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Transient analysis of combined electroosmotic and pressure-driven
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Because there is required the development of techniques for pumping parallel flows in miniaturized systems, in the present investigation
is obtained a semi-analytical solution based in the matrix inverse method and by Laplace transform, for the transient flow of multi-layer
immiscible fluids in a narrow capillary under electroosmotic and pressure driven effects. The dimensionless mathematical model to solve
the electric potential distribution and the velocity field in the start-up of flow, consists of the Poisson-Boltzmann and momentum equations,
respectively. Here, the transported fluids are considered symmetrical electrolytes. Also because the interfaces between them are polarizab
and impermeable to charged particles, interesting interfacial effects appear on the velocity profiles when an external electric field is applied.
The results show graphically the influence of the different dimensionless parameters involved in the dynamics of the fluid flow. This study
demonstrates that by considering interfacial electrical effects at the contact between two electrolytes, a steep velocity gradient is producec
resulting in strong changes in the velocity whose magnitude and direction depending on the concentration and polarity of electric charges
around a liquid-liquid interface; finally, it is observed that the time to reach the steady-state regime of the fluid flow is only controlled by
the dimensionless viscosity ratios. This investigation is a theoretical contribution to simulate transient multi-layer fluid flows under electric
interfacial effects, covering different implications that emerge in the design of small devices into the chemical, biological, and clinical areas.
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1. Introduction with cylindrical shape [10-12], annular channels [13-15],
parallel flat plates [16—18] and rectangular channels [19-21];
The concept of integrating biochemical analysis with micro-all of them, under the consideration of the Debyieke! ap-
electromechanical systems (MEMS) is involved in the newproximation for the volumetric free charge density within the
field of bioMEMS, which is undergoing tremendous growth electric double layer.
in a multitude of applications [1], including technology that ~ The research about electroosmotic flows, have been ex-
enable scientific discovery, detection, diagnostics, and thetended to the study of the pumping of two parallel and im-
apy and span the fields of biology, chemistry, and medicingniscible fluids as a technique of transport by viscous drag.
[2]. In this context, the terms lab on a chip (LOC) and mi- In this direction, Liuet al. [22] refer that non-conducting
cro total analysis systemuTAS) are a subset of MEMS dedi-  liquids and certain biofluids cannot be pumped directly by
cated to chemical and biological analyses and discoveries [2lectroosmosis, but still can be dragged along by shear forces
here, the study of fluid flow in these submillimeter-sized sys-of a neighboring conducting liquid which is driven by elec-
tems is cover by microfluidics and nanofluidics [3]. troosmosis. Their study reports an analytical solution for
In the mentioned systems can be applied different stratethe velocity profiles into a two-phase electroosmotic-viscous
gies to pump fluids as electrohydrodynamic and magnetohypump in a circular microchannel. About this theme, other in-
drodynamic effects [4, 5], electrothermal effects [6], acousticvestigations under electroosmotic effects to pumping a non-
and ultrasonic effects [6, 7], pressure-driven effects by syeonducting fluid by viscous drag due to electroosmotic ef-
ringe, peristaltic or rotary pumps [8], among others [6]. How-fects over a conducting liquid in cylindrical channels can be
ever, a common method for pumping fluids is the use of theeviewed in the works conducted by Movahetal. [23],
electrokinetic phenomenon called electroosmosis, whose b&édoghadam [24] and Maset al. [25]; moreover, in paral-
sic principle is the movement of an electrolytic solution rel- lel flat plates by Huanet al. [26] and Afonscet al. [27], and
ative to a stationary charged surface when an electric field isectangular channels by Gabal. [28]; all of them in steady-
applied [9]. state. Concerning the transient-state analysis of pumping of
Focusing on electroosmotic flows, these have been studion-conducting liquids by viscous drag induced by electroos-
ied extensively by the scientific community since manymotic effects, we can cite the investigation realized by &&o
years, carrying investigations about the transport of homogeal. [29] in a rectangular channel.
neous single-phase fluids based in electrolytic solutions both  All the studies cited in the above paragraph consider that
steady-state and transient-state, and using conduits formeghe of the fluids in the two-layer arrangement is electrically
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conducting and the other not, which yields partially or nullwork is addressing the study about the transport of multi-

employment of the Maxwell electric stresses at the liquid-layer immiscible fluids in a cylindrical capillary under pres-

liquid interfaces between fluid layers. However, following sure and electroosmotic effects. The parametric study on the

the study of the electrochemistry, if two solutions of immis- flow field is focused on the interfacial phenomena via a po-

cible electrolytes are in contact and develop a polarizable anténtial difference, the Gauss’s law, and Maxwell stress at each

impermeable interface to charged particles, there arises, iiquid-liquid interface between fluid layers. Because the in-

equilibrium, an electrical potential difference, whose struc-terface conditions established here for the star-up of a multi-

ture trough diffuse layers and a compact inner layer in anayer flow within a capillary have not been treated yet, this

electrical double layer, has been studied by Volkbal. [30], paper also has the purpose of extending the theoretical knowl-

Wandlowskyet al. [31], Sameet al. [32] and Cuiet al. [33].  edge about the application of the electrokinetic phenomenain

In the mentioned works, the electrical potential difference isfluids transport.

determined by the distribution of charged and dipolar parti-

cles near the interface. However, Masliyha and Bhattacharjee

[9], propose a simpler contact structure between the immis2. Mathematical formulation

cible media, where the thin compact layers or the presence

of electrical dipoles are not considered; therefore, the poter2.1. Physical model

tial difference can be considered as a constant and when this

constant is zero the electrical potential continuity is reachedIn the present work, we realize the transient analysis of the
Another important aspect that emerges in the analysis dfansport of multi-layer immiscible fluids in a narrow capil-

the structure of the electric double layer in polarizable, andary. Therefore, to establish the fluid phenomenon that will

non-polarizable interfaces, is the study of capacitance, whiche studied here, we start describing the physical model with a

is a measure of the penetration of ions in the electric doublg€ylindrical coordinate syster, z), as is shown in Fig. 1 on

layer at the interface. From the capacitance and the potenti#hhe centerline of a capillary. The fluids, which fill the conduit

difference, the surface charge density at the interface can bith radiusR, are layers of symmetrical electrolytes consider

determined [32, 33]; therefore, the potential difference andvith a Newtonian behavior. Each liquid-liquid interface is

surface charge density have a direct correspondence whéhaced in an, position; here, the subscript= 1,2,3,...,4

two immiscible electrolyte solutions are in contact throughrepresents the number of the fluid layer, anid the fluid

an interface. layer in contact with the wall of the capillary. Because the
Considering the previous paragraph about certain Conﬂuids are immiscible and eleCtrica”y CondUCtive, and also

cepts involved within the double electric layer generated athe interfaces between them are polarizable and imperme-

the interface between two immiscible electrolyte solutionsable to charged particles, a surface electric charge depsity

the studies of Chadt al. [34], Suet al. [35] and Jiaretal. [36] ~ and a potential differenca«) appears at the liquid-liquid in-

carry out the analysis of the transient electroosmotic flow of€rfaces; moreover, the wall of the capillary is also polariz-

two-immiscible fluid layers in slit channels formed by par- @ble and acquire a surface electric charge represented by the

allel flat plates. Here, both fluids are electrolytes, and thieta potentiak,,. The fluids movement is due to two fac-

condition leads to the Maxwell electric and shear stresses B@rs; firstly, to the ends of the conduit, and is subject to an

included in each fluid phase when the total stresses balan@ectric potential generated by a pair of electrodes, that gives

is established at the liquid-liquid interface. The flow field ex- fise to a uniform electric field inducing electroosmotic ef-

periments important changes in their velocity profiles wherfects. Secondly, by a pressure gradientthat also could be

the electric stresses are present at the interface concerning@gplied along the —direction.

the case when only one fluid is conductive, due to the pres-

ence ofa pptential difference_ gnd a surfacg charge density B>  General governing equations

the interfacial boundary conditions. Extending the mentioned

works, Shitet al. [37] realized a study in steady-state aboutThe flow field of the multi-layer immiscible fluids is gov-

the two-layer fluid flow and heat transfer in a hydrophobicered by the Poisson-Boltzmann equation for the electric po-
microchannel formed by parallel flat plates using a combinayential distribution

tion of a pressure gradient and electroosmotic forces. Their

results indicate that the effects of the interfacial zeta potential r

are significant on the fluid velocity; moreover, the electroos- i
motic flow has a finite jump the interface between two fluid :
layers.

Certainly, the development of techniques to pumping im-
miscible fluids by electroosmotic effects in miniaturized sys-
tems has reached the handling of three layers of fluids [38] - B
and also any number of fluid layers [39], when the flow- Ficure 1. Sketch of the combined electroosmotic and pressure-
focusing effect is required. Therefore, the aim of the presentiriven flow of multi-layer fluids in a capillary.

: T=Tn=2: Awnzq,{]s n=2

/| Fluid 2 T r=ru—1:A¢n=1,0sn=1
(/| Fluid 1 L_t
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V2P, = —Len (1)

€n
where ® is the total electric potential. is the volumetric
free charge density andis the dielectric permittivity. Also,
with the continuity equation for incompressible fluids as

V-v, =0, (2)
beingv the velocity vector. And the momentum governing
equation

Dv,,
T
wherep is the density; is the time,p is the pressurey is

the viscosityg is the gravitational acceleration, aliis the
electric field vector.

= —Vp+ unV?vy + pug + 0, E,  (3)

2.3. Simplified mathematical model

The mathematical model to solve this multi-layer flow based
on the previous general governing equations can be simpli-
fied, taking into account the following assumptions:

e Incompressible fluids.

e The fluid's properties are independent of the local elec-
tric field, ion concentration, and temperature [22, 40].
Complementary to this consideration, we assume a net
change in the temperature of the fluids is less to 10
K [41, 42] and the value of the external electric field
is less to 10 kvm! to despise any Joule heating ef-
fect [43].

Here,® is the electric potential distribution within the
electric double layerp(z) = ¢o — zE, is the external
electric potential on the— direction, ¢ is the electric
potential at the inlet of the channel at= 0 and the
external electric fieldv, is independent of the position
and constant along the axial direction.

The ionic distribution into the electric double layers
follow the Boltzmann distribution as

L ety
Pe,n = *2Znen0,n sinh <w>a (5)

whereZ is the valence of electrolyte,is the elemen-
tary chargen, is the ionic number concentration in the
bulk solution, kg is the Boltzmann constant, afdis
the fluid temperature.

The Debye-Hickel approximation for low enough po-
tentials € 25 mV) at the solid-liquid [9,47] and liquid-
liquid interfaces [35, 36] is considered.

Creeping flow (low Reynolds number) and constant
pressure gradient on thedirection.

The Debye lengths into electric double layers do not
overlap.

According to the previous considerations, the set of Egs.
(2)-(3) can be rewritten in the following form, yielding the
Poisson-Boltzmann and the momentum equations respec-

e The interfaces between the fluids represent either shariively as

boundaries with zero-thickness, impermeable, and ide-
ally polarizable.

e There is a planar interface between fluids layers [34,

44]. The mentioned can be assumed by considering"

that we have:) laminar flow for low Reynold’s num-
bers, beingre,, (= pnRv./un) < 1, resulting in par-
allel flows with laminar fluid interfaces [38] and)
uniform zeta potential along the wall of the capillary.
Here, the characteristic velocity of the flow is defined
by v. = —€retCuwE./piret, Where the subscriptréf”

d*, (1) n 1 d, (1)

o = () (6)

avz,n(rv t) _ + 12 8Uz,n(7'a t)
Pn ot = TP T hn r or " or

- EnHiEzwn(T)v (7)

wherer is the radial coordinatey, andp, = 9p/0z are

indicates physical properties referred to electrolytes irthe velocity and the pressure gradient on the direction,

aqueous solutions at 298.15 K (26) [9, 45].

respectively; and2 = 2Z2e%ng /e, kpT, is the Debye-

o . _ . Huckel parameter, which is related to the well-known Debye
e The gravitational forces in the system are negllglblelengthﬁ,l _ (6 kT /272 ¢%ng )1/2 [9]

[44].

e The capillary is sufficiently long, and the analysis is 2.4.

a focus in a region far from the ends of the capillary
neglecting inlet and outlet effects.

Initial and boundary conditions

To solve the governing equations given in Egs. (6) and (7),

we consider the following boundary conditions for the elec-

e For along capillary, the total electric potentiaht any
location in the system is given by a linear superposition
of the potential in the electric double layer and by the
externally applied potential as follows [9, 46,47]

P, (2,7) = Yu(r) + &(2). (4)

atr =
conditions as

tric potential and velocity. At the centerline of the capillary

0 for layern = 1, we have the symmetry boundary

dii(r) v, 1(r,t)
o =0 ad T

= 0. 8)
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In the case of each liquid-liquid interface at =
Tn=1,23,....i—1, W& have the following four boundary condi- capillary atr = 0
tions; we firstly consider a potential difference as

Unlr) = s (1) = A, © W0 g g X=aCD g g

and the Gauss'’s law for the electric potential respectively as
¢ dtpny1(7) e dipn (1)
el dr " dr

And secondly, for each liquid-liquid interface, we consider a

in each liquid-liquid interface at = 7,=123, . ;—1 the fol-
lowing four boundary conditions

= _QS,n- (10)

velocity continuity V(7)) = Yni1 (F) =Dy, (20)
= d 7711 r _ d 7’”/ r
Ve (1,1) = 0z g (1, 1) (11) L d?(r) e, wd F(r) — Q. (21)

and a total stresses balance that includes Maxwell stresses
and viscous shear stresses, also called electro-viscous
stresses as

@z,n(fa E) :'Dz,n+1 (777 {) (22)

OV (1, 1) dipy, (1) and
=gy ~ el )
8Uz,n+l (7‘, t) dwn-l-l (T) 7 aﬁz’n(f’ E) = diﬁn(f)
= fint1 o —en1 B o 12) In=gr T g i
Additionally, at the solid-liquid interface between the _z +18@z,n+1(f,f) te +1d¢n+1(f) (23)
wall of the capillary and fluid layen = i atr = R, are " or " dr "’
established a specific zeta potential value as
in the solid-liquid interface at = 1
Yi(r) = Cuw (13)
and the no-slip boundary condition respectively as 0i(F) =1 and v.,(7, 1) =0, (24)

’l}Zﬂ'(’f’7 t) =0. (14)

. I " and the initial condition for the flow field at= 0 as
Finally, the initial condition at = 0 to solve the momen-

tum Eq. (7) is
Vyn(r,t) = 0. (15) Vo (7, 1) = 0. (25)

2.5. Dimensionless mathematical model

together with the boundary conditions at the centerline of the

The dimensionless parameters that appear in previous

The mathematical model given in Secs. 2.3. and 2.4., is nolgquations are defined as follows
malized with the following dimensionless variables

_t _ T R R?
t=—, ==, Rp = —, r— Pz . :’u"7
te R C— Vellre Hn Lirer
- U (7 _ _ Uy on(rt B _ € _ T
¢n(’/‘) = ’"( )7 UZJL(T7E> == n )a (16) Pn = P y €En = - , n = lv
wc Ve Pref Eref R
wheret, = pretR?/prer @andy. = (,, are the characteris- - Ay, Gsn
. . : : ; . Ay == Q= T (26)
tic magnitude of the time and electric potential, respectively. Cw €refCuw

Therefore, by replacing Eq. (16) in Egs. (6)-(15) we have the

dimensionless version of the Poisson-Boltzmann equation

d*,, (7) N 1 dypn (7)

dr? 7

momentum equation

p Lol _ p oy, {13 <f
7 Or

ot

dr

wherek,, are the ratios between the capillary radius to the
Debye lengths or also known as electrokinetic parameters,
(A7) 1 is the ratio of external pressure forces to electroosmotic
forces, 1, are the viscosities ratiog,, are the densities ra-
tios, ande,, are the dielectric permittivity ratios. On the other

00, (T, 1) ﬂ hand,7, are the dimensionless interface positions),, are

the dimensionless potential differences apg, are the di-
mensionless free surface charge densities; the three afore-
(18)  mentioned parameters ranging frem= 1ton =i — 1.
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3. Solution methodology the behavior of dimensionless electric potential and has the
. S same form for any value af-layers of fluid. In this con-
3.1. Electric potential distribution text, we have two constant per fluid layer. To know the

The Poisson-Boltzmann equation expressed by Eq. (17) h gonstants’y;, -1 andC»,, we have to apply the appropriate

the form of a modified Bessel differential equation, and it hasteorlrj:(i?ré Co?fét)'?:tso' EIrS“é?t;yf(;?E[)Liczzaet?riggtrﬁsgfrﬁmg
a well-known form solution as 4 9 y

n = 1, we deduce that the value 6§ = 0. Secondly, and
U (F) = Cop_11o(RnT) + ConKo(RnT), (27)  with the aid of Eq. (27), we apply the boundary conditions
. for the electric potential given by Egs. (20), (21) and (24), for
whereCs, -1 andC»,, are constant coefficients, adgland  g5c jiquid-liquid interface located from,—; to 7,—;_; and
K, are the modified Bessel functions of first and second k|ndf0r the wall of the capillary af — 1, respectively. As result,

respectively, and both of zero order. The Eq. (27) describege gptain the following equation system
|

Avpy =C11o(F171) — C3lo(Rar) — CaKo(Raf),
—Qs1 = — Cré1R111(R171) + Cséakoli (RoT1) — Ca€aRo Ky (RaT1),
Atpy =C31o(RaFs) + CuKo(RaFs) — Cslo(Ratz) — CeKo(Rata),
—Qs,2 = — Cs€aRol(RaT2) + Cu€aRo K1 (Rat2) + Csésksli(RaTe) — Co€zRz K1 (RsTa),

Atp;_1 =Co_31o(Ri—17i—1) + Coi—oKo(Ri—17i—1) — Coi—11o(RiTi—1) — C2iKo(RiTi—1),
—Qs,i—1 = — Coi—36_1Ri—1 11 (Ri—1Ti—1) + Coi—1€61Ri—1 K1 (Ri—17i—1) + Coi—1€Ri L1 (RiTi—1) — Coi€Ri K1 (RiTi—1),

1 =C9—1Io(Rs) + C2: Ko(Rs), (28)

which is a set of linear algebraic equations that contains the
same number of variables as equations. The consfaate  gnd
solved by the matrix inverse method [48].

o Venlris) | & ddu(r)

3.2. Transient velocity field Hn O s dr
To solve the velocity field, we employ the Laplace transform o WVenna(7,8) | Engr Ay (7)
= Un+1 — + — ) (33)
as or S dr
7 P and atr = 1
Ven(7,8) = L0, 0(7,1)] = /@w(f,i)e*“dt. (29)
0 Von(T,s) = 0. (34)

Therefore, by taking the Laplace transform of the momentum
equation given by Eq. (18) together with the initial condition
from Eq. (25), we have

By replacing the expression for dimensionless electric
potential distribution given in Eq. (27) into Eq. (30), yields

PV n(rys) | 1OV, ,(7,8)  spn PV, o (Fys)  1dV.,(F,s)  sp
; ) - ) ) Iy (7 z,n\T LaVznlT, _ SPn _
OF2 + 7o OF fin (r,s) di? + Fooodr [in Van(T, )
r 7n72 i = =2
S () (30) - L _Eohy
Sfin Spin Stin SHn
and with their corresponding boundary conditions from Eqs. % [Con—1Io(RnF) + ConKo(Fn7)].  (35)
(19) and (22)-(24), we have respectivelyrat 0
OVen(r,s) Equation (35) is a non-homogenous ordinary differential
—— =0, (31) . : - : ;
or equation of undetermined coefficients, and its solution can be
atr =rp—123,..,i-1 expressed by the sum of a general solution corresponding to
the homogeneous equation and a special solution as
Vtz,n(fa 3) = Vz,n-‘rl(fa 8)7 (32) g ! quat pect UI

ij,n(fv 8) = Vh(fa 8) + Vs(fa 3) (36)
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The homogeneous and special solution of the Eq. (35) are To find the constants!,, and B,,, we apply the bound-
defined as follows ary conditions given in Egs. (31)-(34) to Eg. (45). In this

o _ B direction, firstly, by replace Eq. (31) at the centerline of the
Vi(7; 8) = Ando(BnT) + Bnko(BnT) (37 capillary in7 — 0 into Eq. (45), we obtain
and respectively

(39) 0= 1 [A111(0) — B1K1(0)]
27

an —|— R/l [F1[1(0) — GlKl(O)] 5 (46)
whereA,,, B,, I, andG,,, are constants to be determined,
andp, = \/spn/fn. The expressions for the constaits  \yhere from is deduced that, = 0. Secondly, from the

and G, were found by the substitution of the special solu-poundary conditions given in Egs. (32) and (33) for each
tion given by Eq. (38) into Eqg. (35), yielding the following liquid-liquid interface atr = 7,—1.5.3.. ;_1 into Eq. (45),

Vs(7,8) = Fplo(RnT) + G Ko(RnF) — —

grouped expression we have
d? 1d SPn }
F, | ——=1o(RnT) + = —=1Io(knT) — —Io(RnT I
[drg 0(RnT) + — == To(Far) o o(FnT) ApIo(BnTn) + BpKo(Baiy) — e
& 1d o spe o v
+ Gn ﬁKO(HnT) + %%KO(KTLT) - ﬂTKO(HnT) + Fnlo(lirﬂ“n) + GnKo(I{nTn)
&, k2 = Api110(Bns17n) + Bry1Ko(Bnti17n)
Ean— n [027171[0(’237177) + CQnKO(RnF)] ) (39) T
S[in, _ _
. i I D) + F7L+1IO(K7L+1T7L)
moreover, from Eq. (39) are obtained the following problems Prn+15
d? 1d + Gr1Ko(Fnt170) (47)
S lo(Ent) + — = Io(Rn) = pIo(RnT)  (40)
and and respectively
d? 1d

gz Ko nt) & LnKonr) = Ko(Bar)- - (D) i (5, (AuLy (Bu7) — BaK(Buta)

By replacing Eqs. (40) and (41) into Eq. (39), wecanfind 4z (F.I,(knin) — GnK1(Fnin))]
the following relationships for the modified Bessel functions

€nkn o -

as [an_lfl(lfn’f‘n) - CQnKl(‘L{nrn)]
_2 _ 5Pn = = I T, r
F, {%nlo(/@nr) B IEL'HIO(K/nT):| = fin+1 [Bnt1 (Ant1 1 (Bny1™n) = Buia K1 (Bnsan))
Enr{% o +R77,+1 (Fn_l,-lll(,%n-ﬁ—llfn) - Gn-‘,—lKl(R’ﬂ/ﬂ-llfﬂl))}
= — Sﬂ [C2n7110(l€n7n)] (42) € +1FL +1
n + 2 [Cognaty—1 11 (Bn17n)
and

_C2(n+1)K1(Rn+17_1n)} ) (48)

and thirdly, from Eq. (34) for the solid-liquid interface placed

_ ¢ 1 [Cop Ko(RpT)], (43) inthe wall of the capillary at = 1 into Eq. (45), the follow-
SHn ing expression is obtained
from which the constants,, andG,, are obtained as
= =2 = =2 r
_ _EnfnCon . G, = __EnfinCon (44) 0= A;lo(Bi) + BiKo(8i) — ——=
S(Sﬁn - ﬂn’%%) S(Sﬁn - /jLnR%) Pns

Therefore, from Eq. (36) the dimensionless velocity dis- + Filo(Ri) + GiKo(F:). (49)
tribution can be written as

Vo (7, 8) = ApIo(BnT) + BnKo(B,7) Once all boundary conditions for velocity have been re-
placed, we construct from Egs. (47)-(49) the array of the
+ E, Io(fn7) + GnKo(RnF) — 711 . (45) equation system to solve the constadtsand B,,, yielding
Pns as follows
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CEl, =4,
CE2, =4,
CFE1y =A,
CE25 =As

Io(B171)] — Az [Io(B2m1)] — Bz [Ko(B2r1)]

f1 P11 (B171)] — Az [fiaBaly (B2T1)] + Ba [fizBe K1 (B2T1)]

Io(B272)] + B2 [Ko(B2T2)] — Az [Io(Ba72)] — B3 [Ko(0372)]

2211 (Bata)| — Ba [fiaB2 K1 (BaT2)] — As [130311(BaT2)] + Bs [l B3 K1 (Ba72)]

CEli—1 =Ai_1 [Io(Bi-17i-1)] + Bi—1 [Ko(Bi—17i-1)] — Ai [Io(BiTi—1)] — B; [Ko(BiTi-1)],
CE2i1 =Ai1 [im1Bimr I (Bim17i-1)] — Bica [lim1Bi—1 K1 (Bi—17i—1)] — Ai [ Bi 11 (BiTi—1))]
+ B; [uiBi K1 (Biri-1)]
NC2 =4; [Io(8:)] + B; [Ko(5:)], (50)
where

s —

I
CEl, == (prlp:’l> — FiIo(Famy) 4 Falo(Ra1) + GoKo(RaT),

1 1
CE2; =I1(Rar1) [M2%2F2 + 3625203] — Ky (ko) {M252G2 + 562@6’4}

1
_ Il(’%lfl) |:,U1/11F1 + 8616101:| ,

I
CBly =— (”3p2p3”2> — Fyly(Rofa) — GaKo(Rafa) + Filo(Rsia) + G3Ko(Rsra),

1 1
CE2y =I(Rar2) [Maﬁng + 5635305] — K, (RsT2) {M353G3 + 8635306:|

1 1
— I (RaT2) [uz@FQ + 862:%203} + Ky (Reof2) |:/J252G2 + 8621*6204} ,

Pi—1Pi
+ Filo(RiTi—1) + GiKo(RiTi—1),

T (pi—pi
CE1; =2 (W> — Fi_1Ig(Ri—1Ti—1) — Gic1 Ko(Ri—1Ti—1)

1 1
CE2; 1 =L (FiTi—1) [ﬁif_iiFi + SEiRiCQ(i)—l] — Ky (RiTi-1) |:ﬂiRiGi + SEiRiCQ(i):|
o o 1_
— Ii(Ri—1Ti—1) [Mz‘lfﬂlFil + 861‘1"@1‘102(1'1)1]

1
+ K1 (Ri—1Ti-1) [ﬁi—lﬁz’—1Gi—1 + 851—1/51'—102(1‘—1)} ;

NC2 = — Fily(ki) — GiKo(Ri) + (51)

pns?

The Eq. (50) is the set of equations that include the term
“s” now called symbolic variable, because when the matri
inverse method be applied to this equation, the coefficients Finally, the given constants,, andG,, in Eq. (44), and
A,, andB,, are solved in terms of this. the constantsl,, and B,, derived from Eq. (50), are replaced
into Eq. (45), where the inverse Laplace transform is applied
to solve the velocity profile of combined electroosmotic and
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pressure-driven flow analyzed here. To this, the velocity diswhere D,, and E,, are constants which are determined with
tribution along the capillary radius, ,, (7, t) is approximated the application of the appropriate boundary conditions for ve-
by a finite linear combination of the transform values by thelocity. Hence, firstly by applying the symmetry boundary

Gaver-Stehfest algorithm as [49]: condition from Eq. (19) into Eq. (55), for the innermost fluid
layer withn = 1, we deduce thab; = 0. Secondly, by using
_ _ - In(2) M the solution expressions for the electric potential and veloc-
Oz (7 ) % Oz g (78, M) = t ; Vi ity given by Egs. (27) and (55), respectively, we apply the

boundary condition given by Eq. (23) to each liquid-liquid
" <F’ kln@))  0<f<oo (52 nterface fromr,_, to 7,—;_y, resulting in a set of electro-
t viscous stress balance equations. From these procedure, we
found for each interface that constals = 0 forn = 2 to
n = ¢. Thirdly, the boundary condition of velocity continuity
at each interface through the Eq. (22) is applied; from the
resulting equations system is deduced that the constants
for 7, ranging ofr,,—; to 7,,—; 1, are

where the approximate functian ,, ,(7, ¢, M), depends on
the positionr, the timet, a positive integer value fat/, the
calculous of a coefficieng, and the evaluation in the time of
the transform functioiV, ,, (7, t). Here,(; is determined by

I I
Ck = (_1) , Z |: M! En - — 471/ - Encn[l - IO(RrLfn)} + ETLCQTLKO(RTLF’VL)
J=[(k+1)/2] )
iy [I'77 B B B
(M 2j J (53) +-F {4+1 — 102 1[1 = Io(Rpy17n)]
j j k‘ -1 ’ Hn+1
where; are the digits desired, < k < 2M, andM = 14 + €n1C2n Ko(Rni17n) + En+1}, (56)

for all the cases.
forn = 1ton =i — 1. Finally, to close the general problem

3.3. Steady-state velocity for the velocity, we apply the last boundary condition given

. . . by Eqg. (24), which corresponds to the no-slip boundary con-
To obtain the steady-state solution for the flow field, Eq. (18)dition at the outermost layer for = i. Here, the last constant
is rewritten as follows '

E,—; is found, yielding
0= T+ jin [1 d (;dzi’")] ki, (54) r

7 dF E; = 1 €C2%-1[1 — Io(R;)] + €&Co Ko(R;). (57)

which is integrated twice yielding 4 R it 4 di .
. esults an ISCUSSIon

- 1 (T o
Vzin = /m{‘l ~ €nCon—1[1 = Io(RnT)] The dimensionless parameters in the present work have been
obtained by a suitable combination of the following param-

— 6,02 Ko(Fn?) + Dy, In(7) +En}, (55) etersranging of: 0L R < 10 um, 1 < k1 < 200 nm,
700 < p, <1500kgm=3,107* < p,, <10 2kgm's!,

0.25
7=0.1,0.2,0.5, M0 e oy, | f701,0.2,0.5, 0
0.201 oo -
0.80+
0.151
_ 0.60-
/UZ 0.101 /UZ
0.40+
0.051
~e~HKeh and Tseng (2001) Kl —o—Keh and Tseng (2001)
—a—present work
—=—present work steady-state ~=-prasent wiik
0.00+ 0.001 —=—present work steady-state
00 02 04 _ 06 08 10 00 02 04 06 08 10
(2) 7 (b) 7

FIGURE 2. Comparison of the dimensionless velocity profiles in a purely electroosmotic flow for different times between the results presented
by Keh and Tseng [11] witkh = 1, and the present work with = 3,7, = 1/3 and7, = 2/3. For (a)s = 1 and (b)x = 5.
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E, <10*Vm' ¢, <25mV,Z, ~ O(1),7x 1071 <
€, < 1079 CVIml, —125 < Ay < 125 mV,
—20 < g, < 20 mC m~2; additionally, the constants val-
ueskp = 1.381 x 10%* J K~ ande = 1.602 x 107!° C
were taken account.

tained via the value of\1),,

Conversely, negative values &f; , = —10, yield negative
electric potential distributions around each liquid-liquid in-
terface due to the excess of counterions into the electric dou-
ble layers; while the electric potential discontinuity is main-
—0.1 in the two liquid-liquid

interfaces. In the case of null ionic interaction between the

4.1. Validation

immiscible fluids withQ, , =0 andAv,, = 0, we have that

the electric potential has a constant null value from the center
The validation of the transient solution for velocity from the Of the capillary until increase asymptotically within the elec-

present work was compared against the investigation done by

Keh and Tseng [11] on a fine capillary. To this, are used the t Fluid 1 Fluid 2 Fluid 3
following dimensionless parametdrs= 0, fi, = 1, &, = 1, 129
pn =1, A, = 0 andQs,,, = 0, for two values ofz,, = 1 1.0
ands,, = 5, respectively. In Fig. 2, we can see a good agree- -
ment between the two transient solutions; besides, in each ™
case, we also included our solution for the velocity profile UZ 0.6
in steady-state, finding a good convergence with the transient 041
solutions when the time— co. 0
4.2. Parametric study 004 0 - 10V = o
02— ; Donm VT T
Figure 3 shows the dimensionless electric potential distribu- (a) 00 02 04 _06 08 10
tions as a function of the dimensionless radial coordinate of T
three layers of immiscible fluids within a narrow capillary 1.4
with interfaces placed in; = 1/3 and7, = 2/3, and with 12 Fluid 1 Fluid 2 Fluid 3
different combined values of the paramet€s,, and Ay,,;
the other dimensionless parameters selected are placed in the 14 <=
caption of the figure. Because the contact between immis- 0.8{ ™
cible electrolyte solutions yields an electric double layer at  — 0.6 .
each liquid-liquid interface between them, in Fig. 3 and for /Uz e
three immiscible electrolytes, it is shown that for the combi- 0.41
nation of positive values of), ,, = 10 andA,, = 0.1, re- 024 .,
sults in absorption of ions that produce a positive distribution
of the electrical potential around of each liquid-liquid inter- 0.07-005 Q — 0, Ap=0
face. Besides is observed that the potential difference breaks -0.21— : s T :
the electric potential continuity in each liquid-liquid interface (b) 0.0 0.2 04 _ 06 08 10
forming a discontinuity identified as an electric potential slip. r
1.4
5 12/ Fluid 1 Flud2 : Fluid3
Lof ™ @sn = 10,2 Ay, =0.1 1.0]
08— Qs,ﬂ =0, f Al/_/n =0 : 0.84 «©
0.6 =~ Qs,n =-10, 4y =-0.1 06
— =i =g z 03
W o4 “LA I"‘"\ : 04 0.2
0.2 ;7 \\ :? \ 02
00 \\\\él/’_‘\\\: 0.017_q 3 _
0.2 N v % Bk . IQS:”:-ll(),EAl//n': 0.1 .
-0.41 Fluid1 | Flud2 | Fluid3 T 00 02 04 06 08 10
00 02 04 _06 08 10 (c) T

r

FIGURE 4. Dimensionless velocity profiles of a purely electroos-

motic flow for different times withn = 3, 71 = 1/3, 72 = 2/3,
FIGURE 3. Dimensionless electric potential distributions for three %, = 20, T = 0, ¢, = 1, p, = 1 andp, = 1.

immiscible fluids in a capillary witm = 3, 71 = 1/3, 72 = 2/3,
Fn = 20, €, = 1 and different values of)s ., andA,,.
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For (a)

Qen = 10,At¢, = 0.1, (b) Qsn = 0,A¢, = 0 and (c)
Qs,n = _107A’lzn = —0.1.
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tric double layer placed around the solid-liquid interface inliquid-liquid interface. Conversely, in the case of Fig. 4(c)
fluid 3, to reach their maximum value ¢f7 = 1) = 1 atthe  with Qsn = —10 andAs, = —0.1, where both by a neg-
wall of the capillary. As can be seen in Fig. 3, all cases forative polarity of the electrical potential distribution as an ex-
the electric potential distribution overlap in two zones, nearcess of counterions at the liquid-liquid interfaces, produces
to the center of the capillary when— 0 taking a value of  velocity profiles with a concave shape due to the adverse elec-
1 = 0 and near of the wall of the capillary when — 1 troosmotic effects at these interfacial positions; this condition
wherey) — 1. diminishes the magnitude of the velocity profiles regarding
Figures 4 presents the transient evolution of the dimenkig. 4(a). While for null ionic interaction between fluid lay-
sionless velocity profiles as a function of the dimensionles®rs withQ, ,, = 0 andAv,, = 0, as is shown in Fig. 4(b),
radius of a purely electroosmotic flow wifh = 0, pump-  the classic plug-like electroosmotic flow is recovered, and the
ing three layers of immiscible fluids. With the aid of the electroosmotic effects are transmitted outside of the electric
previous results in the electric potential distribution given indouble layer placed at the wall of the capillary only by vis-
Fig. 3, the velocity profiles in Fig. 4(a) corresponds to thecous drag to the rest of the fluids. In all cases for velocity,
condition withQ,,, = 10 and A, = 0.1. Here, because in Fig. 4, the symmetry boundary condition at the center-
a positive polarity in the electric potential distribution along line of the capillary and the no-slip boundary condition at the
the cross-section of the capillary and an excess of ions awall are accomplished, and the steady-state is reached when
the liquid-liquid interfaces, the continuity of shear viscoust — oco. Also, in Figs. 4(a) and 4(c), it is observed that
stresses breaks and when the fluids experiment the electroaduring a period covering the first times in the start-up of the
motic effects at these interfacial positions producing steeglectroosmotic flow, inverse flows are present; for Fig. 4(a)
velocity gradients resulting in strong changes in the velocat the timet = 0.0025, the inverse flow is around the liquid-
ity, in this case in favor of the flow. Also from the mentioned, liquid interfaces, while for Fig. 4(c) dt= 0.04, it is present
the velocity profiles in each layer of fluid exhibit a convex outside of them.
shape towards the positive- direction, converging in each

0.4 , . 1.4 - —
_52=1_11 55'3:1_3 13 — =11, 16713
03 - - -£=075.6=05 ' - - -£=075/6=05
: 1.0 . Pl
----- €=0.75,6=0.75 -+- €=0.75; =075
_ 0.21 —_— é=07515é=11 _ 0.8 e (:_2=075,§ 6“3:11
() ; V.06 '
z Z
0.1 0.4+ :
0.2
0.0
. . . 0.0 &
o Flud1 : Flud2 © Fluid3 0 Fluido1 | Fluido2 | Fluido 3
@ " 00 02 04 06 08 10 (b) “ 00 02 04 06 08 10
a 7" 7_7
1.6 : : :
. . ; 1.6
ol Fluid 1 Fluid 2 Fluid 3 o Fluid 1 Fluid 2 Fluid 3
1.21 1.2
1.0+ 1.04
0.81 — 0.8
1. 0.6 7}7 0.6
5 2
0.4 . 0.4
i v ]
021 - - -£=075/é=05 0.2
] ) ‘o 0.0
001 . £=0.75,:€=0.75
-0.2 : 2 Bl T P
- —-—- 6=0.75,6=1.1 04 . 6=0.75,1621. . '
700 02 04 06 08 10 00 02 04 _ 06 08 10
() r (d) r
FIGURE 5. Dimensionless velocity profiles of a purely electroosmotic flow wite= 3, 71 = 1/3, 72 = 2/3, ki = 20, ' = 0, pn = 1,
fin = 1, Qs,n = 2.5, Ay, = 0.1, & = 1, and different combinations @b ande;. For (a)t = 0.0025, (b) = 0.1, (c) £ = 0.3 and (d)

t — o0.
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1.0 o1s Fudz  Fuids  ——E=14, £=13 sults, the dielectric permittivity ratio in fluid layer 1 is main-
0.2 i k075 £=05 tained constant witll; = 1 and the other dimensionless pa-
0.84 00 g a7 rameters selected are in the figure. Since dielectric permit-
006| "ot 67075, 65075 tivity is an indicator of the effectiveness or sensitivity of a
_ 061 —-— €=0.75, =11 material to be polarized under an applied external field, in
W R S | ‘ Figs. 5(a)-(d), the velocity profile with greater magnitude
0.4+ r corresponds to the case givendy= 1.1 andés = 1.3, be-
= ing the combination with the higher values for the dielectric
0.2 permittivity. In this sense, the velocity profile with smaller
magnitude will correspond to the following combination with
00 Fluid 1 Fluid 2 Fluid 3 é; = 0.75 andes = 0.5. On the other hand, by observing
0.0 0.2 0.4 0.6 0.8 1.0 Fig. 5(a), it is clear that the effect of the dimensionless di-
77- electric permittivity is stronger in outermost layer, whose ve-

locity grows faster than in the other internal fluids; this effect

is extended progressively to the rest of the fluid layers and to-

wards the center of the capillary as time goes, as can be seen

in Figs. 5(b) and 5(c), and until the steady-state is reached in
Figure 5 shows the development in the time of dimen-Fig. 5(d). The growth of the velocity in fluid 3 is faster com-

sionless velocity profiles as a function of the dimensionlesgpared to the other internal fluids in Fig. 5(a), this is related

radial coordinate of a purely electroosmotic flow of threeto the sensitivity in the response of electroosmotic effects

immiscible fluids, under the influence of the dimensionlessnto the electric double layers in early times; this response

dielectric permittivity ratiosé, and €3, and for the times is magnified as the value of dielectric permittivity of the fluid

t = 0.0025,0.1,0.3 andt — oo, respectively. For these re- and the magnitude of the electric potential distribution also

FIGURE 6. Dimensionless electric potential distributions for Fig. 5.

5 N
- s fes D NN
44..... /&2:0_5‘ [[3:0_75? SN e /}2=0.5, ,L-13=0.75;
34— - fL=01, [1=05 | - - - [1=0.1, {105
, —— [,=10, [1,=0.1 | 3_—/75101 [l~,=0-1§
v, 1 v, ;
ol TETEIAT e i
_____ : 01 : e
B e A R R—— J
-14 Fluid 1 Fluid 2 : Fluid 3 Fluid 1 Fluid 2 ' Fluid 3
00 02 04 06 08 10 00 02 04 _ 06 08 10
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8 hr by e — x
- At B o~ At A
2 '
----- 14,705, [1,=0.75
61 - = N
[L,=0.1, [1=05 |
s¢
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44 : .
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00 02 04 _06 08 10 00 02 04 _ 06 08 10
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FIGURE 7. Dimensionless velocity profiles of a purely electroosmotic flow witk= 3, 71 = 1/3,72 =2/3,kn =20, =0,&, =1,
pn=1,01 =1,Qs,n = 10, A, = 0.1, and different combinations @f, andjis. For (a)t = 0.1, (b)¢ = 0.4, (c)t = 0.9 and (d)t — co.
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ity ratios fi2 3. In all cases, the viscosity ratio for the inner-
231 SZHUid 7 Fluid 2 Fluid 3 25 most layer is maintained with a value pf = 1. In Figs.
2.0 f‘ig — b 2.0 7(a) to 7(d), the time is increasing from= 0.1 until the
. steady-state whehgoes to infinity. Here, we can observe
1.51 15 additional characteristics of the multi-layer flow, by follow-
/[77 Lol o Lo lp ing each combination of the viscosity ratios between fluids.
- The case withi; = 1 andpz = 5, represents in this group of
0.54 004 0.5 figures, the case with the greatest resistance to flow because
the velocity profile experiment very small changes in their
0.017-003 ; %0 magnitude as the time passes with respect to the other cases.
05— : : N —los On the contrary case, for the combination of viscosity ratios
(a) 0o 02 04 06 08 10 with 1o = 10 andji3 = 0.1, the highest velocity distribu-
r tion is reached at the end of the transient-state, although this
case contains the most viscous intermediate fluid layer with
25 Fluid 1 Fluid 2 Fluid 3 25 fi2 = 10. With this, it is clear that the influence of the viscos-

ity value in the outermost layer is predominant to define the
velocity magnitude along the cross-section of the capillary,
more than in some other layer of the inner fluids. However,
although the outermost layer is that which define the global
magnitude of the velocity profile of the multi-layer flow, the
shape of the velocity profile and magnitude in each layer of
fluid depend on their viscosity ratie,g, by compare the case
of the intermediate fluid withi, = 10 and the intermediate
fluid with 72 = 0.1, the velocity changes in the first case
are small with a flat velocity profile, while in the second case
the velocity changes are more representative with prominent

5e s parabolic shape.
' Fluid 1 Fluid 2 Fluid 3 ' The effect of an external and constant pressure gradient
2.0 @ “ B 2.0 on the flow field via dimensionless paramelfelis shown in
I =, Fig. 8; therefore, this graph represents the transient evolu-
gl & it L5 tion of combined electroosmotic-pressure driven flow. The
711.0 o Lo '7_” values of' = —2 andI" = 2 show the influence of pres-
sure forces in favor and contrary to the positiseirection,
05{ " 0.5 respectively; the aforementioned can be demonstrated if the
a _0'04 50 velocity _profiles under pressure effects are compared ir} this
oo ‘ graph with the case whdn = 0, for a purely electroosmotic
05—, , . _ , —los flow. Also, the invariant electric potential at the time is pre-
4o 02 04 D6 08 10 sented in Figs. 8(a)-(c) as dashed linesdqr, = 15 and
(c) r At — 0.5: here, the potential slip at the liquid-liquid in-
) ) ) ] o terfaces and the zeta potential at the solid-liquid interface at
FIGURE 8. Dimensionless velocity profiles (solid lines) and q \yq|, are clear and corresponds with the convex velocity
electric pote_ntlal dlstnbutl_on (dasheo_l lines) of a combined distribution.
electroosmotic-pressure driven flow with = 3, 71 = 1/3,

In Fig. 9, the characteristics of a purely electroosmotic
flow under the influence of the electrokinetic parametgr
are shown. Regarding the electric potential, in Fig. 9(a), it
increase. Therefore, with the aid of Fig. 6 for the electric po-is observed that as the value ®f = 10 increases to the
tential distribution related to Fig. 5, we can see that from anyalue of,, = 50, the electric potential distribution is closer
combination of; andy3 ~ 1, the highest values of the elec- to the capillary wall, while at the interfaces, their distribu-
trical potential are obtained in layer 3, in comparison withtion is thinner and small in magnitude. The previously men-
the rest of layers of fluids. With the mentioned, the largestioned is due to a condition of thinner electric double layers
response of the velocity profile in early times and under thehy increase the ionic concentration of the electrolytes or by
application of an external electric field in the electroosmoticincreasing the radius of the capillary. On the other hand, and
flow is also produced. based in Fig. 9(b), it is clear that for large values of the elec-

In Fig. 7 are presented the dimensionless velocity profildrokinetic parameter witk,, = 50, the shape of velocity pro-
of three immiscible fluids as a function of the radial coor-files tend to be flat, while for the small values with = 10,
dinate and time and under different combinations of viscostends to take a parabolic shape whenr co.

Ty = 2/31 Rn = 20, €n = 11 ﬁn == 1yﬂn == 11 Qs,n == 151
andA,, = 0.5. For (@)I' = -2, (b)I' = 0 and (c)I" = 2.
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FIGURE 9. (a) Dimensionless electric potential distributions and (b) velocity profiles of a purely electroosmotic flow for four different times
withn =3,71 =1/3,72 =2/3, T =0,é, = 1,p. = 1,01 = 1, iz = 0.1, i3 = 0.5, Qs,n» = 2.5, A, = 0.1, and two values of
Fn = 10 andi,, = 50.

0.8 : 1.0 S 5o 5o
o] =15, p,=08, =07 — =15, p,=08, p,=0.7
06 ~--P=12 /32=§1.5, p,=07 0.847 7 " =12 p,=15 p=07
05{ 5 =08 p=12 p=ts L~ | [T pi=08 p =12 p =15
: o 0.6
— 04 — 7 P=08 p,=07, p=15 _
/Uz 0.34 < U20.4-
02{ _._._
------- 0.2
0.1
0.0 . ] \ 12212 . 0.0 . I . .
Flud1 : Fluid2 : Fluid3 ‘ Fluid 1 Fluid 2 Fluid 3
01— —_ — : . — : : .
00 02 04 06 08 1.0 (b) 00 02 04 06 08 1.0
@) r r
1.24 Fluid 1 Fluid 2 Fluid 3 1.24 :
1.0 — == TN e 1.0 -
0.8 0.8 s
Vo6 15T e Voey —h=1s py=08, p,=07
0.41 ——p,=15.1p,=08, p,=0T! oa] —--A=12 P=15. p=07
s ---p =12 Eﬁz=1.5,p3=0.7§ N £,=08, ,E)Z;=1.2, p=15
N £,=08, E’E2=1_2, p3=1_5§ ’ —-=- p,=08, /52§=0.7, p,=15 |
0.0 ——- p,=08,ip,=07. p,=15! 0l Fluid 1 Fluid2 | Fluid 3
00 02 04 06 08 L0 00 02 04 06 08 10
(c) r (d) r

FIGURE 10. Dimensionjess velocity profiles of a purely electroosmotic flow with- 3, 71 = 1/3, 72 = 2/3, %, = 10, = 0, &, = 1,
in =1, Qs .n = 2.5, A, = 0.1, and different combinations @f,. (a)¢ = 0.05, (b)¢ = 0.1, (c) = 0.5 and (d)f — co.

In Fig. 10, the influence of the dimensionless densitiesvice versa. Therefore, the magnitude of the velocity profile
ratios on the velocity profiles during the start-up of purelyin the transient period of the flow depends on the density ra-
electroosmotic flow is given. Here, the magnitude of thetio value in each layer and their position in the arrangement
velocity profile is defined by the heaviness of each layer ofof the multi-layer flow. It is very clear that when the multi-
fluid, being the lightest fluids that move faster in the flow or layer electroosmotic flow reaches the steady-state regime in
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FIGURE 11. Dimensionless velocity profiles of a purely electroosmotic flow with- 4, 7, = 0.1, 72 = 0.4, 73 = 0.8, k1 = 20, k2 = 50,

F3=10,Re =30, T =061 =1,&=08,&=11,a=1,5,=1,Q:s1 =3,Qs2=—2,Qs3 =5, Ath = 0.1, Aty =

—0.25,

A3 = 0.2, and different combinations @f,,. For (a)f = 0.0025, (b)# = 0.05, (c) £ = 0.2 and (d)f — oo.
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FIGURE 12. Dimensionless electric potential distribution for

Fig. 11.

combination of all dimensionless parameters studied here.
Therefore, we can found interesting combined behaviors on
the transient evolution of the velocity profiles, from the early
timet = 0.0025 in Fig. 11(a), to the steady-statefir-> co in

Fig. 11(d). Additionally, the corresponding electric potential
distributions to generate the electroosmotic flows analyzed in
Fig. 11, is given in Fig. 12.

4.3. Tracking of the velocity

Figure 13 shows the tracking results of the dimensionless ve-
locity as a function of the dimensionless time, evaluated at
the centerline of the capillary. This results are taken from the
flows presented in Sec. 4.2. For all cases, we can see a grad-
ual increase in the velocity as the time progresses since the
rest to reach the steady-state. It is clear from Figs. 13(a),
(b), (d)-(f), that the time to reach the steady-state of the
fluid flows is independent of the dimensionless parameters

t — oo, the heaviness condition disappears, and all veloc€); ,,, A, é,, I', iy, andp,, respectively; however, it is
ity profiles overlap. The electric potential distribution for the strongly dependent of the viscosity ratips as is shown in

electroosmotic flow in Fig. 10, can be found in Fig. 9(a).

Fig. 13(c). Again, the accuracy of our solution was validated

In Fig. 11, we show the electroosmotic flow of four layers in Fig. 13(a) forQ, ,, = 0 andAv,, = 0, with the aid of the
of immiscible fluids with different thicknesses, and a wide solution reported by Keh and Tseng [11] for a single fluid.
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FIGURE 13. Tracking of the velocity in the multi-layer flow as a function of the dimensionless time evaluated at the centerline of the capillary.
() effect ofQ5.,, and A<, (from Fig. 4), (b) effect of,, (from Fig. 5), (c) effect ofi,, (from Fig. 7), (d) effect of" (from Fig. 8), (e) effect
of &, (from Fig. 9) and (f) effect op,, (from Fig. 10).

5. Conclusions less parameters presented here. Therefore, this investigation
is an important theoretical contribution to simulate transient
In the present work, we realize a semi-analytical solution ofyyti-layer fluid flows under electric interfacial effects, cov-
the start-up of combined electroosmotic and pressure drivegring different implications that emerge in the design of small
flow of multi-layer immiscible fluids within a narrow cap-  devices into the chemical, biological and clinical areas.
illary. The parametric study is based on the different fluid Finally, several implications can to be analyzed. For ex-
properties, geometrical characteristics, and boundary condi&mme, it is recommended to address the following issues
tions in the solid-liquid and liquid-liquid interfaces. Con- 15 extend the present work: the analysis can include non-
sidering the studied flow conditions was demonstrated thq(ewtonian fluids, treat the liquid-liquid interfaces as per-
the presence of electric double layers at liquid-liquid inter-y,heq |ines or with shape defects, and also, the interfaces
faces break the continuity of the electric potential distribu-c4 pe treated as transitional layers with non-zero thickness,
tion and the shear viscous stresses, producing representatif@ere two phases partly dissolve in each other, and the prop-

changes of the velocity distributions, which could be in favorg ties of the medium gradually change from the properties of
or against of the flow. In other results, it was determined thap o phase to the other.

the physical and electric properties of the outermost layer of

the multi-layer flow, make it govern the global magnitude of

the velocity distribution over the cross-section of the capil-Acknowledgments
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