussed above in Sec. 2.3).

cal ones is % 1073, An analytically exact result was already To obtain the splitting due to- 8 coupling, we have
obtained in Ref. [15] by modifying the Gutzwiller’s trace for- switched over to case Il. In this case, we have varied both
mula for stable orbits. It is worthwhile to mention here thatn, from 1 to 500 andn, from 2n, to 500, whereas, is

the frequency ratios in our approach are fixed by the periodfixed equal tany by using the periodicity condition Eq. (12).
icity conditions. Also, the trajectories fixed by the periodic- These varied integers are used in Eq. (24) to obtain trajec-
ity conditions in our approach fully support the observationtories withl > 0. Further, we have solved simultaneously
made by Bohr and Mottelson [28] that only the pendulatingthe transcendental Egs. (24) and (25) to ascertain the shapes
orbits are possible in an isotropic harmonic oscillator poten-of trajectories possible in the harmonic oscillator mean-field.

tial. Here,y is again fixed equal to 0.002, and the upper limit of
The number of particles are obtained by using the relathe repeated orbitsnmay is obtained by Eqg. (29). We have
tion: already pointed out that this scenario resembles a spherical

cavity problem. Therefore, we have calculated the energies
in units of 72/2MR2.  The results ofg(E) vs kR, (where
k = V2ME/#) are shown in Fig. 3. It is obvious that the
peak positions show a similar eigenvalue spectrum as ob-
Here, E refers to energy corresponding to the peak po-served in a spherical cavity [30], and are fairly close to the
sition in Fig. 1 andy(E) is the total level density. The calcu- zeroes of Bessel functions (which are the quantum mechan-
lated results oN vs. E are shown in Fig. 2. The quantum ical results of a single particle confined in spherical poten-
mechanical results are also shown in this figure. A comparitial well). Here, we would like to point out that for an exact
son of semiclassical results with those of quantum mechanfomparison with the quantum mechanical results, one has to
cal ones shows a remarkable similarity in the variatioftNof ~Solve the quantum mechanical eigenvalue equation for such
vs. E. However, the semiclassical values are an order of maga truncated mean field &.
nitude higher than the quantum mechanical values. This or- The particle numbers are calculated by using Eq. (41) and
der of magnitude can be reduced by incorporating the Pauliare shown in Fig. 4 as a function kiR,. Here,F in terms of
principle in the trace formula [31]; it is not included here. kR, is varied continuously from 1 to 12. Again the calculated
The diametric trajectories correspond lte= O contribution N values are quite high as compared to quantum results,

Er
N= [ g(E)E (41)
/
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§=: 2 ryox R iRl Rma 4x10’
1.5¢10° ? t
Case-Il Wk
=0
1210° -
00
3
9.0x10° - ~ ik
-
i o
B.0x10° 0
A0
30x10°
A0
0.0 L | . | L | i 1 L l
0 2 4 6 8 10 12 0 2 4 B 8 10 12
R, R
Ficure 4. Particle numbeN vs. kR, for Case Il of isotropic oscil- ) o
lator withx = O. Ficure 5.Total level densityg(E) vs. kR, for combination of Case

Il and positive sign withk in I §coupling.
which can be reduced by including Pauli-principle in the
trace formula. If we compare this plot with the quantum

numbers which are also identified at the top of this plot, the 410’
following interesting features emerge: K
(i) The significant gaps in theR, values are seen at the W'

usual magic numbers of the spherical wek,, 2, 8,

20, 34, 58, 92 and 138. :
0

(i) The relative diterence in peak heights referring to the
quantum shells ¢ 1p 1d, 1f, 1g, 1h, and 1 is con-
stant and is equal to 1 unit each. The relative increase 10’
of one unit in the peak height concerning its predeces- @
sor refers to the increase in angular momentum by one g
unit.

(i) A sudden rise in the number peak among the nearest p
neighbors indicate the existence of a shell with a dif- 10
ferent quantum numben”.

(iv) The repetition of a particular shell occurs in the spec- 20"
trum at a particular value &Ry, if the relative ratio of
the peak heights coincides with their respective ratio

'3)(105 1 | L | i | L | L | L

of kRy. For example, the ratio of peak heights of 2 and 0 ) 4 5 8 0 12
1 is 2, which is the same as their ratiosk#i, values.

Hence from this analysis, the quantum numirécan kFﬂJ

be identified.

Ficure 6. Total level densityg(E) vs. kR, for Case Il and negative
Another advantage of this study is to show the splitting ofsign with« in - s coupling.
the eigenvalue spectrum by including theS coupling in the
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wie° 18x10°
— Case-||

—_—t
15010" b ==k

wo'

w0’
12x10'

110’

90x10° -

g (E)

60x10°

200 30x10°

2010 P S S NS NN N 0.0

Ficure 8. Particle numbeN vs. kR, for Case Il including both

Ficure 7. Total level densityg(E) vs. kR, for Case Il including positive and negative signs within . scoupling.

both positive and negative signs witlin r Scoupling.
observation and fully supports the nuclear shell model spec-

nuclear mean-field. The inclusion bf Scoupling involves  trum. Further, it is noticed that the simultaneous solution of

positive as well as negative signs witin the quantities used Egs. (39) and (40) with the minus sign gives the diametric

for calculation of the fluctuating part of the level density. Fig- orbits, whereas no such trajectories are seen with the posi-

ures 5 and 6 show the results of total level dengj{it), as a tive sign. These diametric orbits referlte- 0 as pointed out

function of positive and negative signs wkR, in Sec. 2.3), by Bohr and Mottelson [28]. Therefore, its absence in one

respectively. These results are also tabulated in Table | taehoice of sign ), leads to a small splitting in thestate.

gether with the quantum mechanical results of the spherical Finally, the total level densitg(E) vskRy, including both

cavity withoutl" Scoupling. The semiclassical results without positive and negative signs withis shown in Fig. 7, respec-

I-scoupling are also given in this table. On comparing the retively, by solid and dotted curves. The resultant eigenvalue

sults of positive and negative contributions, it is observed thaspectrum clearly shows the splitting.

the eigenvalues corresponding to negative sign are higher as The plot of the number of particlegs kR with both pos-

compared to those of positive sign. Further, a comparison ative and negative signs of are shown by solid and dotted

these eigenvalues with the results of the harmonic oscillatocurves, respectively, in Fig. 8. Itis evident from this plot that

(Case Il) having zerd- § coupling shows that each level is the dotted curve refers to the guantum mechanical case of

split into two. The splitting width of each level is consistent j = | — (1/2), whereas the solid curves referjte: | + (1/2).

with the quantum mechanical results as discussed below. The number of particles shown by the dotted curve is less
In nuclear system with scoupling, we get two eigenval- than those of a solid curve in a particular shell, which again

ues for each angular momentunwhich are equal te-x x | supports the guantum mechanical observation. In order to get

for j = | + (1/2) andk x (I + 1) for j = | — (1/2). A sim- & reasonable separationkR at the magic numbers 28, 50,

ilar splitting is observed in our semiclassical approach. Thetc., we have to adjust the splitting parametewhich we

guantum spectrum does not split the eigenvalue corresponéave chosen equal to 0.2. Thus a complete semiclassical pic-

ing tol = 0 level, whereas in semiclassical calculations eaciure of the nuclear shell model is obtained, which will help

level is splitted into two. It is quite interesting to note in Ta- Predic the next magic numbers.

ble | that, corresponding to each quantum mecharsicste,

the semiclassical splitting is extremely smald.027 ascom- 4. Conclusion

pared to other states. Also, the splitting widtk is nearly

proportional to (2+ 1) the s-state splitting for each(where A trace formula for the level density of an isotropic harmonic

| refers to the quantum number in Table 1). It is a remarkableoscillator withi™- 8 coupling is presented. Our formalism re-
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