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Transient analysis of combined electroosmotic and pressure-driven
flow with multi-layer immiscible fluids in a narrow capillary
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Because there is required the development of techniques for pumping parallel flows in miniaturized systems, in the present investigation
is obtained a semi-analytical solution based in the matrix inverse method and by Laplace transform, for the transient flow of multi-layer
immiscible fluids in a narrow capillary under electroosmotic and pressure driven effects. The dimensionless mathematical model to solve
the electric potential distribution and the velocity field in the start-up of flow, consists of the Poisson-Boltzmann and momentum equations,
respectively. Here, the transported fluids are considered symmetrical electrolytes. Also because the interfaces between them are polarizable
and impermeable to charged particles, interesting interfacial effects appear on the velocity profiles when an external electric field is applied.
The results show graphically the influence of the different dimensionless parameters involved in the dynamics of the fluid flow. This study
demonstrates that by considering interfacial electrical effects at the contact between two electrolytes, a steep velocity gradient is produced
resulting in strong changes in the velocity whose magnitude and direction depending on the concentration and polarity of electric charges
around a liquid-liquid interface; finally, it is observed that the time to reach the steady-state regime of the fluid flow is only controlled by
the dimensionless viscosity ratios. This investigation is a theoretical contribution to simulate transient multi-layer fluid flows under electric
interfacial effects, covering different implications that emerge in the design of small devices into the chemical, biological, and clinical areas.
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1. Introduction

The concept of integrating biochemical analysis with micro-
electromechanical systems (MEMS) is involved in the new
field of bioMEMS, which is undergoing tremendous growth
in a multitude of applications [1], including technology that
enable scientific discovery, detection, diagnostics, and ther-
apy and span the fields of biology, chemistry, and medicine
[2]. In this context, the terms lab on a chip (LOC) and mi-
cro total analysis system (µTAS) are a subset of MEMS dedi-
cated to chemical and biological analyses and discoveries [2];
here, the study of fluid flow in these submillimeter-sized sys-
tems is cover by microfluidics and nanofluidics [3].

In the mentioned systems can be applied different strate-
gies to pump fluids as electrohydrodynamic and magnetohy-
drodynamic effects [4,5], electrothermal effects [6], acoustic
and ultrasonic effects [6, 7], pressure-driven effects by sy-
ringe, peristaltic or rotary pumps [8], among others [6]. How-
ever, a common method for pumping fluids is the use of the
electrokinetic phenomenon called electroosmosis, whose ba-
sic principle is the movement of an electrolytic solution rel-
ative to a stationary charged surface when an electric field is
applied [9].

Focusing on electroosmotic flows, these have been stud-
ied extensively by the scientific community since many
years, carrying investigations about the transport of homoge-
neous single-phase fluids based in electrolytic solutions both
steady-state and transient-state, and using conduits formed

with cylindrical shape [10–12], annular channels [13–15],
parallel flat plates [16–18] and rectangular channels [19–21];
all of them, under the consideration of the Debye-Hückel ap-
proximation for the volumetric free charge density within the
electric double layer.

The research about electroosmotic flows, have been ex-
tended to the study of the pumping of two parallel and im-
miscible fluids as a technique of transport by viscous drag.
In this direction, Liuet al. [22] refer that non-conducting
liquids and certain biofluids cannot be pumped directly by
electroosmosis, but still can be dragged along by shear forces
of a neighboring conducting liquid which is driven by elec-
troosmosis. Their study reports an analytical solution for
the velocity profiles into a two-phase electroosmotic-viscous
pump in a circular microchannel. About this theme, other in-
vestigations under electroosmotic effects to pumping a non-
conducting fluid by viscous drag due to electroosmotic ef-
fects over a conducting liquid in cylindrical channels can be
reviewed in the works conducted by Movahedet al. [23],
Moghadam [24] and Matı́aset al. [25]; moreover, in paral-
lel flat plates by Huanget al. [26] and Afonsoet al. [27], and
rectangular channels by Gaoet al. [28]; all of them in steady-
state. Concerning the transient-state analysis of pumping of
non-conducting liquids by viscous drag induced by electroos-
motic effects, we can cite the investigation realized by Gaoet
al. [29] in a rectangular channel.

All the studies cited in the above paragraph consider that
one of the fluids in the two-layer arrangement is electrically
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conducting and the other not, which yields partially or null
employment of the Maxwell electric stresses at the liquid-
liquid interfaces between fluid layers. However, following
the study of the electrochemistry, if two solutions of immis-
cible electrolytes are in contact and develop a polarizable and
impermeable interface to charged particles, there arises, in
equilibrium, an electrical potential difference, whose struc-
ture trough diffuse layers and a compact inner layer in an
electrical double layer, has been studied by Volkovet al. [30],
Wandlowskyet al. [31], Samecet al. [32] and Cuiet al. [33].
In the mentioned works, the electrical potential difference is
determined by the distribution of charged and dipolar parti-
cles near the interface. However, Masliyha and Bhattacharjee
[9], propose a simpler contact structure between the immis-
cible media, where the thin compact layers or the presence
of electrical dipoles are not considered; therefore, the poten-
tial difference can be considered as a constant and when this
constant is zero the electrical potential continuity is reached.

Another important aspect that emerges in the analysis of
the structure of the electric double layer in polarizable, and
non-polarizable interfaces, is the study of capacitance, which
is a measure of the penetration of ions in the electric double
layer at the interface. From the capacitance and the potential
difference, the surface charge density at the interface can be
determined [32, 33]; therefore, the potential difference and
surface charge density have a direct correspondence when
two immiscible electrolyte solutions are in contact through
an interface.

Considering the previous paragraph about certain con-
cepts involved within the double electric layer generated at
the interface between two immiscible electrolyte solutions,
the studies of Choiet al. [34], Suet al. [35] and Jianet al. [36]
carry out the analysis of the transient electroosmotic flow of
two-immiscible fluid layers in slit channels formed by par-
allel flat plates. Here, both fluids are electrolytes, and this
condition leads to the Maxwell electric and shear stresses be
included in each fluid phase when the total stresses balance
is established at the liquid-liquid interface. The flow field ex-
periments important changes in their velocity profiles when
the electric stresses are present at the interface concerning to
the case when only one fluid is conductive, due to the pres-
ence of a potential difference and a surface charge density in
the interfacial boundary conditions. Extending the mentioned
works, Shitet al. [37] realized a study in steady-state about
the two-layer fluid flow and heat transfer in a hydrophobic
microchannel formed by parallel flat plates using a combina-
tion of a pressure gradient and electroosmotic forces. Their
results indicate that the effects of the interfacial zeta potential
are significant on the fluid velocity; moreover, the electroos-
motic flow has a finite jump the interface between two fluid
layers.

Certainly, the development of techniques to pumping im-
miscible fluids by electroosmotic effects in miniaturized sys-
tems has reached the handling of three layers of fluids [38]
and also any number of fluid layers [39], when the flow-
focusing effect is required. Therefore, the aim of the present

work is addressing the study about the transport of multi-
layer immiscible fluids in a cylindrical capillary under pres-
sure and electroosmotic effects. The parametric study on the
flow field is focused on the interfacial phenomena via a po-
tential difference, the Gauss’s law, and Maxwell stress at each
liquid-liquid interface between fluid layers. Because the in-
terface conditions established here for the star-up of a multi-
layer flow within a capillary have not been treated yet, this
paper also has the purpose of extending the theoretical knowl-
edge about the application of the electrokinetic phenomena in
fluids transport.

2. Mathematical formulation

2.1. Physical model

In the present work, we realize the transient analysis of the
transport of multi-layer immiscible fluids in a narrow capil-
lary. Therefore, to establish the fluid phenomenon that will
be studied here, we start describing the physical model with a
cylindrical coordinate system(r, z), as is shown in Fig. 1 on
the centerline of a capillary. The fluids, which fill the conduit
with radiusR, are layers of symmetrical electrolytes consider
with a Newtonian behavior. Each liquid-liquid interface is
placed in anrn position; here, the subscriptn = 1, 2, 3, ..., i
represents the number of the fluid layer, andi is the fluid
layer in contact with the wall of the capillary. Because the
fluids are immiscible and electrically conductive, and also
the interfaces between them are polarizable and imperme-
able to charged particles, a surface electric charge densityqs

and a potential difference∆ψ appears at the liquid-liquid in-
terfaces; moreover, the wall of the capillary is also polariz-
able and acquire a surface electric charge represented by the
zeta potentialζw. The fluids movement is due to two fac-
tors; firstly, to the ends of the conduit, and is subject to an
electric potential generated by a pair of electrodes, that gives
rise to a uniform electric fieldEz inducing electroosmotic ef-
fects. Secondly, by a pressure gradientpz, that also could be
applied along thez−direction.

2.2. General governing equations

The flow field of the multi-layer immiscible fluids is gov-
erned by the Poisson-Boltzmann equation for the electric po-
tential distribution

FIGURE 1. Sketch of the combined electroosmotic and pressure-
driven flow of multi-layer fluids in a capillary.
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∇2Φn = −ρen

εn
, (1)

whereΦ is the total electric potential,ρe is the volumetric
free charge density andε is the dielectric permittivity. Also,
with the continuity equation for incompressible fluids as

∇ · vn = 0, (2)

beingv the velocity vector. And the momentum governing
equation

ρn
Dvn

Dt
= −∇p + µn∇2vn + ρng + ρen

E, (3)

whereρ is the density,t is the time,p is the pressure,µ is
the viscosity,g is the gravitational acceleration, andE is the
electric field vector.

2.3. Simplified mathematical model

The mathematical model to solve this multi-layer flow based
on the previous general governing equations can be simpli-
fied, taking into account the following assumptions:

• Incompressible fluids.

• The fluid’s properties are independent of the local elec-
tric field, ion concentration, and temperature [22, 40].
Complementary to this consideration, we assume a net
change in the temperature of the fluids is less to 10
K [41, 42] and the value of the external electric field
is less to 10 kVm−1 to despise any Joule heating ef-
fect [43].

• The interfaces between the fluids represent either sharp
boundaries with zero-thickness, impermeable, and ide-
ally polarizable.

• There is a planar interface between fluids layers [34,
44]. The mentioned can be assumed by considering
that we have:i) laminar flow for low Reynold’s num-
bers, beingRen(= ρnRvc/µn) ¿ 1, resulting in par-
allel flows with laminar fluid interfaces [38] andii)
uniform zeta potential along the wall of the capillary.
Here, the characteristic velocity of the flow is defined
by vc = −εrefζwEz/µref , where the subscript “ref”
indicates physical properties referred to electrolytes in
aqueous solutions at 298.15 K (25◦C) [9,45].

• The gravitational forces in the system are negligible
[44].

• The capillary is sufficiently long, and the analysis is
a focus in a region far from the ends of the capillary
neglecting inlet and outlet effects.

• For a long capillary, the total electric potentialΦ at any
location in the system is given by a linear superposition
of the potential in the electric double layer and by the
externally applied potential as follows [9,46,47]

Φn(z, r) = ψn(r) + φ(z). (4)

Here,ψ is the electric potential distribution within the
electric double layer,φ(z) = φ0 − zEz is the external
electric potential on thez− direction,φ0 is the electric
potential at the inlet of the channel atz = 0 and the
external electric fieldEz is independent of the position
and constant along the axial direction.

• The ionic distribution into the electric double layers
follow the Boltzmann distribution as

ρe,n = −2Znen0,n sinh
(
Zneψn(r)

kBTn

)
, (5)

whereZ is the valence of electrolyte,e is the elemen-
tary charge,n0 is the ionic number concentration in the
bulk solution,kB is the Boltzmann constant, andT is
the fluid temperature.

• The Debye-Ḧuckel approximation for low enough po-
tentials (≤ 25 mV) at the solid-liquid [9,47] and liquid-
liquid interfaces [35,36] is considered.

• Creeping flow (low Reynolds number) and constant
pressure gradient on thez-direction.

• The Debye lengths into electric double layers do not
overlap.

According to the previous considerations, the set of Eqs.
(1)-(3) can be rewritten in the following form, yielding the
Poisson-Boltzmann and the momentum equations respec-
tively as

d2ψn(r)
dr2

+
1
r

dψn(r)
dr

= κ2
nψn(r) (6)

and

ρn
∂vz,n(r, t)

∂t
= −pz + µn

[
1
r

∂

∂r

(
r
∂vz,n(r, t)

∂r

)]

− εnκ2
nEzψn(r), (7)

wherer is the radial coordinate,vz and pz = ∂p/∂z are
the velocity and the pressure gradient on thez− direction,
respectively; andκ2

n = 2Z2
ne2n0,n/εnkBTn is the Debye-

Hückel parameter, which is related to the well-known Debye
lengthκ−1

n =
(
εnkBTn/2Z2

ne2n0,n

)1/2
[9].

2.4. Initial and boundary conditions

To solve the governing equations given in Eqs. (6) and (7),
we consider the following boundary conditions for the elec-
tric potential and velocity. At the centerline of the capillary
at r = 0 for layern = 1, we have the symmetry boundary
conditions as

dψ1(r)
dr

= 0 and
∂vz,1(r, t)

∂r
= 0. (8)
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In the case of each liquid-liquid interface atr =
rn=1,2,3,...,i−1, we have the following four boundary condi-
tions; we firstly consider a potential difference as

ψn(r)− ψn+1(r) = ∆ψn, (9)

and the Gauss’s law for the electric potential respectively as

εn+1
dψn+1(r)

dr
− εn

dψn(r)
dr

= −qs,n. (10)

And secondly, for each liquid-liquid interface, we consider a
velocity continuity

vz,n(r, t) = vz,n+1(r, t) (11)

and a total stresses balance that includes Maxwell stresses
and viscous shear stresses, also called electro-viscous
stresses as

µn
∂vz,n(r, t)

∂r
− εnEz

dψn(r)
dr

= µn+1
∂vz,n+1(r, t)

∂r
− εn+1Ez

dψn+1(r)
dr

. (12)

Additionally, at the solid-liquid interface between the
wall of the capillary and fluid layern = i at r = R, are
established a specific zeta potential value as

ψi(r) = ζw (13)

and the no-slip boundary condition respectively as

vz,i(r, t) = 0. (14)

Finally, the initial condition att = 0 to solve the momen-
tum Eq. (7) is

vz,n(r, t) = 0. (15)

2.5. Dimensionless mathematical model

The mathematical model given in Secs. 2.3. and 2.4., is nor-
malized with the following dimensionless variables

t̄ =
t

tc
, r̄ =

r

R
,

ψ̄n(r̄) =
ψn(r)

ψc
, v̄z,n(r̄, t̄) =

vz,n(r,t)

vc
, (16)

wheretc = ρrefR
2/µref andψc = ζw, are the characteris-

tic magnitude of the time and electric potential, respectively.
Therefore, by replacing Eq. (16) in Eqs. (6)-(15) we have the
dimensionless version of the Poisson-Boltzmann equation

d2ψ̄n(r̄)
dr̄2

+
1
r̄

dψ̄n(r̄)
dr̄

= κ̄2
nψ̄n(r̄), (17)

momentum equation

ρ̄n
∂v̄z,n(r̄, t̄)

∂t̄
= −Γ + µ̄n

[
1
r̄

∂

∂r̄

(
r̄
∂v̄z,n(r̄, t̄)

∂r̄

)]

+ ε̄nκ̄2
nψ̄n(r̄), (18)

together with the boundary conditions at the centerline of the
capillary atr̄ = 0

dψ̄1(r̄)
dr̄

= 0 and
∂v̄z,1(r̄, t̄)

∂r̄
= 0, (19)

in each liquid-liquid interface at̄r = r̄n=1,2,3,...,i−1 the fol-
lowing four boundary conditions

ψ̄n(r̄)− ψ̄n+1(r̄) =∆ψ̄n, (20)

ε̄n+1
dψ̄n+1(r̄)

dr̄
− ε̄n

dψ̄n(r̄)
dr̄

=−Qs,n, (21)

v̄z,n(r̄, t̄) =v̄z,n+1(r̄, t̄) (22)

and

µ̄n
∂v̄z,n(r̄, t̄)

∂r̄
+ ε̄n

dψ̄n(r̄)
dr̄

= µ̄n+1
∂v̄z,n+1(r̄, t̄)

∂r̄
+ ε̄n+1

dψ̄n+1(r̄)
dr̄

, (23)

in the solid-liquid interface at̄r = 1

ψ̄i(r̄) = 1 and v̄z,i(r̄, t̄) = 0, (24)

and the initial condition for the flow field at̄t = 0 as

v̄z,n(r̄, t̄) = 0. (25)

The dimensionless parameters that appear in previous
equations are defined as follows

κ̄n =
R

κ−1
, Γ =

pzR
2

vcµref
, µ̄n =

µn

µref
,

ρ̄n =
ρn

ρref
, ε̄n =

εn

εref
, r̄n =

rn

R
,

∆ψ̄n =
∆ψn

ζw
, Qs,n =

qs,nR

εrefζw
, (26)

whereκ̄n are the ratios between the capillary radius to the
Debye lengths or also known as electrokinetic parameters,
Γ is the ratio of external pressure forces to electroosmotic
forces,µ̄n are the viscosities ratios,̄ρn are the densities ra-
tios, and̄εn are the dielectric permittivity ratios. On the other
hand,r̄n are the dimensionless interface positions,∆ψ̄n are
the dimensionless potential differences andQs,n are the di-
mensionless free surface charge densities; the three afore-
mentioned parameters ranging fromn = 1 to n = i− 1.
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3. Solution methodology

3.1. Electric potential distribution

The Poisson-Boltzmann equation expressed by Eq. (17) has
the form of a modified Bessel differential equation, and it has
a well-known form solution as

ψ̄n(r̄) = C2n−1I0(κ̄nr̄) + C2nK0(κ̄nr̄), (27)

whereC2n−1 andC2n are constant coefficients, andI0 and
K0 are the modified Bessel functions of first and second kind,
respectively, and both of zero order. The Eq. (27) describes

the behavior of dimensionless electric potential and has the
same form for any value ofn-layers of fluid. In this con-
text, we have two constantsC per fluid layer. To know the
constantsC2n−1 andC2n, we have to apply the appropriate
boundary conditions. Firstly, by replacing the corresponding
term of Eq. (19) into Eq. (27) for the innermost layer with
n = 1, we deduce that the value ofC2 = 0. Secondly, and
with the aid of Eq. (27), we apply the boundary conditions
for the electric potential given by Eqs. (20), (21) and (24), for
each liquid-liquid interface located from̄rn=1 to r̄n=i−1 and
for the wall of the capillary at̄r = 1, respectively. As result,
we obtain the following equation system

∆ψ̄1 =C1I0(κ̄1r̄1)− C3I0(κ̄2r̄1)− C4K0(κ̄2r̄1),

−Qs,1 =− C1ε̄1κ̄1I1(κ̄1r̄1) + C3ε̄2κ̄2I1(κ̄2r̄1)− C4ε̄2κ̄2K1(κ̄2r̄1),

∆ψ̄2 =C3I0(κ̄2r̄2) + C4K0(κ̄2r̄2)− C5I0(κ̄3r̄2)− C6K0(κ̄2r̄2),

−Qs,2 =− C3ε̄2κ̄2I1(κ̄2r̄2) + C4ε̄2κ̄2K1(κ̄2r̄2) + C5ε̄3κ̄3I1(κ̄3r̄2)− C6ε̄3κ̄3K1(κ̄3r̄2),

...

∆ψ̄i−1 =C2i−3I0(κ̄i−1r̄i−1) + C2i−2K0(κ̄i−1r̄i−1)− C2i−1I0(κ̄ir̄i−1)− C2iK0(κ̄ir̄i−1),

−Qs,i−1 =− C2i−3ε̄i−1κ̄i−1I1(κ̄i−1r̄i−1) + C2i−1ε̄i−1κ̄i−1K1(κ̄i−1r̄i−1) + C2i−1ε̄iκ̄iI1(κ̄ir̄i−1)− C2iε̄iκ̄iK1(κ̄ir̄i−1),

1 =C2i−1I0(κ̄i) + C2iK0(κ̄i), (28)

which is a set of linear algebraic equations that contains the
same number of variables as equations. The constantsC are
solved by the matrix inverse method [48].

3.2. Transient velocity field

To solve the velocity field, we employ the Laplace transform
as

Vz,n(r̄, s) = L [v̄z,n(r̄, t̄)] =

∞∫

0

v̄z,n(r̄, t̄)e−st̄dt̄. (29)

Therefore, by taking the Laplace transform of the momentum
equation given by Eq. (18) together with the initial condition
from Eq. (25), we have

∂2Vz,n(r̄, s)
∂r̄2

+
1
r̄

∂Vz,n(r̄, s)
∂r̄

− sρ̄n

µ̄n
Vz,n(r̄, s)

=
Γ

sµ̄n
− ε̄nκ̄2

n

sµ̄n
ψ̄n(r̄), (30)

and with their corresponding boundary conditions from Eqs.
(19) and (22)-(24), we have respectively atr̄ = 0

∂Vz,n(r̄, s)
∂r̄

= 0, (31)

at r̄ = r̄n=1,2,3,...,i−1

Vz,n(r̄, s) = Vz,n+1(r̄, s), (32)

and

µ̄n
∂Vz,n(r̄, s)

∂r̄
+

ε̄n

s

dψ̄n(r̄)
dr̄

= µ̄n+1
∂Vz,n+1(r̄, s)

∂r̄
+

ε̄n+1

s

dψ̄n+1(r̄)
dr̄

, (33)

and atr̄ = 1

Vz,n(r̄, s) = 0. (34)

By replacing the expression for dimensionless electric
potential distribution given in Eq. (27) into Eq. (30), yields

d2Vz,n(r̄, s)
dr̄2

+
1
r̄

dVz,n(r̄, s)
dr̄

− sρ̄n

µ̄n
Vz,n(r̄, s)

=
Γ

sµ̄n
− ε̄nκ̄2

n

sµ̄n

× [C2n−1I0(κ̄nr̄) + C2nK0(κ̄nr̄)] . (35)

Equation (35) is a non-homogenous ordinary differential
equation of undetermined coefficients, and its solution can be
expressed by the sum of a general solution corresponding to
the homogeneous equation and a special solution as

Vz,n(r̄, s) = Vh(r̄, s) + Vs(r̄, s). (36)
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The homogeneous and special solution of the Eq. (35) are
defined as follows

Vh(r̄, s) = AnI0(βnr̄) + BnK0(βnr̄) (37)

and respectively

Vs(r̄, s) = FnI0(κ̄nr̄) + GnK0(κ̄nr̄)− Γ
ρ̄ns2

, (38)

whereAn, Bn, Fn andGn, are constants to be determined,
andβn =

√
sρ̄n/µ̄n. The expressions for the constantsFn

andGn were found by the substitution of the special solu-
tion given by Eq. (38) into Eq. (35), yielding the following
grouped expression

Fn

[
d2

dr̄2
I0(κ̄nr̄) +

1
r̄

d

dr̄
I0(κ̄nr̄)− sρ̄n

µ̄n
I0(κ̄nr̄)

]

+ Gn

[
d2

dr̄2
K0(κ̄nr̄) +

1
r̄

d

dr̄
K0(κ̄nr̄)− sρ̄n

µ̄n
K0(κ̄nr̄)

]

= − ε̄nκ̄2
n

sµ̄n
[C2n−1I0(κ̄nr̄) + C2nK0(κ̄nr̄)] , (39)

moreover, from Eq. (39) are obtained the following problems

d2

dr̄2
I0(κ̄nr̄) +

1
r̄

d

dr̄
I0(κ̄nr̄) = κ̄2

nI0(κ̄nr̄) (40)

and

d2

dr̄2
K0(κ̄nr̄) +

1
r̄

d

dr̄
K0(κ̄nr̄) = κ̄2

nK0(κ̄nr̄). (41)

By replacing Eqs. (40) and (41) into Eq. (39), we can find
the following relationships for the modified Bessel functions
as

Fn

[
κ̄2

nI0(κ̄nr̄)− sρ̄n

µ̄n
I0(κ̄nr̄)

]

= − ε̄nκ̄2
n

sµ̄n
[C2n−1I0(κ̄nr̄)] (42)

and

Gn

[
κ̄2

nK0(κ̄nr̄)− sρ̄n

µ̄n
K0(κ̄nr̄)

]

= − ε̄nκ̄2
n

sµ̄n
[C2nK0(κ̄nr̄)] , (43)

from which the constantsFn andGn are obtained as

Fn =
ε̄nκ̄2

nC2n−1

s(sρ̄n − µ̄nκ̄2
n)

, Gn =
ε̄nκ̄2

nC2n

s(sρ̄n − µ̄nκ̄2
n)

. (44)

Therefore, from Eq. (36) the dimensionless velocity dis-
tribution can be written as

Vz,n(r̄, s) = AnI0(βnr̄) + BnK0(βnr̄)

+ FnI0(κ̄nr̄) + GnK0(κ̄nr̄)− Γ
ρ̄ns2

. (45)

To find the constantsAn andBn, we apply the bound-
ary conditions given in Eqs. (31)-(34) to Eq. (45). In this
direction, firstly, by replace Eq. (31) at the centerline of the
capillary in r̄ = 0 into Eq. (45), we obtain

0 = β1 [A1I1(0)−B1K1(0)]

+ κ̄1 [F1I1(0)−G1K1(0)] , (46)

where from is deduced thatB1 = 0. Secondly, from the
boundary conditions given in Eqs. (32) and (33) for each
liquid-liquid interface at̄r = r̄n=1,2,3,...,i−1 into Eq. (45),
we have

AnI0(βnr̄n) + BnK0(βnr̄n)− Γ
ρ̄ns2

+ FnI0(κ̄nr̄n) + GnK0(κ̄nr̄n)

= An+1I0(βn+1r̄n) + Bn+1K0(βn+1r̄n)

− Γ
ρ̄n+1s2

+ Fn+1I0(κ̄n+1r̄n)

+ Gn+1K0(κ̄n+1r̄n) (47)

and respectively

µ̄n [βn (AnI1(βnr̄n)−BnK1(βnr̄n))

+κ̄n (FnI1(κ̄nr̄n)−GnK1(κ̄nr̄n))]

+
ε̄nκ̄n

s
[C2n−1I1(κ̄nr̄n)− C2nK1(κ̄nr̄n)]

= µ̄n+1 [βn+1 (An+1I1(βn+1r̄n)−Bn+1K1(βn+1r̄n))

+κ̄n+1 (Fn+1I1(κ̄n+1r̄n)−Gn+1K1(κ̄n+1r̄n))]

+
ε̄n+1κ̄n+1

s

[
C2(n+1)−1I1(κ̄n+1r̄n)

−C2(n+1)K1(κ̄n+1r̄n)
]
, (48)

and thirdly, from Eq. (34) for the solid-liquid interface placed
in the wall of the capillary at̄r = 1 into Eq. (45), the follow-
ing expression is obtained

0 = AiI0(βi) + BiK0(βi)− Γ
ρ̄ns2

+ FiI0(κ̄i) + GiK0(κ̄i). (49)

Once all boundary conditions for velocity have been re-
placed, we construct from Eqs. (47)-(49) the array of the
equation system to solve the constantsAn andBn, yielding
as follows
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CE11 =A1 [I0(β1r̄1)]−A2 [I0(β2r̄1)]−B2 [K0(β2r̄1)] ,

CE21 =A1 [µ̄1β1I1(β1r̄1)]−A2 [µ̄2β2I1(β2r̄1)] + B2 [µ̄2β2K1(β2r̄1)] ,

CE12 =A2 [I0(β2r̄2)] + B2 [K0(β2r̄2)]−A3 [I0(β3r̄2)]−B3 [K0(β3r̄2)] ,

CE22 =A2 [µ̄2β2I1(β2r̄2)]−B2 [µ̄2β2K1(β2r̄2)]−A3 [µ̄3β3I1(β3r̄2)] + B3 [µ̄3β3K1(β3r̄2)] ,

...

CE1i−1 =Ai−1 [I0(βi−1r̄i−1)] + Bi−1 [K0(βi−1r̄i−1)]−Ai [I0(βir̄i−1)]−Bi [K0(βir̄i−1)] ,

CE2i−1 =Ai−1 [µ̄i−1βi−1I1(βi−1r̄i−1)]−Bi−1 [µ̄i−1βi−1K1(βi−1r̄i−1)]−Ai [µ̄iβiI1(βir̄i−1)]

+ Bi [µ̄iβiK1(βir̄i−1)] ,

NC2 =Ai [I0(βi)] + Bi [K0(βi)] , (50)

where

CE11 =
Γ
s2

(
ρ̄2 − ρ̄1

ρ̄1ρ̄2

)
− F1I0(κ̄1r̄1) + F2I0(κ̄2r̄1) + G2K0(κ̄2r̄1),

CE21 =I1(κ̄2r̄1)
[
µ̄2κ̄2F2 +

1
s
ε̄2κ̄2C3

]
−K1(κ̄2r̄1)

[
µ̄2κ̄2G2 +

1
s
ε̄2κ̄2C4

]

− I1(κ̄1r̄1)
[
µ̄1κ̄1F1 +

1
s
ε̄1κ̄1C1

]
,

CE12 =
Γ
s2

(
ρ̄3 − ρ̄2

ρ̄2ρ̄3

)
− F2I0(κ̄2r̄2)−G2K0(κ̄2r̄2) + F3I0(κ̄3r̄2) + G3K0(κ̄3r̄2),

CE22 =I1(κ̄3r̄2)
[
µ̄3κ̄3F3 +

1
s
ε̄3κ̄3C5

]
−K1(κ̄3r̄2)

[
µ̄3κ̄3G3 +

1
s
ε̄3κ̄3C6

]

− I1(κ̄2r̄2)
[
µ̄2κ̄2F2 +

1
s
ε̄2κ̄2C3

]
+ K1(κ̄2r̄2)

[
µ̄2κ̄2G2 +

1
s
ε̄2κ̄2C4

]
,

...

CE1i−1 =
Γ
s2

(
ρ̄i − ρ̄i−1

ρ̄i−1ρ̄i

)
− Fi−1I0(κ̄i−1r̄i−1)−Gi−1K0(κ̄i−1r̄i−1)

+ FiI0(κ̄ir̄i−1) + GiK0(κ̄ir̄i−1),

CE2i−1 =I1(κ̄ir̄i−1)
[
µ̄iκ̄iFi +

1
s
ε̄iκ̄iC2(i)−1

]
−K1(κ̄ir̄i−1)

[
µ̄iκ̄iGi +

1
s
ε̄iκ̄iC2(i)

]

− I1(κ̄i−1r̄i−1)
[
µ̄i−1κ̄i−1Fi−1 +

1
s
ε̄i−1κ̄i−1C2(i−1)−1

]

+ K1(κ̄i−1r̄i−1)
[
µ̄i−1κ̄i−1Gi−1 +

1
s
ε̄i−1κ̄i−1C2(i−1)

]
,

NC2 =− FiI0(κ̄i)−GiK0(κ̄i) +
Γ

ρ̄ns2
. (51)

The Eq. (50) is the set of equations that include the term
“s” now called symbolic variable, because when the matrix
inverse method be applied to this equation, the coefficients
An andBn are solved in terms of this.

Finally, the given constantsFn andGn in Eq. (44), and
the constantsAn andBn derived from Eq. (50), are replaced
into Eq. (45), where the inverse Laplace transform is applied
to solve the velocity profile of combined electroosmotic and
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pressure-driven flow analyzed here. To this, the velocity dis-
tribution along the capillary radius̄vz,n(r̄, t̄) is approximated
by a finite linear combination of the transform values by the
Gaver-Stehfest algorithm as [49]:

v̄z,n(r̄, t̄) ≈ v̄z,n,g(r̄, t̄,M) ≡ ln(2)
t̄

2M∑

k=1

ζkVz,n

×
(

r̄,
kln(2)

t̄

)
, 0 < t̄ < ∞, (52)

where the approximate function̄vz,n,g(r̄, t̄,M), depends on
the positionr̄, the timet̄, a positive integer value forM , the
calculous of a coefficientζk and the evaluation in the time of
the transform functionVz,n(r̄, t̄). Here,ζk is determined by

ζk = (−1)M+k
k∧M∑

j=[(k+1)/2]

[
jM+1

M !

×
(

M
j

)(
2j
j

)(
j

k − 1

)]
, (53)

wherej are the digits desired,1 ≤ k ≤ 2M , andM = 14
for all the cases.

3.3. Steady-state velocity

To obtain the steady-state solution for the flow field, Eq. (18)
is rewritten as follows

0 = −Γ + µ̄n

[
1
r̄

d

dr̄

(
r̄
dv̄z,n

dr̄

)]
+ ε̄nκ̄2

nψ̄n, (54)

which is integrated twice yielding

v̄z,n =
1
µ̄n

{
Γr̄2

4
− ε̄nC2n−1 [1− I0(κ̄nr̄)]

− ε̄nC2nK0(κ̄nr̄) + Dn ln(r̄) + En

}
, (55)

whereDn andEn are constants which are determined with
the application of the appropriate boundary conditions for ve-
locity. Hence, firstly by applying the symmetry boundary
condition from Eq. (19) into Eq. (55), for the innermost fluid
layer withn = 1, we deduce thatD1 = 0. Secondly, by using
the solution expressions for the electric potential and veloc-
ity given by Eqs. (27) and (55), respectively, we apply the
boundary condition given by Eq. (23) to each liquid-liquid
interface fromr̄n=1 to r̄n=i−1, resulting in a set of electro-
viscous stress balance equations. From these procedure, we
found for each interface that constantsDn = 0 for n = 2 to
n = i. Thirdly, the boundary condition of velocity continuity
at each interface through the Eq. (22) is applied; from the
resulting equations system is deduced that the constantsEn

for r̄n ranging ofr̄n=1 to r̄n=i−1, are

En = −Γr̄2
n

4
− ε̄nCn[1− I0(κ̄nr̄n)] + ε̄nC2nK0(κ̄nr̄n)

+
µ̄n

µ̄n+1

{
Γr̄2

n+1

4
− ε̄n+1C2n−1[1− I0(κ̄n+1r̄n)]

+ ε̄n+1C2nK0(κ̄n+1r̄n) + En+1

}
, (56)

for n = 1 to n = i− 1. Finally, to close the general problem
for the velocity, we apply the last boundary condition given
by Eq. (24), which corresponds to the no-slip boundary con-
dition at the outermost layer forn = i. Here, the last constant
En=i is found, yielding

Ei = −Γ
4
− ε̄iC2i−1[1− I0(κ̄i)] + ε̄iC2iK0(κ̄i). (57)

4. Results and discussion

The dimensionless parameters in the present work have been
obtained by a suitable combination of the following param-
eters ranging of: 0.1≤ R ≤ 10 µm, 1 ≤ κ−1

n ≤ 200 nm,
700 ≤ ρn ≤ 1500 kg m−3, 10−4 ≤ µn ≤ 10−2 kg m−1 s−1,

FIGURE 2. Comparison of the dimensionless velocity profiles in a purely electroosmotic flow for different times between the results presented
by Keh and Tseng [11] withn = 1, and the present work withn = 3, r̄1 = 1/3 andr̄2 = 2/3. For (a)κ̄ = 1 and (b)κ̄ = 5.

Rev. Mex. F́ıs. 66 (2) 137–152



TRANSIENT ANALYSIS OF COMBINED ELECTROOSMOTIC AND PRESSURE DRIVEN FLOW WITH MULTI-LAYER IMMISCIBLE. . . 145

Ez < 104 V m−1, ζw ≤ 25 mV, Zn ∼ O(1), 7 × 10−11 ≤
εn ≤ 10−9 C V−1 m−1, −12.5 ≤ ∆ψ ≤ 12.5 mV,
−20 ≤ qs ≤ 20 mC m−2; additionally, the constants val-
ueskB = 1.381 × 1023 J K−1 ande = 1.602 × 10−19 C
were taken account.

4.1. Validation

The validation of the transient solution for velocity from the
present work was compared against the investigation done by
Keh and Tseng [11] on a fine capillary. To this, are used the
following dimensionless parametersΓ = 0, µ̄n = 1, ε̄n = 1,
ρ̄n = 1, ∆ψ̄n = 0 andQs,n = 0, for two values of̄κn = 1
andκ̄n = 5, respectively. In Fig. 2, we can see a good agree-
ment between the two transient solutions; besides, in each
case, we also included our solution for the velocity profile
in steady-state, finding a good convergence with the transient
solutions when the timēt →∞.

4.2. Parametric study

Figure 3 shows the dimensionless electric potential distribu-
tions as a function of the dimensionless radial coordinate of
three layers of immiscible fluids within a narrow capillary
with interfaces placed in̄r1 = 1/3 and r̄2 = 2/3, and with
different combined values of the parametersQs,n and∆ψ̄n;
the other dimensionless parameters selected are placed in the
caption of the figure. Because the contact between immis-
cible electrolyte solutions yields an electric double layer at
each liquid-liquid interface between them, in Fig. 3 and for
three immiscible electrolytes, it is shown that for the combi-
nation of positive values ofQs,n = 10 and∆ψ̄n = 0.1, re-
sults in absorption of ions that produce a positive distribution
of the electrical potential around of each liquid-liquid inter-
face. Besides is observed that the potential difference breaks
the electric potential continuity in each liquid-liquid interface
forming a discontinuity identified as an electric potential slip.

FIGURE 3. Dimensionless electric potential distributions for three
immiscible fluids in a capillary withn = 3, r̄1 = 1/3, r̄2 = 2/3,
κ̄n = 20, ε̄n = 1 and different values ofQs,n, and∆ψ̄n.

Conversely, negative values ofQs,n = −10, yield negative
electric potential distributions around each liquid-liquid in-
terface due to the excess of counterions into the electric dou-
ble layers; while the electric potential discontinuity is main-
tained via the value of∆ψ̄n = −0.1 in the two liquid-liquid
interfaces. In the case of null ionic interaction between the
immiscible fluids withQs,n = 0 and∆ψ̄n = 0, we have that
the electric potential has a constant null value from the center
of the capillary until increase asymptotically within the elec-

FIGURE 4. Dimensionless velocity profiles of a purely electroos-
motic flow for different times withn = 3, r̄1 = 1/3, r̄2 = 2/3,
κ̄n = 20, Γ = 0, ε̄n = 1, ρ̄n = 1 and µ̄n = 1. For (a)
Qs,n = 10, ∆ψ̄n = 0.1, (b) Qs,n = 0, ∆ψ̄n = 0 and (c)
Qs,n = −10, ∆ψ̄n = −0.1.
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tric double layer placed around the solid-liquid interface in
fluid 3, to reach their maximum value of̄ψ(r̄ = 1) = 1 at the
wall of the capillary. As can be seen in Fig. 3, all cases for
the electric potential distribution overlap in two zones, near
to the center of the capillary when̄r → 0 taking a value of
ψ̄ = 0 and near of the wall of the capillary when̄r → 1
whereψ̄ → 1.

Figures 4 presents the transient evolution of the dimen-
sionless velocity profiles as a function of the dimensionless
radius of a purely electroosmotic flow withΓ = 0, pump-
ing three layers of immiscible fluids. With the aid of the
previous results in the electric potential distribution given in
Fig. 3, the velocity profiles in Fig. 4(a) corresponds to the
condition withQs,n = 10 and∆ψ̄n = 0.1. Here, because
a positive polarity in the electric potential distribution along
the cross-section of the capillary and an excess of ions at
the liquid-liquid interfaces, the continuity of shear viscous
stresses breaks and when the fluids experiment the electroos-
motic effects at these interfacial positions producing steep
velocity gradients resulting in strong changes in the veloc-
ity, in this case in favor of the flow. Also from the mentioned,
the velocity profiles in each layer of fluid exhibit a convex
shape towards the positivez− direction, converging in each

liquid-liquid interface. Conversely, in the case of Fig. 4(c)
with Qs,n = −10 and∆ψ̄n = −0.1, where both by a neg-
ative polarity of the electrical potential distribution as an ex-
cess of counterions at the liquid-liquid interfaces, produces
velocity profiles with a concave shape due to the adverse elec-
troosmotic effects at these interfacial positions; this condition
diminishes the magnitude of the velocity profiles regarding
Fig. 4(a). While for null ionic interaction between fluid lay-
ers withQs,n = 0 and∆ψ̄n = 0, as is shown in Fig. 4(b),
the classic plug-like electroosmotic flow is recovered, and the
electroosmotic effects are transmitted outside of the electric
double layer placed at the wall of the capillary only by vis-
cous drag to the rest of the fluids. In all cases for velocity,
in Fig. 4, the symmetry boundary condition at the center-
line of the capillary and the no-slip boundary condition at the
wall are accomplished, and the steady-state is reached when
t̄ → ∞. Also, in Figs. 4(a) and 4(c), it is observed that
during a period covering the first times in the start-up of the
electroosmotic flow, inverse flows are present; for Fig. 4(a)
at the timēt = 0.0025, the inverse flow is around the liquid-
liquid interfaces, while for Fig. 4(c) at̄t = 0.04, it is present
outside of them.

FIGURE 5. Dimensionless velocity profiles of a purely electroosmotic flow withn = 3, r̄1 = 1/3, r̄2 = 2/3, κ̄n = 20, Γ = 0, ρ̄n = 1,
µ̄n = 1, Qs,n = 2.5, ∆ψ̄n = 0.1, ε̄1 = 1, and different combinations of̄ε2 and ε̄3. For (a)t̄ = 0.0025, (b) t̄ = 0.1, (c) t̄ = 0.3 and (d)
t̄ →∞.
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FIGURE 6. Dimensionless electric potential distributions for Fig. 5.

Figure 5 shows the development in the time of dimen-
sionless velocity profiles as a function of the dimensionless
radial coordinate of a purely electroosmotic flow of three
immiscible fluids, under the influence of the dimensionless
dielectric permittivity ratiosε̄2 and ε̄3, and for the times
t̄ = 0.0025, 0.1, 0.3 and t̄ → ∞, respectively. For these re-

sults, the dielectric permittivity ratio in fluid layer 1 is main-
tained constant with̄ε1 = 1 and the other dimensionless pa-
rameters selected are in the figure. Since dielectric permit-
tivity is an indicator of the effectiveness or sensitivity of a
material to be polarized under an applied external field, in
Figs. 5(a)-(d), the velocity profile with greater magnitude
corresponds to the case given byε̄2 = 1.1 andε̄3 = 1.3, be-
ing the combination with the higher values for the dielectric
permittivity. In this sense, the velocity profile with smaller
magnitude will correspond to the following combination with
ε̄2 = 0.75 and ε̄3 = 0.5. On the other hand, by observing
Fig. 5(a), it is clear that the effect of the dimensionless di-
electric permittivity is stronger in outermost layer, whose ve-
locity grows faster than in the other internal fluids; this effect
is extended progressively to the rest of the fluid layers and to-
wards the center of the capillary as time goes, as can be seen
in Figs. 5(b) and 5(c), and until the steady-state is reached in
Fig. 5(d). The growth of the velocity in fluid 3 is faster com-
pared to the other internal fluids in Fig. 5(a), this is related
to the sensitivity in the response of electroosmotic effects
into the electric double layers in early times; this response
is magnified as the value of dielectric permittivity of the fluid
and the magnitude of the electric potential distribution also

FIGURE 7. Dimensionless velocity profiles of a purely electroosmotic flow withn = 3, r̄1 = 1/3, r̄2 = 2/3, κ̄n = 20, Γ = 0, ε̄n = 1,
ρ̄n = 1, µ̄1 = 1, Qs,n = 10, ∆ψ̄n = 0.1, and different combinations of̄µ2 andµ̄3. For (a)t̄ = 0.1, (b) t̄ = 0.4, (c) t̄ = 0.9 and (d)t̄ →∞.
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FIGURE 8. Dimensionless velocity profiles (solid lines) and
electric potential distribution (dashed lines) of a combined
electroosmotic-pressure driven flow withn = 3, r̄1 = 1/3,
r̄2 = 2/3, κ̄n = 20, ε̄n = 1, ρ̄n = 1, µ̄n = 1, Qs,n = 15,
and∆ψ̄n = 0.5. For (a)Γ = −2, (b) Γ = 0 and (c)Γ = 2.

increase. Therefore, with the aid of Fig. 6 for the electric po-
tential distribution related to Fig. 5, we can see that from any
combination of̄ε3 andψ̄3 ∼ 1, the highest values of the elec-
trical potential are obtained in layer 3, in comparison with
the rest of layers of fluids. With the mentioned, the largest
response of the velocity profile in early times and under the
application of an external electric field in the electroosmotic
flow is also produced.

In Fig. 7 are presented the dimensionless velocity profile
of three immiscible fluids as a function of the radial coor-
dinate and time and under different combinations of viscos-

ity ratios µ̄2,3. In all cases, the viscosity ratio for the inner-
most layer is maintained with a value ofµ̄1 = 1. In Figs.
7(a) to 7(d), the time is increasing from̄t = 0.1 until the
steady-state when̄t goes to infinity. Here, we can observe
additional characteristics of the multi-layer flow, by follow-
ing each combination of the viscosity ratios between fluids.
The case with̄µ2 = 1 andµ̄3 = 5, represents in this group of
figures, the case with the greatest resistance to flow because
the velocity profile experiment very small changes in their
magnitude as the time passes with respect to the other cases.
On the contrary case, for the combination of viscosity ratios
with µ̄2 = 10 and µ̄3 = 0.1, the highest velocity distribu-
tion is reached at the end of the transient-state, although this
case contains the most viscous intermediate fluid layer with
µ̄2 = 10. With this, it is clear that the influence of the viscos-
ity value in the outermost layer is predominant to define the
velocity magnitude along the cross-section of the capillary,
more than in some other layer of the inner fluids. However,
although the outermost layer is that which define the global
magnitude of the velocity profile of the multi-layer flow, the
shape of the velocity profile and magnitude in each layer of
fluid depend on their viscosity ratio,e.g., by compare the case
of the intermediate fluid with̄µ2 = 10 and the intermediate
fluid with µ̄2 = 0.1, the velocity changes in the first case
are small with a flat velocity profile, while in the second case
the velocity changes are more representative with prominent
parabolic shape.

The effect of an external and constant pressure gradient
on the flow field via dimensionless parameterΓ, is shown in
Fig. 8; therefore, this graph represents the transient evolu-
tion of combined electroosmotic-pressure driven flow. The
values ofΓ = −2 andΓ = 2 show the influence of pres-
sure forces in favor and contrary to the positivez-direction,
respectively; the aforementioned can be demonstrated if the
velocity profiles under pressure effects are compared in this
graph with the case whenΓ = 0, for a purely electroosmotic
flow. Also, the invariant electric potential at the time is pre-
sented in Figs. 8(a)-(c) as dashed lines forQs,n = 15 and
∆ψ̄n = 0.5; here, the potential slip at the liquid-liquid in-
terfaces and the zeta potential at the solid-liquid interface at
the wall, are clear and corresponds with the convex velocity
distribution.

In Fig. 9, the characteristics of a purely electroosmotic
flow under the influence of the electrokinetic parameterκ̄n

are shown. Regarding the electric potential, in Fig. 9(a), it
is observed that as the value ofκ̄n = 10 increases to the
value ofκ̄n = 50, the electric potential distribution is closer
to the capillary wall, while at the interfaces, their distribu-
tion is thinner and small in magnitude. The previously men-
tioned is due to a condition of thinner electric double layers
by increase the ionic concentration of the electrolytes or by
increasing the radius of the capillary. On the other hand, and
based in Fig. 9(b), it is clear that for large values of the elec-
trokinetic parameter with̄κn = 50, the shape of velocity pro-
files tend to be flat, while for the small values withκ̄n = 10,
tends to take a parabolic shape whent̄ →∞.
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FIGURE 9. (a) Dimensionless electric potential distributions and (b) velocity profiles of a purely electroosmotic flow for four different times
with n = 3, r̄1 = 1/3, r̄2 = 2/3, Γ = 0, ε̄n = 1, ρ̄n = 1, µ̄1 = 1, µ̄2 = 0.1, µ̄3 = 0.5, Qs,n = 2.5, ∆ψ̄n = 0.1, and two values of
κ̄n = 10 andκ̄n = 50.

FIGURE 10. Dimensionless velocity profiles of a purely electroosmotic flow withn = 3, r̄1 = 1/3, r̄2 = 2/3, κ̄n = 10, Γ = 0, ε̄n = 1,
µ̄n = 1, Qs,n = 2.5, ∆ψ̄n = 0.1, and different combinations of̄ρn. (a) t̄ = 0.05, (b) t̄ = 0.1, (c) t̄ = 0.5 and (d)t̄ →∞.

In Fig. 10, the influence of the dimensionless densities
ratios on the velocity profiles during the start-up of purely
electroosmotic flow is given. Here, the magnitude of the
velocity profile is defined by the heaviness of each layer of
fluid, being the lightest fluids that move faster in the flow or

vice versa. Therefore, the magnitude of the velocity profile
in the transient period of the flow depends on the density ra-
tio value in each layer and their position in the arrangement
of the multi-layer flow. It is very clear that when the multi-
layer electroosmotic flow reaches the steady-state regime in
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FIGURE 11. Dimensionless velocity profiles of a purely electroosmotic flow withn = 4, r̄1 = 0.1, r̄2 = 0.4, r̄3 = 0.8, κ̄1 = 20, κ̄2 = 50,
κ̄3 = 10, κ̄4 = 30, Γ = 0, ε̄1 = 1, ε̄2 = 0.8, ε̄3 = 1.1, ε̄4 = 1, ρ̄n = 1, Qs,1 = 3, Qs,2 = −2, Qs,3 = 5, ∆ψ̄1 = 0.1, ∆ψ̄2 = −0.25,
∆ψ̄3 = 0.2, and different combinations of̄µn. For (a)t̄ = 0.0025, (b) t̄ = 0.05, (c) t̄ = 0.2 and (d)t̄ →∞.

FIGURE 12. Dimensionless electric potential distribution for
Fig. 11.

t̄ → ∞, the heaviness condition disappears, and all veloc-
ity profiles overlap. The electric potential distribution for the
electroosmotic flow in Fig. 10, can be found in Fig. 9(a).

In Fig. 11, we show the electroosmotic flow of four layers
of immiscible fluids with different thicknesses, and a wide

combination of all dimensionless parameters studied here.
Therefore, we can found interesting combined behaviors on
the transient evolution of the velocity profiles, from the early
time t̄ = 0.0025 in Fig. 11(a), to the steady-state int̄ →∞ in
Fig. 11(d). Additionally, the corresponding electric potential
distributions to generate the electroosmotic flows analyzed in
Fig. 11, is given in Fig. 12.

4.3. Tracking of the velocity

Figure 13 shows the tracking results of the dimensionless ve-
locity as a function of the dimensionless time, evaluated at
the centerline of the capillary. This results are taken from the
flows presented in Sec. 4.2. For all cases, we can see a grad-
ual increase in the velocity as the time progresses since the
rest to reach the steady-state. It is clear from Figs. 13(a),
(b), (d)-(f), that the time to reach the steady-state of the
fluid flows is independent of the dimensionless parameters
Qs,n, ∆ψ̄n, ε̄n, Γ, κ̄n, and ρ̄n, respectively; however, it is
strongly dependent of the viscosity ratiosµ̄n as is shown in
Fig. 13(c). Again, the accuracy of our solution was validated
in Fig. 13(a) forQs,n = 0 and∆ψ̄n = 0, with the aid of the
solution reported by Keh and Tseng [11] for a single fluid.
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FIGURE 13. Tracking of the velocity in the multi-layer flow as a function of the dimensionless time evaluated at the centerline of the capillary.
(a) effect ofQs,n and∆ψ̄n (from Fig. 4), (b) effect of̄εn (from Fig. 5), (c) effect of̄µn (from Fig. 7), (d) effect ofΓ (from Fig. 8), (e) effect
of κ̄n (from Fig. 9) and (f) effect of̄ρn (from Fig. 10).

5. Conclusions

In the present work, we realize a semi-analytical solution of
the start-up of combined electroosmotic and pressure driven
flow of multi-layer immiscible fluids within a narrow cap-
illary. The parametric study is based on the different fluid
properties, geometrical characteristics, and boundary condi-
tions in the solid-liquid and liquid-liquid interfaces. Con-
sidering the studied flow conditions was demonstrated that
the presence of electric double layers at liquid-liquid inter-
faces break the continuity of the electric potential distribu-
tion and the shear viscous stresses, producing representative
changes of the velocity distributions, which could be in favor
or against of the flow. In other results, it was determined that
the physical and electric properties of the outermost layer of
the multi-layer flow, make it govern the global magnitude of
the velocity distribution over the cross-section of the capil-
lary. On the other hand, the time to reach the steady-state
regime of the fluid flows is strongly controlled by the vis-
cosity ratios, and it is independent of the other dimension-

less parameters presented here. Therefore, this investigation
is an important theoretical contribution to simulate transient
multi-layer fluid flows under electric interfacial effects, cov-
ering different implications that emerge in the design of small
devices into the chemical, biological and clinical areas.

Finally, several implications can to be analyzed. For ex-
ample, it is recommended to address the following issues
to extend the present work: the analysis can include non-
Newtonian fluids, treat the liquid-liquid interfaces as per-
turbed lines or with shape defects, and also, the interfaces
can be treated as transitional layers with non-zero thickness,
where two phases partly dissolve in each other, and the prop-
erties of the medium gradually change from the properties of
one phase to the other.
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Boston, MA, U.S., (2007).

5. D.J. Laser and Santiago J.G.,J. Micromech. Microeng.14
(2004) R35–R64.

6. D. Li, Encyclopedia of Microfluidics and Nanofluidics.
Springer, Boston, MA, U.S., (2008).

Rev. Mex. F́ıs. 66 (2) 137–152



152 D. TORRES AND J. ESCAND́ON

7. J. Friend and L.Y. Yeo,Rev. Mod. Phys.83 (2011) 647–704.

8. C. Zhang, J. Xu, W. Ma and W. Zheng,Biotechnol. Adv.24
(2006) 243–284.

9. J.H. Masliyah and S. Bhattacharjee,Electrokinetic and Colloid
Transport Phenomena. Wiley-Interscience, Hoboken, NJ, U.S.,
(2006).

10. C.L. Rice and R. Whitehead,J. Phys. Chem.69 (1965) 4017–
4024.

11. H.J. Keh and H.C. Tseng,J. Colloid Interface Sci.242 (2001)
450–459.

12. S. Wang and M. Zhao,Eur. J. Mech. B: Fluids54(2015) 82–86.

13. H.-K. Tsao,J. Colloid Interface Sci.225(2000) 247–250.

14. R. Na, Y. Jian, L. Chang, J. Su and Q. Liu,Open J. Fluid Dyn.
3 (2013) 50–56.
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