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The role played by non-inertial frames in physics is one of the most interesting subjects that we can study when dealing with a physical
theory. This is especially true for special relativity and the Dirac theory In the case of special relativity, a problem with the concept of rigidity
emerged as soon as Max Born gave a reasonable definition of rigid motion: the Herglotz-Noether theorem imposes a strong restriction on
the possible rigid motions. In this paper, the equivalence of this theorem with another one that is formulated with the help of Frenet-Serret
formalism is proved, showing the connection between the rigid motion and the curvatures of the observer’s trajectory in spacetime. Besides,
the Dirac equation in the Frenet-Serret frame for an arbitrary observer is obtained and applied to the rotating observers. The solution in the
rotating frame is given in terms of that of an inertial one.
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1. Introduction

Reference frames that are constructed out of the worldline
of a particular observer are of great importance in both gen-
eral and special relativity (SR). They play the role of the ob-
server’s rest frame and can sometimes even simplify the field
equations. In general, these frames are taken to be orthonor-
mal, and one of their vectors is chosen to coincide with the
observer’s4-velocity. A well-known procedure to obtain a
frame that rotates only in the plane formed by the4-velocity
and the4-acceleration is the so-called Fermi-Walker trans-
port [1]. In some sense, this frame is the closest we can get
to an inertial frame that follows the observer. Nonetheless,
there exists another frame that also possesses interesting fea-
tures, namely, the Frenet-Serret framei [3]. This frame not
only follows the observer but also gives important informa-
tion about the observer’s worldline. Because of these prop-
erties, it has been used to understand many different types
of systems [4–11]. For example, in Refs. [6, 9, 10], Biniet
al use the Frenet-Serret tetrads to analyze circular orbits in
black hole spacetimes and to study centripetal acceleration
and centrifugal forces in general relativity. Another interest-
ing example is Ref. [11], where Iyer and Vishveshwara study
the Frenet-Serret description of gyroscopic precession. Be-
cause of the importance of the Frenet-Serret formalism, we
will use it in this paper to deal with the rigid motion problem.

Rigidity is an idea that is present in practically all physi-
cal theories: we use rigid rods as a standard length, the lab-
oratory frame is always thought of as a rigid frame, etcetera.
The situation in SR is not different. However, unlike what
happens in Newtonian mechanics, the concept of rigidity in
SR is not that simple. The notion of a rigid body is incon-
sistent with the fact that no signal can propagate with a speed
greater than that of light. To avoid this problem, one can work
with the concept of rigid motion (RM). The ordinary concept

of RM is the idea that two “points” move in such a way that
their distance is kept constant by means of a choreographed
motion. But even in this case, relativity is problematic. First,
we have the problem with the measurement of time. The fact
that in an RM the distance is kept constant does not mean
that the velocity is the same. Think, for example, of two ob-
servers that describe a circular motion with the same angular
velocity. If their distance to the center of the motion is not the
same, their velocity will be different. In this case, we cannot
be sure that they will agree with time measurements. The
second problem lies in the fact that ifA is at rest with respect
to B, andC is at rest with respect toA, in general, we cannot
guarantee thatC is at rest with respect toB. Nevertheles, a
reasonable definition of RM was given by Born [12] and will
be considered here.

Although reasonable, Born rigidity imposes a strong re-
striction on the possible motions. This restriction is described
by the Herglotz-Noether theorem (HNT) [13, 14]. Although
we can state this theorem in terms of the4-acceleration and
rotation tensors [15], it is possible to have a better intuition
of its geometrical properties by using the curvatures of the
observer’s worldline, as is done in Ref. [16]. In this refer-
ence, a similar theorem based on the Serret-Frenet formalism
was proved. The main purpose of this paper is to prove the
equivalence of these two theorems (Sec. 3.1) and apply the
Frenet-Serret formalism to the Dirac equation. In doing so,
we write the Frenet-Serret tetrad (FST) in the local coordi-
nate system of a general observer (Sec. 2.2), obtain the Dirac
equation in this frame (Sec. 4) and solve it for the case of ro-
tating observers ( Sec. 4.1). Finally, we present a summary
of the results in Sec. 5.

We use the following notations and conventions. A Carte-
sian coordinate system that is homogeneous and isotropic
and in which Newton’s laws are valid are represented by
xµ = (t, x, y, z), whereµ = 0, 1, 2, 3. A tetrad field will
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be denoted byea, whose components in the Cartesian basis
∂µ = ∂/∂xµ are eµ

a , wherea = (0), (1), (2), (3). When
convenient, the coordinate basis∂µ will be represented as a
coordinate tetrad in the form̊ea = δ

(µ)
a ∂µ or e̊(µ) = ∂µ.

Latin letters in the middle of the alphabet stand for spatial
indices only, i.e., i, j, k, . . . = (1), (2), (3). The dual ba-
sis of ∂µ is denoted bydxµ. The metric tensorη takes
the form of a diagonal matrix when written in the basis
∂µ. To be more precise, the elements ofη are η00 = 1,
η11 = η22 = η33 = −1. The metric components in a general
tetrad basis also have the same values,i.e., η(0)(0) = 1 and
η(1)(1) = η(2)(2) = η(3)(3) = −1. The metricηµν is used
to raise and lower coordinate indices, which are denoted by
Greek letters, whileηab is used to raise and lower tangent
space indices. In this paper, we usec = 1 and~ = 1.

2. Accelerated Frames

2.1. Fermi-Walker Transport

The main idea behind the Fermi-Walker transport is to elim-
inate as many rotations as possible while the transported
frame follows an observer’s worldline. In general, this frame
will not be inertial and will possess a rotation in the plane
formed by the4-velocity u and the4-accelerationa. To un-
derstand this idea, think of the non-relativistic case. Given
an arbitrary accelerated observer, which rest frame would ap-
proach an inertial frame the most? Of course, it would be a
frame that does not rotate with respect to an inertial frame at
all, but whose origin is accelerated in the same way as the
observer. In relativity, the situation is more involved because
the variation ofu forces the frame to rotate in the mentioned
plane. Therefore, it is natural to demand no rotation other
than that.

A general rotation can be expressed as (see,e.g., p. 174
of Ref. [1])

deµ
a

dτ
= Φµνeaν (1)

with

Φµν = aµuν − aνuµ + Ωµν ,

Ωµν = uαΩβεαβµν , (2)

whereΩβ are the components of what we might call the4-
angular velocity vector,τ is the proper time, andεαβµν is the
Levi-Civita tensor (ε0123 = +1). The Fermi-Walker trans-
port corresponds to the caseΩβ = 0 andeµ

(0) = uµ.

2.2. Frenet-Serret Tetrad

Given the observer’s worldlinexµ(τ), whereτ is its proper
time, we can construct a tetrad basis attached to the observer
by using the formulas

e µ
(0) =

dxµ

dτ
,

de µ
a

dτ
= Σb

aeµ
b , (3)

Σb
a = k1δ

(0)
a δb

(1) + δ(1)
a

(
k1δ

b
(0) + k2δ

b
(2)

)

+ δ(2)
a

(
k3δ

b
(3) − k2δ

b
(1)

)
− k3δ

(3)
a δb

(2), (4)

where theks are called curvatures (sometimesk2 andk3 are
also called the first and second torsions, respectively), andeµ

a

are the components of the FST written in an inertial frame
with Cartesian coordinates(t, x, y, z).

To study Born rigidity, we may use the local coordinate
system(τ, ξ, χ, ζ), which, is related toxµ = (t, x, y, z) by
[1,16,17]

xµ(τ, ξ, χ, ζ) = xµ
n(τ) + rjeµ

j (τ), (5)

wherexµ
n(τ) is the worldline of an observern, which is at

the origin of the new coordinate system, andrj = (ξ, χ, ζ).
The coordinate timeτ corresponds to this observer’s proper
time, while eµ

j are the Cartesian components of the vector
field constructed out of this observer’s FST (by means of par-
allel transport). It should be clear that the inertial observers
use the coordinatesxµ = (t, x, y, z), while the accelerated
ones usexµ̄ = (τ, ξ, χ, ζ) (note the overbar).

Sincexµ̄ = xµ̄(t, x, y, z), we can use Eq. (5) to obtain
the frameea and the coframeθa (the dual basis) in the coor-
dinate systemxµ̄. Differentiating Eq. (5) with respect toξ,
we find that

∂ξ =
∂t

∂ξ
∂t +

∂x

∂ξ
∂x +

∂y

∂ξ
∂y +

∂z

∂ξ
∂z

= et
(1)∂t + ex

(1)∂x + ey
(1)∂y + ez

(1)∂z = e(1). (6)

Doing the same thing for∂χ, ∂ζ , and∂τ , we arrive at

e(0) = f(τ, ξ)
[
∂τ + k2(τ) (χ∂ξ − ξ∂χ)

+ k3(τ) (ζ∂χ − χ∂ζ)
]
, e(1) = ∂ξ,

e(2) = ∂χ, e(3) = ∂ζ , f(τ, ξ) = 1/(1 + ξk1(τ)), (7)

where we have also used Eqs. (3)-(4) to obtaine(0). On the
other hand, the dual basisii (coframe) is

θ(0) = dτ/f(τ, ξ), θ(1) = −χk2(τ)dτ + dξ,

θ(2) = [ξk2(τ)− ζk3(τ)] dτ + dχ,

θ(3) = χk3(τ)dτ + dζ. (8)

Sinceds2 = ηabθ
a ⊗ θb, we see that the metric in the new

coordinates becomes

ds2 =
[
(1 + k1ξ)2 − (k2

3 + k2
2)χ

2 − (k2ξ − k3ζ)2
]
dτ2

+ 2
[
k2 (χdξ − ξdχ) + k3 (ζdχ− χdζ)

]
dτ

− dξ2 − dχ2 − dζ2, (9)
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where

(1 + k1ξ)2 − (k2
3 + k2

2)χ
2 − (k2ξ − k3ζ)2 > 0. (10)

The affine connection coefficients in the tetrad fieldea,
denoted byωa

bc, do not vanish. As is well known, these co-
efficients can be obtained through the relation

ωa
bc = ea

λ̄e µ̄
b

(
∂µ̄eλ̄

c + Γλ̄
µ̄ν̄eν̄

c

)
, (11)

where eλ̄
a and ea

λ̄
are the components ofea and θa in

the coordinate bases∂µ̄ = (∂τ , ∂ξ, ∂χ, ∂ζ) and dxµ̄ =
(dτ, dξ, dχ, dζ), respectively. The objectΓλ̄

µ̄ν̄ denotes the
Christoffel symbols of the metric (9). After a straightforward,
but tedious, calculation, we find that

ω(0)(0)(1) = −ω(1)(0)(0) = f(τ, ξ)k1(τ),

ω(1)(0)(2) = −ω(2)(0)(1) = f(τ, ξ)k2(τ),

ω(2)(0)(3) = −ω(3)(0)(2) = f(τ, ξ)k3(τ). (12)

Note from Eqs. (12) and (7) that, along the worldline of the
observern (ξ = χ = ζ = 0), ωa

bc is given solely by the
curvatures of the curve.

One of the advantages of using the FST lies on the fol-
lowing results [3]:

1. The curvatures determine the observer’s worldline up
to a Poincaŕe transformation.

2. Whenk3 vanishes, the curve lies inside a hyperplane (a
three-dimensional volume in Minkowski spacetime).
In this case, the3-velocity is inside a plane.

3. Whenk2 vanishes, the curve lies in a plane (3-velocity
inside a line).

4. Fork1 = 0, the world line is a straight-line (constant
3-velocity).

It is worth noting that the FST will be Fermi-Walker
transported only if the observer’s worldline hask2 = k3 = 0.
This suggests a relation between these curvatures and the last
term in Eq. (2), that is,k2 andk3 are somehow related to
spatial rotations with respect to the Fermi-Walker transported
frame. This relation will be presented in Sec. 3.1

3. Rigid Motion

Despite the fact that Einstein and Born used the expression
“rigid body” in their work [12, 19], it is well known now
that the concept of a rigid body in SR is problematiciii. In
fact, even in classical mechanics, this concept is also prob-
lematic because there is no medium where a pulse can prop-
agate with a speed greater than the finite value of the speed
of sound. But, in classical mechanics, we can at least have
a totally satisfactory definition of an RM by assuming that a
system of particles describes an RM when the distance be-
tween any pair of particles remains constant. This is not to

say that the system is a rigid body. In fact, this is just an ide-
alized motioniv, where the forces acting on the particles are
such that the strain always vanishes. In this context, a rigid
body would be just an approximation of a body whose mo-
tion is very close to an RM regardless of the force acting on
it. The problem in SR is that measurements of distance are
not invariant, which means that they depend on the reference
frame used.

To solve this problem, we can assume that the dis-
tance between two infinitesimally separated parts of the body
should remain constant in the rest frame of these parts. This
is known as the “Born rigidity” [12], which can be formally
defined as follows:
Definition 3.1 Let uµ be the4-velocity field associated with
the motion of the system, gµν the Minkowski metric in an ar-
bitrary coordinate system, andhµν = uµuν − gµν the re-
striction of−gµν to u⊥. The motion is said to be rigid if

Luhµν = −(∇νuµ +∇µuν)

+ uαuν∇αuµ + uαuµ∇αuν = 0, (13)

whereLuhµν is the Lie derivative ofhµν , and∇νuµ stand
for the components of the covariant derivative.

This is the same as saying that the strain rate tensor van-
ishes [15,21] and that Killing motions are rigid [22].

While the RM in Newtonian spacetime has six degrees of
freedom, three translations, and three rotations, which means
that we can give any trajectory we want to a particular point
of the body, Born rigidity possesses only three degrees and,
therefore, does not allow for an arbitrary motion [13,14]. The
possible motions are given by the HNT, which will be stated
in the next section.

3.1. Possible motions

The HNT restricts the RMs to the following class [15]:
Theorem 3.1The only possible RMs in the sense of Born

rigidity are those withΩij = 0 or (d/dτ)ai = 0 and
(d/dτ)Ωij = 0.

Using the Frenet-Serret formalism, it was also proved the
following theorem [16].
Theorem 3.2The only possible RMs in the sense of Born

rigidity are those with arbitraryk1 and k2 = k3 = 0 or
(d/dτ)k1 = (d/dτ)k2 = (d/dτ)k3 = 0.

Of course, these theorems must be equivalent. To prove
their equivalency, let us assume that the observern uses a
FST ea, which is given by Eqs. (3) and (4). In this basis,
Eq. (1) can be written as

deµ
i

dτ
= −k1η(1)ie

µ
(0) + Ωj

ie
µ
j , (14)

where we have usedaµ = k1e
µ
(1) and

Ωj
i = e(0)αej

µeiνεαβµνΩβ . (15)
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By takingi = (1), (2) in Eq. (14) and using Eqs. (3), and (4),
we arrive at

k2 = Ω(2)
(1), Ω(3)

(1) = 0, k3 = Ω(3)
(2). (16)

It is clear thatΩij in the FST has only two nonvanishing com-
ponents. Moreover, we havea = aµ∂µ = abeb = k1e(1), i.e.,
ab = (0, k1, 0, 0). From this we see that ifdk1/dτ vanishes,
then so doesdai/dτ . Hence, the theorem 3.2 is equivalent
to 3.1.

To see thatk2 andk3 are nothing but spatial rotations, we
can use the identities (valid fordet(ea

µ) = 1)

eβ
(3) = e(0)αe(1)µe(2)νεαβµν , (17)

eβ
(1) = e(0)αe(2)µe(3)νεαβµν (18)

in Eq. (15) to obtain the relationsΩ(2)
(1) = Ω(3) andΩ(3)

(2) =
Ω(1). Comparing these relations with Eq. (16), we conclude
thatk2 = Ω(3) andk3 = Ω(1). This means that the curvature
k2 is associated with a rotation about the direction defined by
e(3) while k3 is related to a rotation aboute(1). For more de-
tails about the geometrical meaning of these curvatures, see
Refs. [6,9–11] and references therein.

The advantage of using the theorem 3.2 rather than 3.1
lies on the geometrical intuition that it gives. For instance, if
you wish to know whether an observer can be part of a Born
RM, you can use the results shown at the end of Sec. 2.2.: If
the observer’s worldline lies in a plane (in terms of space, its
trajectory would be a straight line), then it can be seen as part
of an RM (k2 andk3 vanish in this case). On the other hand,
if its worldline is not inside a plane and its first curvature (k1)
is not constant, then it cannot be part of an RM. In addition,
one can use this approach to easily construct RMs, as done in
Ref. [16].

As examples of rigid observers we have Rindler ob-
servers, (a rigid rod), whose torsions vanish, and the rotating
ones (“rigid disk” rotating with a constant angular velocity),
whose curvatures are all constant. The worldline of a Rindler
observer lies in a plane, while the one of a rotating observer
lies in a hyperplane.

4. Dirac equation

Quantum mechanics in noninertial frames has been exten-
sively studied by many authors [23–28]. The most interesting
cases studied so far are the Rindler and the rigidly-rotating
ones. With respect to the latter case, one can find systems
that can behave as rigid disks, such as rapidly-rotating neu-
tron stars [27]. In this section, we use the Frenet-Serret for-
malism to write the Dirac equation in a arbitrary accelerated
frame; then, we apply the result to a rotating motion that gen-
eralizes to some extent those that are generally used in the
literature.

In a noninertial frame, the Dirac equation can be written
as

iγµ (∂µ + Γµ)Ψ−mΨ = 0, (19)

with

Γµ =
1
8
ωaµb

[
γa, γb

]
, (20)

whereγµ = eµ
aγa, eµ

a are the components ofea in the global
inertial frame̊ea, and theγas are the gamma matrices. When
convenient, we will take the matricesγa as the standard Dirac
matrices:

γ(0) =
(
I 0
0 −I

)
, γj =

(
0 σj

−σj 0

)
,

σ(1) =
(

0 1
1 0

)
, σ(2) =

(
0 −i
i 0

)
,

σ(3) =
(

1 0
0 −1

)
. (21)

From Eqs. (12) and (20), we discover that

Γc =
1
2
f

(
k1γ

(0)γ(1)

+ k2γ
(1)γ(2) + k3γ

(2)γ(3)

)
δ(0)
c . (22)

Substitution of Eqs. (22) and (7) into Eq. (19) gives
{

γ(0)f [∂τ + k2 (χ∂ξ − ξ∂χ) + k3 (ζ∂χ − χ∂ζ)]

+ γ(1)∂ξ + γ(2)∂χ + γ(3)∂ζ +
1
2
f
(
k1γ

(1)

+ k2γ
(0)γ(1)γ(2) + k3γ

(0)γ(2)γ(3)
)

+ im
}

Ψ = 0, (23)

where we have multiplied it by−i, andf = 1/(1 + ξk1(τ)).
Note that this equation holds for any representation of the
gamma matrices.

In Sec. 3.1, we saw that the curvaturesk2 and k3 are
related to space rotations of the frame around∂ζ and∂ξ, re-
spectively. If convenient, one may usea =

√−aµaµ = k1,
Ω(1) = k3, andΩ(3) = k2 to recast Eq. (23) as

{
γ(0)f

(
∂τ +

1
2
~a · ~α− i~Ω · ~J

)

+ γ(1)∂ξ + γ(2)∂χ + γ(3)∂ζ + im
}

Ψ = 0, (24)

where ~J = ~L + ~S, ~a = aξ̂, ~α = α(1)ξ̂ + α(2)χ̂ + α(3)ζ̂
(αi = γ(0)γi), ~Ω = Ω(1)ξ̂ + Ω(3)ζ̂, and the triad(ξ̂, χ̂, ζ̂)
are the versions of∂ξ, ∂χ, ∂ζ in the ordinary vector formal-
ism. The orbital and spin angular momenta are defined as
~L = −i ~X × ∂/∂ ~X, where ~X = ξξ̂ + χχ̂ + ζζ̂, and

~S = (i/2)
(
γ(2)γ(3)ξ̂ + γ(3)γ(1)χ̂ + γ(1)γ(2)ζ̂

)

= (1/2)
(

~σ 0
0 ~σ

)
;

the gamma matrices are given by Eq. (21). The Dirac equa-
tion written in this form is clearly compatible with Eqs. (11)-
(14) in Ref. [17].
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4.1. Dirac equation in a rotating frame

When writing the Dirac equation in a rotating frame, one uses
a frame that is adapted to an observer at the origin of the in-
ertial frame(x, y, z = 0). As a result, the observer’s proper
time coincides with that of the inertial observers. In a real ex-
periment, however, that is not always possible. For instance,
if we perform an experiment on the surface of the Earth and
take into account its rotation, we would not be able to use a
clock at the center of rotation. Here we write the Dirac equa-
tion in this more realistic situation.

Let us take as the observern the one with coordinates

x0
n = tn, x1

n = r0 cos θ, x2
n = r0 sin θ,

x3
n = 0, (θ = Ωtn + θ0). (25)

Its FST is given by

e(0) = λe̊(0) − Ωr0λ sin θe̊(1) + Ωr0λ cos θe̊(2),

e(1) = − cos θe̊(1) − sin θe̊(2),

e(2) = −Ωr0λe̊(0) + λ sin θe̊(1) − λ cos θe̊(2),

e(3) = e̊(3), (26)

k1 = Ω2r0λ
2, k2 = Ωλ2, k3 = 0, (27)

whereλ = 1/
√

1− Ω2r2
0. Substitution of Eqs. (25)-(27) in

Eq. (5) results in

t = λ(τ − Ωr0χ), (28)

x = (r0 − ξ) cos θ + χλ sin θ, (29)

y = (r0 − ξ) sin θ − χλ cos θ, (30)

z = ζ, θ = Ωλτ + θ0, (31)

where we have usedtn = λτ in Eq. (28) and in the angle
θ. From Eq. (10), we see that the new coordinate system is
restricted by

(1 + Ω2λ2r0ξ)2 > Ω2λ4(χ2 + ξ2). (32)

Note that, since the curvatures of the worldline of the ob-
servern are constant, the set of observers characterized byξ,
χ, andζ constant, the rotating ones, corresponds to an RM.
Note also that, unlike what was done in Ref. [23], these co-
ordinates are adapted to an observer that is not necessarily at
x = y = z = 0: the new coordinate timeτ corresponds to
the proper time of the observer whose worldline is given by
Eq. (25). That is the reason why we have the Lorentz factor
λ in the expressions above. The case where this observer is
at the origin of the inertial frame is obtained by taking the
limitv r0 → 0 in Eqs. (26)-(31).

Using Eq. (27), we see that Eqs. (7) and (9) become

e(0) = f∂τ + Ωλ2f (χ∂ξ − ξ∂χ) , e(1) = ∂ξ,

e(2) = ∂χ, e(3) = ∂z, f = 1/(1 + Ω2λ2r0ξ), (33)

ds2 =
[
(1 + λ2Ω2r0ξ)2 − λ4Ω2(ξ2 + χ2)

]
dτ2

+ 2λ2Ω(χdξ − ξdχ)dτ − dξ2 − dχ2 − dz2. (34)

In turn, using Eq. (27) in Eq. (22), we find that

Γc =
1
2
Ωλ2f

(
Ωr0γ

(0)γ(1) + γ(1)γ(2)
)

δ(0)
c . (35)

So, we have

iγbΓb =
i

2
Ωλ2f

[
Ωr0γ

(1) + γ(0)γ(1)γ(2)
]
. (36)

Using Eqs. (33) and (36) in Eq. (19), we finally obtain

{
γ(0)

[
f∂τ + Ωλ2f (χ∂ξ − ξ∂χ)

]
+ γ(1)∂ξ

+γ(2)∂χ + γ(3)∂z +
1
2
Ωλ2f

(
Ωr0γ

(1)

+γ(0)γ(1)γ(2)
)

+ im

}
Ψ = 0. (37)

4.1.1. Solution

To obtain the solution of Eq. (37) in terms of the solution in
the inertial frame, we takeθ0 = π so that the framesea and
e̊a coincide asΩ → 0. Furthermore, we also use the defini-
tions

λ =
1√

1− β2
, β = Ωr0, φ = Ωλτ/2. (38)

The components ofea in the inertial frame̊ea = δ
(µ)
a ∂µ

correspond to the Lorentz matrix given by the relationea =
eµ
a∂µ = Λ b

a e̊b. We can read off the values ofΛa
b from

Eqs. (26):

Λa
b = λδa

(0)

(
δ
(0)
b + Ωr0 sin θδ

(1)
b − Ωr0 cos θδ

(2)
b

)

− δa
(1)

(
cos θδ

(1)
b + sin θδ

(2)
b

)

+ λδa
(2)

(
Ωr0δ

(0)
b + sin θδ

(1)
b − cos θδ

(2)
b

)

+ δa
(3)δ

(3)
b . (39)

This Lorentz transformation can be split into two interesting
ones:

Λa
1 b = δa

(0)δ
(0)
b + δa

(1)

(
cos 2φδ

(1)
b + sin 2φδ

(2)
b

)

+ δa
(2)

(
− sin 2φδ

(1)
b + cos 2φδ

(2)
b

)
+ δa

(3)δ
(3)
b , (40)

Λa
2 b = δa

(0)

(
λδ

(0)
b + βλδ

(2)
b

)
+ δa

(1)δ
(1)
b

+ δa
(2)

(
βλδ

(0)
b + λδ

(2)
b

)
+ δa

(3)δ
(3)
b , (41)
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whereΛa
b = Λa

2 cΛ
c
1 b. Together, they induce the transforma-

tion Ψ = SΨ̊, whereΨ̊ is the solution of the Dirac equation
in the inertial frame.

Following the standard procedure for computingS (see,
e.g., p. 70 of Ref. [29]), we find that

S = λ+

(
cos φ− sin φγ(1)γ(2)

)

− λ−
(
sinφγ(0)γ(1) − cosφγ(0)γ(2)

)
, (42)

whereλ± = (λ± 1)1/2/
√

2. The inverse transformation is

S−1 = λ+

(
cos φ + sin φγ(1)γ(2)

)

+ λ−
(
sinφγ(0)γ(1) − cosφγ(0)γ(2)

)
. (43)

The solution of Eq. (37) isΨ = SΨ̊ with Ψ̊ satisfying
the Dirac equation in a global inertial frame of reference,
i.e., i̊γµ∂µΨ̊ − mΨ̊ = 0, where γ̊µ = e̊µ

aγa and ∂µ =
(∂t, ∂x, ∂y, ∂z). Note that the̊γµs are the ordinary gamma
matrices and̊eµ

a = δ
(µ)
a .

5. Summary

In this paper, we have seen that the HNT can be formulated in
terms of the Frenet-Serret curvatures, which allowed us to use
the FST to deal with the Born rigidity. This approach turned
out to be very fruitful because of the geometrical meaning of
the curvatures of the observer’s worldline.

It was shown in Sec. 3.1. that the curvatures (torsions)
k2 andk3 correspond to the rotationsΩ(3) andΩ(1), respec-
tively. These relations helped us to see the connection be-
tween the rotation of the FST with respect to a Fermi-Walker
transported frame and the geometrical properties of the ob-
server’s motion.

We obtained the Dirac equation in the rest frame of a
particle that describes an arbitrary motion using the Frenet-
Serret formalism. We have seen that the final expression can
be easily converted to physical parameters such as angular
and spin momenta. The resultant equation was the same as
that of Ref. [17]. As an application, we wrote this equation
for the case of rotating observers and found its solution in
terms of the solution in an inertial frame.

i. For a generalization of the Frenet formulae, see Sec. 2.7 of [2].

ii. The dual basis is such that〈θa, eb〉 = δa
b . For more details, see

Ref. [18].

iii. See,e.g., p. 132 of Ref. [20].

iv. To understand the difference between RM and rigid body, im-
age that two dancers looking at the audience run to their right at
the same speed for some seconds. Their distance was kept con-
stant and, if they knew what to do before the movement starts,
they would not have to interact with each other to ensure this.
Therefore, no signal is propagating from one to the other.

v. Since in this limit the worldline of the observern becomes the
straight line(t, 0, 0, 0), the curvaturesk2 andk3 their geomet-
rical meaning. Nevertheless, we can still work with them and,
as we will see, they are related to rotations of the frame, which
keeps them meaningful even in this situation.
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