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The flow of a viscous fluid over an infinite rotating and
porous disk with stretching (shrinking) effects

Muhammad Bilath*, Dil Nawaz Khan Marwet, and Aamir AlP
@ Department of Mathematics, Faculty of Engineering Sciences, Islamia College Peshawar,
25120, Jamrod Road, University Campus, Peshawar, Khyber Pakhtunkhwa, Pakistan
b Department of Mathematics, COMSATS Institute of Information technology, Attock, Pakistan

Received 18 September 2018; accepted 11 September 2019

Viscous flow is maintained over a porous and rotating disk. The porous disk is stretched (shrunk) with the non-uniform velocity in the radial
direction. Note that the viscous fluid is injected (blown) normally with non-uniform velocity. The study is undertaken by considering the
combined and individual effects of injection (suction), stretching (shrinking), and rotation. The kinematics properties associated with the
disk are depending upon the radial coordinate. The governing partial differential equations (PDE’s) are simplified and transformed into a
new system of DE’s. The set of boundary value ODE's is solved with the help of a numerical method. The transformed equations (presented
over here) are new, and to the best of authors knowledge, the equations are not published in the literature. In particular cases, the modele
equations may reduce to the classical problems of rotating disk flows. The previous models of rotating disk flows with or without porosity
and stretching (shrinking) effects are summarized into a single model. For a fixed value of the governing parameters and different sizes
of “infinity”, no increase/decrease in the thickness of the boundary layer is seen, but the profiles of velocity components and pressure are
significantly changed with the different levels of “infinity”.

Keywords: Porous; rotating disk; stretching/shrinking effects.

DOI: https://doi.org/10.31349/RevMexFis.66.171

1. Introduction tained simple asymptotic solutions for large values of the suc-
tion parameter. Benton [5] improved Cochran’s solutions and
The flow of a fluid over rotating disk has many applicationssolved unsteady Navier Stokes equations for rotating flows.
in engineering and industry. Rotating bodies, centrifugalKuiken [6] analyzed the cases of strong injection and pre-
pumps, viscometers, rotors, fans, turbines, spinning disks aigented the boundary layer solution for this case. He found the
examples of rotating disk flows. The problems of the rotatinginner and outer solutions to the problem. Ackroyd [7] found
disk are formulated in terms of nonlinear PDE’s and ODE’s.an asymptotic type exponential series solution with negative
Exact solutions of these non-linear boundary value ODE's2xponents and showed that such solutions exhibit high accu-
and PDE’s are rare. Therefore, researchers are thinking abotgcy for all cases of suction and low values of blowing. He
other methods for accurate solutions to nonlinear problemsalso determined the radius of convergence for the asymptotic
Thus, the numerical methods are powerful tools for the apseries solution. Meanwhile, Crane [8] found a closed form
proximate solution of such problems. solution for the flow on the stretchable sheet, and Wang [9]
The history of rotating disk flow is very long, and von extends it t&3—D (closed form) models. Recently, Fang [10]
Karman [1] was the first one who studied flow over rotat- studied the effect of stretching on the flow over an annular
ing disk by mean of self-similar transformations. Later on, rotating disk and solved the modeled equations numerically.
the momentum integral transform method is used for the solNote that the fluid flow due to annular rotating disk are dis-
lution of proposed model equations. Interesting features ofussed in [11]. Further investigations of such flows have been
analysis are highlighted that the Navier Stokes equations aignsidered and analyzed over here.
transformed into a system of boundary values ODE’s and In this paper, we have studied the combined effects of
then solved by momentum integral transform method. Thestretching (shrinking) and injection (suction) velocities on
researchers discussed these remarkable results and retrievhd viscous fluid flow over a porous rotating and porous disk.
the important and interesting flow patterns as a special cas®emember that the stretching (shrinking) and injection (suc-
Later on, Cochran [2] extended the results of [1] and obtainedion) velocities are variables and depending upon the radial
a better accurate numerical solution to the vaidén prob-  coordinate. The rotating velocity of the porous disk is not
lem. Stuart [3] first discussed the effects of uniform suctionuniform and taken as a function of The governing PDE’s
(blowing) on fluid motion maintained over a porous rotat- are converted into boundary value ODE’s by employing new
ing disk. He obtained different results for the steady flowand unusual similarity transformations of vorai&an type,
by considering strong suction and do not provide reasonabland exact self similar equations are formed. The results of
solutions for injection cases. Gregg and Sparrow [4] solvedhis system of ODE’s are exactly matched with the classical
the mass and heat diffusion equations for viscous flow ovesimilarity solutions for particular cases of parameters value.
a rotating disk. In the modeled problem, they investigatedThese observations are recorded in different figures, which
the consequences of injection on the flow properties and olare presented in the results and discussion section. The new



172 MUHAMMAD BILAL, DIL NAWAZ KHAN MARWAT, AND AAMIR ALI

boundary value ODE’s, together with the boundary condi-wherep, v, andp are fluid density, kinematic viscosity, and
tion, are solved numerically. The modeled equations are expressure, respectively. The different known quantities are de-
actly matched with the classical model of voradan for  fined such that:U,.(r) = Uy/r, Uy(r) = Vo/r, Q(r) =
special choice of parameters value used in similarity trans¥, /r* whereU, > 0(< 0), Vy > 0(< 0), W, are stretching
formation. It is also confirmed that the boundary layer is dis-(shrinking), injection (suction), and rotation parameters, re-
placed for each set of parameters value,; the boundary spectively. Remember thdt), V,, andWW, have the dimen-
layer is remained the same, whereas the flow properties aston of L2 /T. Here, we assumed the new and unusual simi-
changed with changes in size of the domain (the similaritylarity transformations for the velocity components and pres-
variablen). These observations are noted in a figure given irsure. The new variables are formed because of the boundary

a forthcoming section. conditions of the modeled problem. Therefore, they encom-
passes all the features of the problem. Note that the variable
2. Formulation of the problem angular velocity is characterized by the radius of the disk. All

these information are incorporated in the similarity transfor-
In the current formulation, we have considered a cylindricalmations and finally we get the following form:
polar coordinate systerr, 6, z) for the flow problem such

that the _ve_locny vector has three c_omp_onems, ug, Uy). up = Ar't2e p(p), ug = Ar't2e G(n),

Further, it is assumed that the flow is axi symmet®c the

unknown quantities are independentfof Note thatu,., ug, w, = rVvA H(n), p(n) = prAr*2P(n),

andu, are velocity components in 6 andz directions, re-

spectively. The geometry of the problem is so chosen that in- n=0+r?(z— CO)\/Z (6)
1%

finite porous annular disk is lying in the plane= 0, rotates

about thez-axis, and enters/ exits fluid in thedirection. The

disk is also stretched (shrunk) in thedirection with proper ~ The new variables in Egs. (6) are further simplified by choos-
and the variable stretching (shrinking) velocity(r). The  ing numerical values for the parametefs= 0, c; = —1,
disk is also rotating with variable angular velocityr). Re- A = v and finally we get:

call that the non-uniform porous disk allows variable injec-

i i i i i 1% v 1%
tlon_(suctlon_) veI00|tyUz(r). _The governing equations of u = —F(n), up=-Gn), u,=-H(n),
motion consist of the continuity equation and three compo- r r

nents of momentum equations. For in compressible and axi V2 P

symmetric flow in cylindrical polar coordinates, the continu- p=pzPm), n=_+9¢ )

ity equation has the following form:

19(ruy) . ou By substituting the variables from E{7) into Eqgs.(1 — 4),

r Or 9z 0 (1) we obtained the following system of ODE’s:
r momentum equation is:
2 / I
R L (6=m)F +H =0 ®)
" =T por —F2—G?2—2P+ (5 —n)FF + (36 — 3n + H)F'
82ur 1 8ur azur Uy / 2 1"
tvlge Tra T2 2) © +(@ =P — 1+ —n*)F" =0 ©
6 momentum equation is: —((6 =B+ F))+ H)G
w2 O L +(1+ =) =0 (10)
or oz r ) ) )
B 82’&9 1% 8211497% (3) H(1+F—H)—(5—77)(3+F)H—P
Y\ Trar T2 12 +(1+(6—n)2)H" =0 (11)
z momentum equation is:
Ou, Qu,  10p where prime denotes the derivative concernjin@®y substi-
Ur g, TU G = 0z tuting the definitions from Eq(7) into Eq. (5), we have:
Pu, 10u, %u, 4
+v Or2 +; Or + 922 (4) F(0)=a1, G()=az, H(§) =az P(6)=0
the no-slip and ambient boundary conditions are obtained F(0) =0,G(c0) =0 (12)
from the physical geometry of the problem:
at z=0, u, =U.(r), ug =rQr), u, = U,(r), whereUp/v = a1 > 0 (< 0) Vp/v = a2 > 0 (< 0) and
D= Ou, =0, up =0 when z— oo 5) az = wp/v are stretching (shrinking), injection (suction),
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TABLE |. Numerical solution of von Erman problem in Eqgs. (13-17).

n F(n) F'(n) G(n) G'n) H(n) -P(n)
0.051 0.0246 0.4586 0.9686 -0.6137 -0.0013 -0.0493
0.4082 0.1371 0.1929 0.7579 -0.555 -0.0647 -0.2762
0.8163 0.1774 0.0245 0.5537 -0.4432 -0.1977 -0.3744
1.0204 0.1773 -0.0222 0.4691 -0.3863 -0.2704 -0.3912
1.1905 0.1712 -0.0478 0.4072 -0.3418 -0.3298 -0.3969
1.5986 0.1448 -0.0756 0.2872 -0.2497 -0.4596 -0.3951
2.0068 0.1131 -0.0766 0.2003 -0.1797 -0.5648 -0.3857
2.2109 0.0979 -0.0722 0.1665 -0.152 -0.6079 -0.3805
2.415 0.0837 -0.0664 0.138 -0.1285 -0.6449 -0.3754
2.7891 0.0611 -0.0543 0.0966 -0.0944 -0.6988 -0.3664
2.9932 0.0507 -0.0479 0.0789 -0.0798 -0.7216 -0.3617
3.1973 0.0416 -0.0418 0.0639 -0.0675 -0.7403 -0.3572
3.6054 0.0267 -0.0312 0.0405 -0.0484 -0.7679 -0.3483
4.0136 0.0158 -0.0229 0.0237 -0.0348 -0.785 -0.3396
4.2177 0.0114 -0.0196 0.0171 -0.0295 -0.7906 -0.3353
4.5918 0.0051 -0.0146 0.0076 -0.0218 -0.7966 -0.3275
4.7959 0.0023 -0.0124 0.0035 -0.0186 -0.7981 -0.3232

5 0 -0.0105 0 -0.0158 -0.7986 -0.3189

and rotation parameters, respectively. A subsidiary conditionvheren = /Qy/vz. By putting the above values into
is obtained from Eq. (8) by integrating it betwe&mnd oo Egs. (1-4), we get the following vonatman problem.
and gives:

H' = —2F, (15)

H(00) = a5 — / Fn)dn. F'= -G+ F’+ F'H, (16)
5 G = 2FG + HG, (17)

P =H"—HH. (18)

3. Comparision with von Karman'’s problem The boundary conditions in Eq. (5) are recovered for von
Karman problem given Egs. (13- 14) and we get:

The classical von Krman problem can be easily recovered by

adjusting the parameters of new variables defined in Eqgs. (6). !

Moreover, we assumed the following particular value for the

parameters:

C():CQ:(SZU():‘/O:O, A:QO (13)

Because of the above value for the parameters, the trans-

formations in Eq. (6) are exactly converted into the von r
Karman’'s variables defined for velocity components and 067
pressure: st

ur = Qo F(n), ug = rQo G(n), i
FIGURE 1. Comparison of the numerical solution (dotted lines) of
u. = /v H(n), p(n) = prQoP(n) (14) Egs. (14-18) with the von &rman solutions (solid lines).
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FIGURE 2. Effects of stretching parameter > 0 on (a)F, (b)G, (c)H, (d)G’ are seen fors = 1;a3 = 1.0.

ness of the numerical solution. Here, we discussed the nu-
merical solutions of the final equations, and the consequences
F(0)=H(0) = P(0)=0, G(0)=1, of different parameters are seen on field and flow guantities.
F(o0) = G(c0) =0 (19) However, we elaborated the basics and fundamentals of the
three dimensional von &man type flow over a porous, rotat-
Numerical solution of Egs. (15-19) is obtained by the bvp4cing disk, which were combined with the effects of stretching
package in Matlab and presented in Fig. (1) and Table I. Theshrinking) and injection (suction) velocities. In Figs. 2-6,
unknown quantities”, G, H and— P are plotted against the the velocity component®’, G, H and G’ (gradients of tan-
similarity variablen and exactly matched with a published gential velocity) are presented for different fixed values of
solution of von Karman problem given in F. M. White [12]. o, a5, a3. It is observed that” and H are decreased
Similarly, the numerical data for the vonakman problem  with the increasing ofy;. The profiles in these graphs are
is presented in Table I. In this table, the numerical values ohpproached to zero as the similarity variablg is reach-
FF',G,G', H,—P are calculated at different values 9f  ing infinity. The unknown functiong” and H are nega-
and the data is exactly matched with published results of vofive at some points in the domain of similarity variabkes

Karman problem. that correspond to reverse flow, and these functions neces-
sarily obtained minimum values. Each profile in Fig. 2(a)
4. Results and discussion has a nadir, and the minimum values of the functiomare

such thatF'(0.8163) = —0.2753, F(0.8163) = —0.4878,

The numerical solution of Egs. (8-12) is presented here and'(0.7755) = —0.6893, F'(0.7755) = 0.8810, F'(0.8163) =
obtained by the R-K method coupled with a non-linear Shoot—1.0640, respectively. Note that the minima fétrare varied
ing Method [13]. The scheme is developed by Cebeci andn the rangg—1.0640 — 0.2753]. The largest negative ve-
Keller [14] and widely used for the solution of such problems.locity is noted fora; = 3 atn = 0.8163 which is —1.0640.
The effects of all parameters are seen on the representatives Fig. 2(b), the velocity componerdt is not changed with
of velocity components and pressure distribution. a1, near the surface of the disk, and minor changes have been

All the figures are obtained from the solution of Egs. (8-seen in its profiles away from the disk’s surface. The profiles
12) and the infinity boundary conditions are satisfied asympef G are purely asymptotic in nature. It is also confirmed
totically. These facts are providing the validity and correct-from the figure thaf” is attained its maximum value for small
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FIGURE 4. Effects of rotation parameter, > 0 on (a) F, (b) G, (c) H, (d) Gare seen forr; = 1, a3 = 0.3.
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FIGURE 6. Effects of suction parameter; < 0 on (a) F, (b) G, (c) H, (d) Gare seen fotv; = 1, a2 = 1.0.
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FIGURE 7. Effects of stretching (shrinking), rotation and injection (suction) parameters are shown on P.

values of the similarity variablg. Figures 2(a) and 2(c) rep- mum values near the surface of the disk. It is also noted that
resent thatF'(n) and H(n) have obtained their minimum H is converged to a constant number asymptotically, depend-
values immediately near the surface of the disk. The proing on the value ofv3. The tangential velocity component
files in these two figures are increased monotonically withG' and its derivatives’ are increased with the increasing of
the increasing of the boundary layer thickness. However, thisis > 0. In Fig. 6(b), it is observed that the suction velocity
behavior is opposite for the shrinking disk, and the facts argives rise to the famous inflection point profiles 16f. In
shown in Figs. 3(a) and 3(d). The tangential velocityy)  the presence of suction, the axial velocity outside the bound-
and its derivativd G’ (n)) are decreased (increased) with theary layer is greater than for non-porous disk. Note that the
increasing ofxy, as shown in Figs. 3(b) and 3(d), but theselarge injection velocity is opposing the inflow at the same
changes are very small as compared to the changEsaimd  rate. The centrifugal weights due to the rotating disk have
H due to the variation ofy;. i
In Figs. 4(b) and 4(d) effects af, > 0, andasy < 0
are observed ori: and G’, respectively. In both the fig-
ures G (G’) is increased with increasing (decreasing) of 06
as > 0 (a2 < 0) and decreased with the decreasing (in-
creasing) ofas < 0 andas > 0. There are two groups of
profiles in these two figures. In Fig. 4(b) and 4(d), the posi-
tive profiles are corresponding tg > 0 (as < 0) while the
negative profiles are associated with < 0, as > 0. The

0.8

(n)
R

decay ofG and G’ is noted in the first branch in Figs. 4(b) BEa

and 4(d) forgg > 0anday <0, respect_ively. Itis seen that o4 T

the profiles in one group are the reflection of others about the ap =100y =100y =03

similarity line, and each group is corresponding to the posi- %1 2 3 4 s s 7 8 9 1w

tive and negative values of, > 0. In Figs. 5(a), 6(a)F is i
increased with the increase®f > 0 and decreased with the Ficure 8. The boundary layer is displaced with increas-
decrease ofi3 < 0. Both F' and H are attained their mini- ing/decreasing of the flow domain.
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TABLE Il. The thickness of boundary layer is determined from Figs. 2-6.

a1 |,a2 =1.0,a3 =0.3 5o as |,a1 =1.0,02 = 1.0 5o
1.0 5.5782 0.1 5.4422
1.5 5.4442 0.2 5.5102
2.0 5.2891 0.3 5.5782
25 5.068 0.4 5.6463
3.0 4.932 0.5 5.6973
-1.0 6.4626 0.1 5.2041
-15 6.6667 -0.2 5.1361
-2.0 6.9728 0.3 5.0680
2.5 7.1769 -0.4 5.000
-3.0 7.4830 -0.5 4.9320
asz |,a; =1.0,a3 =0.3 5o
1.0 5.5782
1.5 5.5782
2.0 5.4592
2.5 5.4592
3.0 5.3571

also appeared which causes suction. It is also confirmed thdtl. The thickness of the boundary layer
the fluid in the vicinity of the disk is rotating faster than the _ . _
disk. The decay of circumferential velocity is noted in eachThe thickness of the boundary layer is evaluated numeri-

case, and necessarily, it is the obvious contribution of viscousally from Figs. 2, by considering the standard definition,
diffusion. widely used in the literature. In Figs. 2, 4, and 6, the thick-

ness of the boundary layer decreased with the increasing of
a; > 0,a2 > 0 andas < 0, respectively. Similarly, in

. . _ Figs. 3 and 5 the thickness of the boundary layer is increased
o > 0 are shown orP, respectively. In Fig. 7(b), the pro with the increasing ofv; < 0 andas > 0, respectively.

files of pressure distribution are risen to the maximum valu o . ) .
oreover, the boundary layer’s thickness is strictly varied
atn = 0.3265 and then decreased slowly and gradually to . .
with the changes in parameter values.

zero fora; = -3, —2.5, =2, —1.5, —1. In this figure, the : . .
highest peak of the profile is observed for large negative val- The details of the boundary layer thickness are provided

ues ofas (the shrinking parameter). On the other hand the Table I, below. Itis confirmed that the thickness of bound-

pressure distribution is dropped in Fig. 7(a) for < 0 and ary layer may be evaluated by considering the tangent_ial ve-
in Fig. 7(c) for as > 0. The profiles have nadir for large locity component oti(n). Note that the curreptobsgrvatlons
values ofa; < 0 andas > 0 atn — 0.3265. In both the are not similar qnd analogous to the classm:_all varrin
figures, the pressure drop is increased with the increasing oblem. The thickness of the boundary laygis behaved

these parameters. Similarly, in Fig. 7(d) pressure is plotte ifferently, contrary to the classical observations.
againstn for different valuesys > 0. The pressure drop is

uniformly decreased with the increasing ®f. The varia- 5 conclusion

tion in the pressure drop due tg; is significantly small as

it is compared to the changes in other parameters. In Fig. §ther interesting features of the flow are explored and sum-

the boundary layer displacement is noted. For f_ixed valuegyarized by calculating the torque (experienced by a disk)
of all parameters, abrupt changes are recorded in the velogznen the disk has large but finite radifis

ity profiles, with the changes in boundary size. In this figure,

each profile is approached zero asymptotically. The veloc-

ity is increased with the increasing of boundary size, whereas 7 — _Qﬂ/ﬁpy () dr = —2mpv?(R)G'(9)

the boundary thickness is not changed. All the patterns in the 9z /) .—o

profiles are similar. It just shifts to the new position. The

depth of penetration of the axial velocity is increased with in-The individual and combined effects of four different param-
creasing ofv; > 0,z > 0,3 < 0 and decreased with the eters have seen on rotating disk flows. The physical inter-
increasing ofvg > 0. pretation of all these parameters depends upon their signs

In Fig. 7(a-d) effects ofv; > 0,07 < 0, g > 0, and

0
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(either these are negative/ positive or zero, and their conseéhrough rotating disk with stretching/ shrinking effects. Note
guent effects are seen on field quantities). The new observéhat the boundary layer is displaced to right (left) against the
tion is summarized in different figures of the discussion secparametersy; > 0, a2 > 0,a3 > 0 (a1 < 0,0 < 0,3 <
tion, more precisely, the classical observation of vamt&n  0) and a special result has been plotted in Rgand other

is the special case of this study. The current formulation als@ases are not included here.

unifies a set of models which correspond to suction/injection,
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