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The flow of a viscous fluid over an infinite rotating and
porous disk with stretching (shrinking) effects
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Viscous flow is maintained over a porous and rotating disk. The porous disk is stretched (shrunk) with the non-uniform velocity in the radial
direction. Note that the viscous fluid is injected (blown) normally with non-uniform velocity. The study is undertaken by considering the
combined and individual effects of injection (suction), stretching (shrinking), and rotation. The kinematics properties associated with the
disk are depending upon the radial coordinate. The governing partial differential equations (PDE’s) are simplified and transformed into a
new system of DE’s. The set of boundary value ODE’s is solved with the help of a numerical method. The transformed equations (presented
over here) are new, and to the best of authors knowledge, the equations are not published in the literature. In particular cases, the modeled
equations may reduce to the classical problems of rotating disk flows. The previous models of rotating disk flows with or without porosity
and stretching (shrinking) effects are summarized into a single model. For a fixed value of the governing parameters and different sizes
of “infinity”, no increase/decrease in the thickness of the boundary layer is seen, but the profiles of velocity components and pressure are
significantly changed with the different levels of “infinity”.
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1. Introduction

The flow of a fluid over rotating disk has many applications
in engineering and industry. Rotating bodies, centrifugal
pumps, viscometers, rotors, fans, turbines, spinning disks are
examples of rotating disk flows. The problems of the rotating
disk are formulated in terms of nonlinear PDE’s and ODE’s.
Exact solutions of these non-linear boundary value ODE’s
and PDE’s are rare. Therefore, researchers are thinking about
other methods for accurate solutions to nonlinear problems.
Thus, the numerical methods are powerful tools for the ap-
proximate solution of such problems.

The history of rotating disk flow is very long, and von
Kármán [1] was the first one who studied flow over rotat-
ing disk by mean of self-similar transformations. Later on,
the momentum integral transform method is used for the so-
lution of proposed model equations. Interesting features of
analysis are highlighted that the Navier Stokes equations are
transformed into a system of boundary values ODE’s and
then solved by momentum integral transform method. The
researchers discussed these remarkable results and retrieved
the important and interesting flow patterns as a special case.
Later on, Cochran [2] extended the results of [1] and obtained
a better accurate numerical solution to the von Kármán prob-
lem. Stuart [3] first discussed the effects of uniform suction
(blowing) on fluid motion maintained over a porous rotat-
ing disk. He obtained different results for the steady flow
by considering strong suction and do not provide reasonable
solutions for injection cases. Gregg and Sparrow [4] solved
the mass and heat diffusion equations for viscous flow over
a rotating disk. In the modeled problem, they investigated
the consequences of injection on the flow properties and ob-

tained simple asymptotic solutions for large values of the suc-
tion parameter. Benton [5] improved Cochran’s solutions and
solved unsteady Navier Stokes equations for rotating flows.
Kuiken [6] analyzed the cases of strong injection and pre-
sented the boundary layer solution for this case. He found the
inner and outer solutions to the problem. Ackroyd [7] found
an asymptotic type exponential series solution with negative
exponents and showed that such solutions exhibit high accu-
racy for all cases of suction and low values of blowing. He
also determined the radius of convergence for the asymptotic
series solution. Meanwhile, Crane [8] found a closed form
solution for the flow on the stretchable sheet, and Wang [9]
extends it to3−D (closed form) models. Recently, Fang [10]
studied the effect of stretching on the flow over an annular
rotating disk and solved the modeled equations numerically.
Note that the fluid flow due to annular rotating disk are dis-
cussed in [11]. Further investigations of such flows have been
considered and analyzed over here.

In this paper, we have studied the combined effects of
stretching (shrinking) and injection (suction) velocities on
the viscous fluid flow over a porous rotating and porous disk.
Remember that the stretching (shrinking) and injection (suc-
tion) velocities are variables and depending upon the radial
coordinate. The rotating velocity of the porous disk is not
uniform and taken as a function ofr. The governing PDE’s
are converted into boundary value ODE’s by employing new
and unusual similarity transformations of von Kármán type,
and exact self similar equations are formed. The results of
this system of ODE’s are exactly matched with the classical
similarity solutions for particular cases of parameters value.
These observations are recorded in different figures, which
are presented in the results and discussion section. The new
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boundary value ODE’s, together with the boundary condi-
tion, are solved numerically. The modeled equations are ex-
actly matched with the classical model of von Kármán for
special choice of parameters value used in similarity trans-
formation. It is also confirmed that the boundary layer is dis-
placed for each set of parameters value;i.e. the boundary
layer is remained the same, whereas the flow properties are
changed with changes in size of the domain (the similarity
variableη). These observations are noted in a figure given in
a forthcoming section.

2. Formulation of the problem

In the current formulation, we have considered a cylindrical
polar coordinate system(r, θ, z) for the flow problem such
that the velocity vector has three components(ur, uθ, uz).
Further, it is assumed that the flow is axi symmetrici.e. the
unknown quantities are independent ofθ. Note thatur, uθ,
anduz are velocity components inr, θ andz directions, re-
spectively. The geometry of the problem is so chosen that in-
finite porous annular disk is lying in the planez = 0, rotates
about thez-axis, and enters/ exits fluid in thez-direction. The
disk is also stretched (shrunk) in ther direction with proper
and the variable stretching (shrinking) velocityUr(r). The
disk is also rotating with variable angular velocityΩ(r). Re-
call that the non-uniform porous disk allows variable injec-
tion (suction) velocityUz(r). The governing equations of
motion consist of the continuity equation and three compo-
nents of momentum equations. For in compressible and axi
symmetric flow in cylindrical polar coordinates, the continu-
ity equation has the following form:
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the no-slip and ambient boundary conditions are obtained
from the physical geometry of the problem:

at z = 0, ur = Ur(r), uθ = rΩ(r), uz = Uz(r),

p = 0ur = 0, uθ = 0 when z →∞ (5)

whereρ, ν, andp are fluid density, kinematic viscosity, and
pressure, respectively. The different known quantities are de-
fined such that:Ur(r) = U0/r, Uz(r) = V0/r, Ω(r) =
W0/r2 whereU0 > 0(< 0), V0 > 0(< 0), W0 are stretching
(shrinking), injection (suction), and rotation parameters, re-
spectively. Remember that,U0, V0, andW0 have the dimen-
sion ofL2/T . Here, we assumed the new and unusual simi-
larity transformations for the velocity components and pres-
sure. The new variables are formed because of the boundary
conditions of the modeled problem. Therefore, they encom-
passes all the features of the problem. Note that the variable
angular velocity is characterized by the radius of the disk. All
these information are incorporated in the similarity transfor-
mations and finally we get the following form:

ur = Ar1+2c2 F (η), uθ = Ar1+2c2 G(η),

uz = rc2
√

νA H(η), p(η) = ρνAr2c2P (η),

η = δ + rc2(z − c0)

√
A

ν
(6)

The new variables in Eqs. (6) are further simplified by choos-
ing numerical values for the parametersc0 = 0, c2 = −1,
A = ν and finally we get:

ur =
ν

r
F (η), uθ =

ν

r
G(η), uz =

ν

r
H(η),
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ν2

r2
P (η), η =

z
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By substituting the variables from Eq.(7) into Eqs.(1− 4),
we obtained the following system of ODE’s:

(δ − η)F ′ + H ′ = 0 (8)

−F 2 −G2 − 2P + (δ − η)FF ′ + (3δ − 3η + H)F ′

+ (δ − η)P ′ − (1 + (δ − η)2)F ′′ = 0 (9)

−(((δ − η)(3 + F )) + H)G′

+ (1 + (δ − η)2)G′′ = 0 (10)

H(1 + F −H ′)− (δ − η)(3 + F )H ′ − P ′

+ (1 + (δ − η)2)H ′′ = 0 (11)

where prime denotes the derivative concerningη. By substi-
tuting the definitions from Eq.(7) into Eq.(5), we have:

F (δ) = α1, G(δ) = α2, H(δ) = α3, P (δ) = 0

F (∞) = 0, G(∞) = 0 (12)

whereU0/ν = α1 > 0 (< 0) V0/ν = α2 > 0 (< 0) and
α3 = w0/ν are stretching (shrinking), injection (suction),
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TABLE I. Numerical solution of von Ḱarmán problem in Eqs. (13-17).

η F (η) F ′(η) G(η) G′η) H(η) -P (η)

0.051 0.0246 0.4586 0.9686 -0.6137 -0.0013 -0.0493

0.4082 0.1371 0.1929 0.7579 -0.555 -0.0647 -0.2762

0.8163 0.1774 0.0245 0.5537 -0.4432 -0.1977 -0.3744

1.0204 0.1773 -0.0222 0.4691 -0.3863 -0.2704 -0.3912

1.1905 0.1712 -0.0478 0.4072 -0.3418 -0.3298 -0.3969

1.5986 0.1448 -0.0756 0.2872 -0.2497 -0.4596 -0.3951

2.0068 0.1131 -0.0766 0.2003 -0.1797 -0.5648 -0.3857

2.2109 0.0979 -0.0722 0.1665 -0.152 -0.6079 -0.3805

2.415 0.0837 -0.0664 0.138 -0.1285 -0.6449 -0.3754

2.7891 0.0611 -0.0543 0.0966 -0.0944 -0.6988 -0.3664

2.9932 0.0507 -0.0479 0.0789 -0.0798 -0.7216 -0.3617

3.1973 0.0416 -0.0418 0.0639 -0.0675 -0.7403 -0.3572

3.6054 0.0267 -0.0312 0.0405 -0.0484 -0.7679 -0.3483

4.0136 0.0158 -0.0229 0.0237 -0.0348 -0.785 -0.3396

4.2177 0.0114 -0.0196 0.0171 -0.0295 -0.7906 -0.3353

4.5918 0.0051 -0.0146 0.0076 -0.0218 -0.7966 -0.3275

4.7959 0.0023 -0.0124 0.0035 -0.0186 -0.7981 -0.3232

5 0 -0.0105 0 -0.0158 -0.7986 -0.3189

and rotation parameters, respectively. A subsidiary condition
is obtained from Eq. (8) by integrating it betweenδ and∞
and gives:

H(∞) = α3 −
∞∫

δ

F (η)dη.

3. Comparision with von Kármán’s problem

The classical von Ḱarmán problem can be easily recovered by
adjusting the parameters of new variables defined in Eqs. (6).
Moreover, we assumed the following particular value for the
parameters:

c0 = c2 = δ = U0 = V0 = 0, A = Ω0 (13)

Because of the above value for the parameters, the trans-
formations in Eq. (6) are exactly converted into the von
Kármán’s variables defined for velocity components and
pressure:

ur = rΩ0 F (η), uθ = rΩ0 G(η),

uz =
√

νΩ0H(η), p(η) = ρνΩ0P (η) (14)

where η =
√

Ω0/νz. By putting the above values into
Eqs. (1-4), we get the following von Ḱarmán problem.

H ′ = −2F, (15)

F ′′ = −G2 + F 2 + F ′H, (16)

G′′ = 2FG + HG′, (17)

P ′ = H ′′ −HH ′. (18)

The boundary conditions in Eq. (5) are recovered for von
Kármán problem given Eqs. (13- 14) and we get:

FIGURE 1. Comparison of the numerical solution (dotted lines) of
Eqs. (14-18) with the von Ḱarmán solutions (solid lines).
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FIGURE 2. Effects of stretching parameterα1 > 0 on (a)F, (b)G, (c)H, (d)G′ are seen forα2 = 1; α3 = 1.0.

F (0) = H(0) = P (0) = 0, G(0) = 1,

F (∞) = G(∞) = 0 (19)

Numerical solution of Eqs. (15-19) is obtained by the bvp4c
package in Matlab and presented in Fig. (1) and Table I. The
unknown quantitiesF, G, H and−P are plotted against the
similarity variableη and exactly matched with a published
solution of von Ḱarmán problem given in F. M. White [12].
Similarly, the numerical data for the von Kármán problem
is presented in Table I. In this table, the numerical values of
F, F ′, G, G′,H,−P are calculated at different values ofη
and the data is exactly matched with published results of von
Kármán problem.

4. Results and discussion

The numerical solution of Eqs. (8-12) is presented here and
obtained by the R-K method coupled with a non-linear Shoot-
ing Method [13]. The scheme is developed by Cebeci and
Keller [14] and widely used for the solution of such problems.
The effects of all parameters are seen on the representatives
of velocity components and pressure distribution.

All the figures are obtained from the solution of Eqs. (8-
12) and the infinity boundary conditions are satisfied asymp-
totically. These facts are providing the validity and correct-

ness of the numerical solution. Here, we discussed the nu-
merical solutions of the final equations, and the consequences
of different parameters are seen on field and flow quantities.
However, we elaborated the basics and fundamentals of the
three dimensional von Ḱarmán type flow over a porous, rotat-
ing disk, which were combined with the effects of stretching
(shrinking) and injection (suction) velocities. In Figs. 2-6,
the velocity componentsF,G, H andG′ (gradients of tan-
gential velocity) are presented for different fixed values of
α1, α2, α3. It is observed thatF and H are decreased
with the increasing ofα1. The profiles in these graphs are
approached to zero as the similarity variable(η) is reach-
ing infinity. The unknown functionsF and H are nega-
tive at some points in the domain of similarity variablesη
that correspond to reverse flow, and these functions neces-
sarily obtained minimum values. Each profile in Fig. 2(a)
has a nadir, and the minimum values of the functionF are
such thatF (0.8163) = −0.2753, F (0.8163) = −0.4878,
F (0.7755) = −0.6893, F (0.7755) = 0.8810, F (0.8163) =
−1.0640, respectively. Note that the minima forF are varied
in the range[−1.0640 − 0.2753]. The largest negative ve-
locity is noted forα1 = 3 at η = 0.8163 which is−1.0640.
In Fig. 2(b), the velocity componentG is not changed with
α1, near the surface of the disk, and minor changes have been
seen in its profiles away from the disk’s surface. The profiles
of G are purely asymptotic in nature. It is also confirmed
from the figure thatF is attained its maximum value for small
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FIGURE 3. Effects of shrinking parameterα1 < 0 on (a) F, (b) G, (c) H, (d) G′ are seen forα2 = 1, α3 = 0.3

FIGURE 4. Effects of rotation parameterα2 > 0 on (a) F, (b) G, (c) H, (d) G′ are seen forα1 = 1, α3 = 0.3.
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FIGURE 5. Effects of injection parameterα3 > 0 on (a) F, (b) G, (c) H, (d) G′ are seen forα1 = 1, α2 = 1.

FIGURE 6. Effects of suction parameterα3 < 0 on (a) F, (b) G, (c) H, (d) G′ are seen forα1 = 1, α2 = 1.0.
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FIGURE 7. Effects of stretching (shrinking), rotation and injection (suction) parameters are shown on P.

values of the similarity variableη. Figures 2(a) and 2(c) rep-
resent thatF (η) and H(η) have obtained their minimum
values immediately near the surface of the disk. The pro-
files in these two figures are increased monotonically with
the increasing of the boundary layer thickness. However, this
behavior is opposite for the shrinking disk, and the facts are
shown in Figs. 3(a) and 3(d). The tangential velocityG(η)
and its derivative(G′(η)) are decreased (increased) with the
increasing ofα1, as shown in Figs. 3(b) and 3(d), but these
changes are very small as compared to the changes inF and
H due to the variation ofα1.

In Figs. 4(b) and 4(d) effects ofα2 > 0, andα2 < 0
are observed onG and G′, respectively. In both the fig-
ures G (G′) is increased with increasing (decreasing) of
α2 > 0 (α2 < 0) and decreased with the decreasing (in-
creasing) ofα2 < 0 andα2 > 0. There are two groups of
profiles in these two figures. In Fig. 4(b) and 4(d), the posi-
tive profiles are corresponding toα2 > 0 (α2 < 0) while the
negative profiles are associated withα2 < 0, α2 > 0. The
decay ofG andG′ is noted in the first branch in Figs. 4(b)
and 4(d) forα2 > 0 andα2 < 0, respectively. It is seen that
the profiles in one group are the reflection of others about the
similarity line, and each group is corresponding to the posi-
tive and negative values ofα2 > 0. In Figs. 5(a), 6(a),F is
increased with the increase ofα3 > 0 and decreased with the
decrease ofα3 < 0. Both F andH are attained their mini-

mum values near the surface of the disk. It is also noted that
H is converged to a constant number asymptotically, depend-
ing on the value ofα3. The tangential velocity component
G and its derivativeG′ are increased with the increasing of
α3 > 0. In Fig. 6(b), it is observed that the suction velocity
gives rise to the famous inflection point profiles forG′. In
the presence of suction, the axial velocity outside the bound-
ary layer is greater than for non-porous disk. Note that the
large injection velocity is opposing the inflow at the same
rate. The centrifugal weights due to the rotating disk have

FIGURE 8. The boundary layer is displaced with increas-
ing/decreasing of the flow domain.
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TABLE II. The thickness of boundary layer is determined from Figs. 2-6.

α1 ↓, α2 = 1.0, α3 = 0.3 δ̄0 α3 ↓, α1 = 1.0, α2 = 1.0 δ̄0

1.0 5.5782 0.1 5.4422

1.5 5.4442 0.2 5.5102

2.0 5.2891 0.3 5.5782

2.5 5.068 0.4 5.6463

3.0 4.932 0.5 5.6973

-1.0 6.4626 -0.1 5.2041

-1.5 6.6667 -0.2 5.1361

-2.0 6.9728 -0.3 5.0680

-2.5 7.1769 -0.4 5.000

-3.0 7.4830 -0.5 4.9320

α2 ↓, α1 = 1.0, α3 = 0.3 δ̄0

1.0 5.5782

1.5 5.5782

2.0 5.4592

2.5 5.4592

3.0 5.3571

also appeared which causes suction. It is also confirmed that
the fluid in the vicinity of the disk is rotating faster than the
disk. The decay of circumferential velocity is noted in each
case, and necessarily, it is the obvious contribution of viscous
diffusion.

In Fig. 7(a-d) effects ofα1 > 0, α1 < 0, α2 > 0, and
α3 > 0 are shown onP , respectively. In Fig. 7(b), the pro-
files of pressure distribution are risen to the maximum value
at η = 0.3265 and then decreased slowly and gradually to
zero forα1 = −3, −2.5, −2, −1.5, −1. In this figure, the
highest peak of the profile is observed for large negative val-
ues ofα1(the shrinking parameter). On the other hand, the
pressure distribution is dropped in Fig. 7(a) forα1 < 0 and
in Fig. 7(c) for α2 > 0. The profiles have nadir for large
values ofα1 < 0 andα2 > 0 at η = 0.3265. In both the
figures, the pressure drop is increased with the increasing of
these parameters. Similarly, in Fig. 7(d) pressure is plotted
againstη for different valuesα3 > 0. The pressure drop is
uniformly decreased with the increasing ofα3. The varia-
tion in the pressure drop due toα3 is significantly small as
it is compared to the changes in other parameters. In Fig. 8,
the boundary layer displacement is noted. For fixed values
of all parameters, abrupt changes are recorded in the veloc-
ity profiles, with the changes in boundary size. In this figure,
each profile is approached zero asymptotically. The veloc-
ity is increased with the increasing of boundary size, whereas
the boundary thickness is not changed. All the patterns in the
profiles are similar. It just shifts to the new position. The
depth of penetration of the axial velocity is increased with in-
creasing ofα1 > 0, α2 > 0, α3 < 0 and decreased with the
increasing ofα3 > 0.

4.1. The thickness of the boundary layer

The thickness of the boundary layer is evaluated numeri-
cally from Figs. 2, by considering the standard definition,
widely used in the literature. In Figs. 2, 4, and 6, the thick-
ness of the boundary layer decreased with the increasing of
α1 > 0, α2 > 0 and α3 < 0, respectively. Similarly, in
Figs. 3 and 5 the thickness of the boundary layer is increased
with the increasing ofα1 < 0 and α3 > 0, respectively.
Moreover, the boundary layer’s thickness is strictly varied
with the changes in parameter values.

The details of the boundary layer thickness are provided
in Table II, below. It is confirmed that the thickness of bound-
ary layer may be evaluated by considering the tangential ve-
locity component orG(η). Note that the current observations
are not similar and analogous to the classical von Kármán
problem. The thickness of the boundary layerδ0 is behaved
differently, contrary to the classical observations.

5. Conclusion

Other interesting features of the flow are explored and sum-
marized by calculating the torque (experienced by a disk)
when the disk has large but finite radiusR :

T = −2π

R∫

0

r2ρν

(
∂v

∂z

)

z=0

dr = −2πρν2(R)G′(δ)

The individual and combined effects of four different param-
eters have seen on rotating disk flows. The physical inter-
pretation of all these parameters depends upon their signs
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(either these are negative/ positive or zero, and their conse-
quent effects are seen on field quantities). The new observa-
tion is summarized in different figures of the discussion sec-
tion, more precisely, the classical observation of von Kármán
is the special case of this study. The current formulation also
unifies a set of models which correspond to suction/injection,

through rotating disk with stretching/ shrinking effects. Note
that the boundary layer is displaced to right (left) against the
parametersα1 > 0, α2 > 0, α3 > 0 (α1 < 0, α2 < 0, α3 <
0) and a special result has been plotted in Fig.8 and other
cases are not included here.
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