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The role played by non-inertial frames in physics is one of the most interesting subjects that we can study when dealing with a physical
theory. This is especially true for special relativity and the Dirac theory In the case of special relativity, a problem with the concept of rigidity
emerged as soon as Max Born gave a reasonable definition of rigid motion: the Herglotz-Noether theorem imposes a strong restriction on
the possible rigid motions. In this paper, the equivalence of this theorem with another one that is formulated with the help of Frenet-Serret
formalism is proved, showing the connection between the rigid motion and the curvatures of the observer’s trajectory in spacetime. Besides,
the Dirac equation in the Frenet-Serret frame for an arbitrary observer is obtained and applied to the rotating observers. The solution in the
rotating frame is given in terms of that of an inertial one.
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1. Introduction of RM is the idea that two “points” move in such a way that
their distance is kept constant by means of a choreographed
Reference frames that are constructed out of the worldlin§0tion. But even in this case, relativity is problematic. First,
of a particular observer are of great importance in both gen?e have the problem with the measurement of time. The fact
eral and special relativity (SR). They play the role of the ob-that in an RM the distance is kept constant does not mean
server's rest frame and can sometimes even simplify the fielfhat the velocity is the same. Think, for example, of two ob-
equations. In general, these frames are taken to be orthondi€rvers that describe a circular motion with the same angular
mal, and one of their vectors is chosen to coincide with thevelocity. If their distance to the center of the motion is not the
observersi-velocity. A well-known procedure to obtain a S@Me, their velocity \_/viII be diffe_rent_. In this case, we cannot
frame that rotates only in the plane formed by theelocity be sure that they_ WI!| agree with tlme measur_ements. The
and thed-acceleration is the so-called Fermi-Walker trans-S€cond problem lies in the fact thatAfis at rest with respect
port [1]. In some sense, this frame is the closest we can gdf B> andC'is at rest with respect td, in general, we cannot
to an inertial frame that follows the observer. Nonethelessguarantee that’ is at rest with respect t8. Nevertheles, a
there exists another frame that also possesses interesting fég§asonable definition of RM was given by Born [12] and will
tures, namely, the Frenet-Serret frani@]. This frame not € considered here.
only follows the observer but also gives important informa-  Although reasonable, Born rigidity imposes a strong re-
tion about the observer's worldline. Because of these propstriction on the possible motions. This restriction is described
erties, it has been used to understand many different typdsy the Herglotz-Noether theorem (HNT) [13, 14]. Although
of systems [4-11]. For example, in Refs. [6,9, 10], Béhi we can state this theorem in terms of thacceleration and
al use the Frenet-Serret tetrads to analyze circular orbits inotation tensors [15], it is possible to have a better intuition
black hole spacetimes and to study centripetal acceleratioof its geometrical properties by using the curvatures of the
and centrifugal forces in general relativity. Another interest-observer’s worldline, as is done in Ref. [16]. In this refer-
ing example is Ref. [11], where lyer and Vishveshwara studyence, a similar theorem based on the Serret-Frenet formalism
the Frenet-Serret description of gyroscopic precession. Bewas proved. The main purpose of this paper is to prove the
cause of the importance of the Frenet-Serret formalism, wequivalence of these two theorems (Sec. 3.1) and apply the
will use it in this paper to deal with the rigid motion problem. Frenet-Serret formalism to the Dirac equation. In doing so,
Rigidity is an idea that is present in practically all physi- W€ write the Frenet-Serret tetrad (FST) in the Ioc'al coorqli-
cal theories: we use rigid rods as a standard length, the laf}ate System of a general observer (Sec. 2.2), obtain the Dirac
oratory frame is always thought of as a rigid frame, etceteraduation in this frame (Sec. 4) and solve it for the case of ro-
The situation in SR is not different. However, unlike what f&ting observers ( Sec. 4.1). Finally, we present a summary
happens in Newtonian mechanics, the concept of rigidity irPf the results in Sec. 5.
SR is not that simple. The notion of a rigid body is incon-  We use the following notations and conventions. A Carte-
sistent with the fact that no signal can propagate with a speesian coordinate system that is homogeneous and isotropic
greater than that of light. To avoid this problem, one can workand in which Newton’s laws are valid are represented by
with the concept of rigid motion (RM). The ordinary concept z# = (t,z,y,2), wherey = 0,1,2,3. A tetrad field will
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be denoted by,, whose components in the Cartesian basis 2 = k16080, + oL (kl(%) + kgé?z))

O, = 0/0zt areel, wherea = (0),(1),(2),(3). When

convenient, the coordinate bagls will be represented as a + 552) (k?)(;?g) _ k25?1)) _ k3523)5€2)’ (4)
coordinate tetrad in the formy, = 5(([‘)@ or €y = O

Latin letters in the middle of the alphabet stand for spatialyhere theks are called curvatures (sometimiesand/; are
indices only,i.e., i,j,k,... = (1),(2),(3). The dual ba- 3|50 called the first and second torsions, respectively)efnd

sis of g, is denoted bydz". The metric tensor) takes  are the components of the FST written in an inertial frame
the form of a diagonal matrix when written in the basis with Cartesian coordinatés, =, v, z).
9. To be more precise, the elementsipre g = 1, To study Born rigidity, we may use the local coordinate

M1 = 122 = N33 = —1. The metric components in a general system(, €, x, ¢), which, is related ta" = (¢, z,y, z) by
tetrad basis also have the same values, 7)) = 1 and [1,16,17]

Ny = Ne)@2) = NE)3) = —1. The metricy,, is used

to raise and lower coordinate indices, which are denoted by 2 (1,6, x, C) = (1) + riek (1) (5)
. . . bl b bl n /] b)

Greek letters, while),; is used to raise and lower tangent

space indices. In this paper, we use 1 andh = 1. wherez*(7) is the worldline of an observer, which is at

the origin of the new coordinate system, ard= (¢, x, ¢).

2. Accelerated Frames The coordinate time corresponds to this observer’s proper
time, while eg.‘ are the Cartesian components of the vector
2.1. Fermi-Walker Transport field constructed out of this observer's FST (by means of par-

o ) ) ) _ allel transport). It should be clear that the inertial observers
The main idea behind the Fermi-Walker transport is to elimse the coordinates” = (¢, x,y, z), while the accelerated

inate as many rotations as possible while the transportegnes use: = (7, ¢, x, ¢) (note the overbar).
frame follows an observer’s worldline. In general, this frame  gjncer? — 2 (t,z,y, 2), we can use Eqg. (5) to obtain
b b K 1 .

will not be inertial and will possess a rotation in the plane,q framee, and the coframé® (the dual basis) in the coor-
formed by thet-velocity u and thed-acceleratiora. To un-  jinate system:”. Differentiating Eq. (5) with respect t,
derstand this idea, think of the non-relativistic case. Givenye find that

an arbitrary accelerated observer, which rest frame would ap-
proach an inertial frame the most? Of course, it would be a 9. — @8 n @a n @8 . %8
frame that does not rotate with respect to an inertial frame at ¢ 193 K e T )
all, but whose origin is accelerated in the same way as the o z y . _
observer. In relativity, the situation is more involved because = e +e(yda T e 0y + ey = ey (6)
the variation ofu forces the frame to rotate in the mentioned Doing the same thing fad. , 9., andd, , we arrive at
plane. Therefore, it is natural to demand no rotation other x 6 i
than that.

A general rotation can be expressed as (sag, p. 174 e) = f(7:6) [37 + ka(7) (x0¢ — £0y)

of Ref. [1])
&l _ g, " + ks(7) (COx = x90)], ey = D,
-
with e@) = Oy, €@ =0¢ [f(1,8) =1/(1+E&k(7)), (7)
P = ghu? — a’ut + QM where we have also used Egs. (3)-(4) to obtaijy. On the
other hand, the dual ba&igcoframe) is
QM = 1, QP (2)

. 0O = dr/f(r,€), 0V = —xks(r)dr + dE,
where(2z are the components of what we might call the
angular velocity vector is the proper time, anel, s,,., is the 0@ = [€ko(T) — Cka(7)] dT + dy,
Levi-Civita tensor §£y,25 = +1). The Fermi-Walker trans- 3) _
port corresponds to the caQg = 0 andeé‘o) = ut, O = xhs(r)dr +dC. (8)

Sinceds? = 1,0 ® 6°, we see that the metric in the new

2.2. Frenet-Serret Tetrad .
coordinates becomes

Given the observer’s worldling* (7), wherer is its proper ) ) ) o o o1 12
time, we can construct a tetrad basis attached to the observels” = [(1+ k1£)? — (k3 + k3)x* — (k26 — k3¢)?] dr

by using the formulas
+ 2y (xdg — €dx) + ks (Cx — xdQ) | dr
dx? de *

‘o “g @y R @ ag-ae -, ©
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where say that the system is a rigid body. In fact, this is just an ide-
) ) 9. o ) alized motio, where the forces acting on the particles are
(L +k18)” — (k3 + ky)x” — (k2§ — k3¢)” > 0. (10)  gych that the strain always vanishes. In this context, a rigid
body would be just an approximation of a body whose mo-
tion is very close to an RM regardless of the force acting on
it. The problem in SR is that measurements of distance are
not invariant, which means that they depend on the reference
wh, = ese,” (@;eﬁ 4 Fﬁpec’?) ’ (11) frame used. . .
To solve this problem, we can assume that the dis-
where ¢} and ¢?, are the components of, and ¢ in  tance between two infinitesimally separated parts of the body
the coordinate base8; = (9, d¢, Oy, Oc) and da” = should remain constant in the rest frame of these parts. This

(dr, d¢, dy, d¢), respectively. The objedfgf, denotes the 1S k_nown as the “Born rigidity” [12], which can be formally
Christoffel symbols of the metric (9). After a straightforward, defined as follows:

The affine connection coefficients in the tetrad field
denoted byv9 ., do not vanish. As is well known, these co-
efficients can be obtained through the relation

but tedious' Ca|cu|ati0n' we f|nd that Deﬁnition 31 Let u“ be the4'Ve|OCity f|e|d associated W|th
the motion of the system,,,, the Minkowski metric in an ar-
w(0)(0)(1) = —w(1)(0)(0) = S (7, E)k1(T), bitrary coordinate system, antl,, = wu,u, — g, the re-

striction of —g,,,, to u. The motion is said to be rigid if
wy0)2) = ~we)0)1) = (7, §)ka2(7), u g

wWe)0)@3) = ~wE o)) = f(1 k(). (12) Luhyy = =(Vouu + V)
Note from Egs. (12) and (7) that, along the worldline of the + uu, Vou, + uu,Vau, =0, (13)
observern (£ = x = ¢ = 0), w%,. is given solely by the ) _ o
curvatures of the curve. whereL,h,, is the Lie derivative ofh,,, and V,u, stand
One of the advantages of using the FST lies on the folfor the components of the covariant derivative.
lowing results [3]: This is the same as saying that the strain rate tensor van-

_ ) ishes [15, 21] and that Killing motions are rigid [22].
1. The cu_rvat,ures determ|r_1e the observer’s worldline up  \y/hile the RM in Newtonian spacetime has six degrees of
to a Poincag transformation. freedom, three translations, and three rotations, which means

2. Whenk; vanishes, the curve lies inside a hyperplane (athat we can give any trajectory we want to a particular point

three-dimensional volume in Minkowski spacetime). ©f the body, Born rigidity possesses only three degrees and,
In this case, thé-velocity is inside a plane. therefore, does not allow for an arbitrary motion [13,14]. The
possible motions are given by the HNT, which will be stated
3. Whenk; vanishes, the curve lies in a plar$evelocity  in the next section.
inside a line).

4. Fork, = 0, the world line is a straight-line (constant 3.1. Possible motions

3-velocity).
Y) The HNT restricts the RMs to the following class [15]:

It is worth noting that the FST will be Fermi-Walker Theorem 3.1The only possible RMs in the sense of Born
transported only if the observer’s worldline Has= k3 = 0. rigidity are those withQ;; = 0 or (d/dr)a’ = 0 and
This suggests a relation between these curvatures and the |q.§$/d7—)Qij = 0.
term in Eq. (2), that isfk; and ks are somehow related to yging the Frenet-Serret formalism, it was also proved the
spatial rotations with respect to the Fermi-Walker transportegy|iowing theorem [16].

frame. This relation will be presented in Sec. 3.1 Theorem 3.2The only possible RMs in the sense of Born

rigidity are those with arbitraryk; and ks = k3 = 0 or
3. Rigid Motion (d/dr)ky = (d/dT)ke = (d/d7)ks = 0.
Of course, these theorems must be equivalent. To prove
Despite the faCt that Einstein and Born Used the eXpreSSiOﬂheir equiva|ency, |et us assume that the Obse/m/ases a

“rigid body” in their work [12, 19], it is well known now  FST ¢, which is given by Egs. (3) and (4). In this basis,
that the concept of a rigid body in SR is problemdticin  Eq. (1) can be written as

fact, even in classical mechanics, this concept is also prob-

lematic because there is no medium where a pulse can prop- def’ & bk 14
agate with a speed greater than the finite value of the speed ar Mmio) RRUATE (14)

of sound. But, in classical mechanics, we can at least have

a totally satisfactory definition of an RM by assuming that awhere we have used" = ki e(;, and

system of particles describes an RM when the distance be- 4

tween any pair of particles remains constant. This is not to oV, = e(o)aeieiyeaﬂﬂ”Qﬁ. (15)
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By takingi = (1), (2) in Eq. (14) and using Egs. (3), and (4), with
we arrive at 1 o (20)
Ty = -wauw |77, 20
R=0%, o =0 k=0%. (@6 s
] ] o wherevy# = e~y“, ek are the components ef, in the global
Itis clear that?;; in the FST has only two nonvanishing com- jnertial frameé,,, and they®s are the gamma matrices. When

b i . . . .
ponents. Moreover, we hawe= a9, = a’e, = kie), -8, convenient, we will take the matrices as the standard Dirac
a® = (0,k1,0,0). From this we see that ifk; /dr vanishes, matrices:

then so doeda’/dr. Hence, the theorem 3.2 is equivalent

to 3.1. o_ (L 0 i_( 0 g
- - : 7 o 1) 7 —o; 0 )7
To see thak, andks are nothing but spatial rotations, we J
can use the identities (valid fdet(ef,) = 1) . < 0 1 ) . ( 0 —i
W=411 0 /) @@=\ o )
ey = e@acueeve™™, (17 L
¢l = eoae@uemne™” (18) 7@ = ( 0 -1 ) ' (1)
in Eq. (15) to obtain the relatiorfs(z)l — Q) andQ(3)2 — From Egs. (12) and (20), we discover that
Q(1y. Comparing these relations with Eq. (16), we conclude 1 o
thatk, = (3) andks = €(1). This means that the curvature Ie= 2f(kw( )y
ko is associated with a rotation about the direction defined by
e(3) while k3 is related to a rotation about;). For more de- Eory W2 L foan(2)4(3) ) 50) 22
tails about the geometrical meaning of these curvatures, see YT A ey ¢ (22)
Refs. [6,9-11] and references therein. - ; :
’ . titut f Egs. (22 7) into Eq. (1
The advantage of using the theorem 3.2 rather than 3.§ubs ftution of Egs. (22) and (7) into Eq. (19) gives

lies on the geometrical intuition that it gives. For instance, if {7(0)f [0r + ko (XD — £0y) + ks (COy — xD¢)]
you wish to know whether an observer can be part of a Born

RM, you can use the results shown at the end of Sec. 2.2.: If
the observer’s worldline lies in a plane (in terms of space, its
trajectory would be a straight line), then it can be seen as part
of an RM (k2 andks vanish in this case). On the other hand,

if its worldline is not inside a plane and its first curvatuke)( where we have multiplied it by-i, and f = 1/(1 + k1 ()

'S not constant, then it cannot be.part of an RM. In addltlon’Note that this equation holds for any representation of the
one can use this approach to easily construct RMs, as done B}s\mma matrices
REfA[m]' | f rigid ob h Rind| b In Sec. 3.1, we saw that the curvatudiesand ks are

S examples ot Tigid ODSErvers we nave KINGIET 0b-q ey 1o space rotations of the frame arogadndog, re-

servers, (a rigid rod), whose torsions vanish, and the rOtatingpectively If convenient, one may use= ,/—a"a, = k
ones (“rigid disk” rotating with a constant angular velocity), Q1) = ks .andQ( )=k io recast Eq. (23) as " b
1) — 3, 3) — )

whose curvatures are all constant. The worldline of a Rindler
observer lies in a plane, while the one of a rotating observer © 1. . G 7
lies in a hyperplane. {’V f\Or+5d-a—i2-J

1
+ 08 + 7@, + 4P + §f<k17(1)

+ kgy Oy MA 2 4 kgfy(o)'y(z)’y(g)) + im}\If =0, (23)

4. Dirac equation #9000 4900, +9P0c +imfw =0, (24)
Quantum mechanics in noninertial frames has been extethereJ = L+ 5, @ = af, @ = a¢ + a® g + a®)(
sively studied by many authors [23-28]. The mostinterestind®’ = 7?7)), @ = Q)€ + Q3)¢, and the triad, X, ¢)
cases studied so far are the Rindler and the rigidly-rotatinge the versions af¢, 9, d¢ in the ordinary vector formal-
ones. With respect to the latter case, one can find system&M- The orbital and spin angular momenta are defined as
that can behave as rigid disks, such as rapidly-rotating neul = —iX x 9/0X, whereX = ££ + xx + (¢, and
tron stars [27]. In this section, we use the Frenet-Serret for- o R A .
malism to write the Dirac equation in a arbitrary accelerated §=(i/2) (7(2)7(3)5 +9 P+ 7(1)7(2)<)
frame; then, we apply the result to a rotating motion that gen- -

. : g 0
eralizes to some extent those that are generally used in the =(1/2) ( 0 & ) ;
literature.

In a noninertial frame, the Dirac equation can be writtenthe gamma matrices are given by Eq. (21). The Dirac equa-
as tion written in this form is clearly compatible with Egs. (11)-

" (0p+Tu) ¥ —mW¥ =0, (19)  (14)in Ref. [17].
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4.1. Dirac equation in a rotating frame ds® = [(14 NQ%re€)? — NQ* (& + ?)] dr?

When writing the Dirac equation in a rotating frame, one uses +202Q(xd€ — Edx)dr — d€? — dx* — dz°. (34)
a frame that is adapted to an observer at the origin of the in-

ertial frame(z, y, = = 0). As a result, the observer's proper Inturn, using Eq. (27) in Eq. (22), we find that

time coincides with that of the inertial observers. In areal ex- 1

periment, however, that is not always possible. For instance, T, = §Q)\2f (Qrw(o),y(l) + 7(1)7(2)) 5. (35)
if we perform an experiment on the surface of the Earth and

take into account its rotation, we would not be able to use &g, we have

clock at the center of rotation. Here we write the Dirac equa-

tion in this more realistic situation. b 2 { (1) (0),,(1) (2)}
Iy=-0Q Q .
Let us take as the observethe one with coordinates TS AT [ Broy™ 4y (36)
=t,, x> =rgcosh, x> =rgsinb, Using Egs. (33) and (36) in Eqg. (19), we finally obtain

@,
3 =0, (0=Qt,+0). (25)

{7(0) [f0r + QN (x0¢ — €0,)] +~M e
Its FST is given by

1
2 3) 2002 1)
e(0) = Mgy — QroAsin0é 1y + QroA cos 0éz), 70 +770: + QQ/\ f<Qr0’y

e(1) = — cosfé(y) — sin 0é oy, _’_7(0)7(1)7(2)) n im}\lf -0 (37)
e@2) = —SoAé(g) + Asiné() — Acos 0é(y),
e@) = €@3), (26) 4.1.1. Solution

ki = QProA?, ky = QA% k3 =0, (27) " To obtain the solution of Eq. (37) in terms of the solution in

the inertial frame, we tak&, = = so that the frames, and
¢, coincide af) — 0. Furthermore, we also use the defini-
tions
t = X1 — Qrox), 28

( 0X) (8) e B, b=Ar/2. (38)
x = (rg — &) cosf + xAsin#, (29) V1= p?

y = (ro — §)sind — xAcosb, (30) The components of, in the inertial frame, = 69,
z2=C(, 0=QN +0,, (31) correspond to the Lorentz matrix given by the relatign=
eld, = ALé,. We can read off the values df% from
where we have uset), = A7 in Eq. (28) and in the angle Egs. (26):
f. From Eq. (10), we see that the new coordinate system is

restricted by A%y = )‘5?0) (5,50) + Qrp sin 0521) — Qrg cos 9552))
(14 Q2M276)% > Q2N (2 + €2). (32)

where) = 1/,/1 — Q2rZ. Substitution of Egs. (25)-(27) in
Eq. (5) results in

— 3ty (cos 03} + sin03(” )
Note that, since the curvatures of the worldline of the ob-

servern are constant, the set of observers characterized by + A0y (Qroééo) + sin 96§1) — cos 66152))
X, and¢ constant, the rotating ones, corresponds to an RM. 5
Note also that, unlike what was done in Ref. [23], these co- + 5€3)5§ ), (39)

ordinates are adapted to an observer that is not necessarily at

z =y = z = 0: the new coordinate time corresponds to  This Lorentz transformation can be split into two interesting

the proper time of the observer whose worldline is given byones:

Eqg. (25). That is the reason why we have the Lorentz factor

X in the expressions above. The case where this observer isAS , = 80,3, + 6%, (COS 200, + Sin?sf)(;éz))

at the origin of the inertial frame is obtained by taking the

limit? ro — 0 in Egs. (26)-(31). + 0y (= sin200{" + cos 2087 ) + d, 0", (40)
Using Eq. (27), we see that Egs. (7) and (9) become

e0) = [Or + QN (x0¢ — £0y) , eqry = O,
a 0 2 a 3
ey = Oy ey — Dor = 11+ O2N2rog),  (33) ol (057 4 207) 07 (41)

A%, = 3oy (A1 + N0 ) + 00"
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whereA? = Ag _AS,. Together, they induce the transforma- 5. Summary
tion U = SV, whereV is the solution of the Dirac equation
in the inertial frame.

Following the standard procedure for computifigsee,
e.g, p. 70 of Ref. [29]), we find that

S=A (cos ¢ — sin (j)»y(l),y(?))

— 2 (3097 @90 — cos gy 4@,

In this paper, we have seen that the HNT can be formulated in
terms of the Frenet-Serret curvatures, which allowed us to use
the FST to deal with the Born rigidity. This approach turned
out to be very fruitful because of the geometrical meaning of
the curvatures of the observer’s worldline.

It was shown in Sec. 3.1. that the curvatures (torsions)
ko andks correspond to the rotation ;) and§2;), respec-
tively. These relations helped us to see the connection be-
tween the rotation of the FST with respect to a Fermi-Walker
transported frame and the geometrical properties of the ob-
server’s motion.

We obtained the Dirac equation in the rest frame of a
particle that describes an arbitrary motion using the Frenet-
i i Serret formalism. We have seen that the final expression can
The solution of Eq. (37) isk = SV with ¥ satisfying  be easily converted to physical parameters such as angular
the Dirac equatlon in a global inertial frame of reference,and spin momenta. The resultant equation was the same as
ie, i50,¥ — m¥ = 0, where4* = é#~® andd, =  that of Ref. [L7]. As an application, we wrote this equation

(42)
wherels = (A +1)!/2/y/2. The inverse transformation is
S = At <c0s¢ + sin ¢7(1)7(2))

+ A (sm ¢y Oy 1) — cos ¢y (@4 )) . (43)

(04, Oy 8 , 0-). Note that they*s are the ordinary gamma for the case of rotating observers and found its solution in

matrices andg =4

.

()
N

terms of the solution in an inertial frame.

For a generalization of the Frenet formulae, see Sec. 2.7 of [2]10.

The dual basis is such th@*, e;) = . For more details, see
Ref. [18].

Seege.g, p. 132 of Ref. [20].

To understand the difference between RM and rigid body, im-

age that two dancers looking at the audience run to their right a1 2.

the same speed for some seconds. Their distance was kept ¢
stant and, if they knew what to do before the movement starts,
they would not have to interact with each other to ensure this:
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