
RESEARCH Revista Mexicana de Fı́sica66 (2) 187–191 MARCH-APRIL 2020

Analysis of fractional Duffing oscillator

S.C. Eze
Department of Mathematics, University of Nigeria, Nsukka, Nigeria,

e-mail: sundaychristianeze@gmail.com
Tel: +2347032354775

Received 16 October 2019; accepted 27 November 2019

In this contribution, a simple analytical method (which is an elegant combination of well known methods; perturbation and Laplace methods)
for solving non-linear and non-homogeneous fractional differential equations is proposed. In particular, the proposed method was used to
analyze the fractional Duffing oscillator. The technique employed can be used to analyze other non-linear fractional differential equations
and can also be extended to non-linear partial fractional differential equations. The performance of this method is reliable, effective, and
gives more general solutions.

Keywords: Fractional calculus; fractional Duffing oscillator; analytical method.

PACS: 02.30.Jr; 02.30.Vv; 41.20.Cv; 45.10.Hj. DOI: https://doi.org/10.31349/RevMexFis.66.187

1. Introduction

The subject of fractional calculus has a long history dating
back to the time when the derivative of order1/2 was de-
scribed by Leibniz to L’ Hopital in 1695 [1]. In recent years,
fractional calculus has found its way in many areas of ap-
plied sciences and engineering, and it has been demonstrated
that modeling physical systems using fractional calculus is
more accurate than using integer calculus. This is because
the behaviour of many physical phenomena depends on the
previous time history (see Mohammedet al. [2]).

There are several works on fractional calculus, such as
the work of Eze and Oyesanya [3], who presented a fractional
order climate model in the Pacific Ocean. Eze and Oyesanya
[4] also used a fractional model to study the impact of climate
change with dominant earth’s fluctuations. In the work of
Mohamed and Amnah [5], a numerical technique for the es-
timation of stochastic response of the Duffing oscillator with
fractional order damping driven by white noise excitation was
introduced. An approach for solving fractional differential
equations using exp-function and(G′/G)-expansion method
was used in Ahmetet al. [6]. Djurdjicaet al. [7] constructed
the exact and the approximate solutions of Fuzzy fractional
differential equation in the sense of Caputo Hukuhara differ-
entiability with a Fuzzy condition. Randet al. [8] reviewed
the concept of fractional derivatives and derived expressions
for the transition curves. Yin [9] applied Legendre spectral-
collocation method to obtain approximate solutions of non-
linear multi-order fractional differential equations. Pranay
and Rubayyi [10] used Smudu transform and the variable
method to solve differential equations and fractional differ-
ential equations related to entropy wavelets.

In this work, we shall propose a simple analytical method
(which is an elegant combination of a well known meth-
ods; perturbation and Laplace methods) to solve non-linear
and non-homogeneous fractional differential equations since
Laplace method alone is incapable of handling non-linear and
non-homogeneous fractional differential equations because

of non-linear terms. In particular, we shall analyze the frac-
tional Duffing oscillator using the proposed method.

The advantage of this proposed method over others such
as, Adomian decomposition, Modified Laplace decompo-
sition method,(G′/G)-expansion, Homotopy perturbation,
Yang-Laplace, and so on, is its ability to handle the com-
plicated non-homogeneous part of the fractional differential
equation.

2. Definition of special functions in fractional
calculus

In this section, we shall give some definitions related to Ca-
puto’s fractional derivative since in Caputo definition of Frac-
tional calculus, we can find a link between what is possible
and what is practical. We shall therefore note that our con-
centration in this presentation will be on Caputo fractional
derivative.
Definition 2.1 The Left Caputo Fractional Derivative
(LCFD) is defined by[11]

c0
a0

Dα
t u(t) =

1
Γ(q − α)

t∫

a0

(t− τ)q−α−1uq(τ)dτ, (1)

where0 < q − 1 ≤ α < q , q ∈ Z+, t0 is the initial time
andΓ(.) is the Gamma function.
Definition 2.2 The Right Caputo Fractional Derivative
(RCFD) is defined by[11]

c0
t Dα

b0u(t) =
1

Γ(q − α)

b0∫

t

(τ − t)q−α−1(−1)quq(τ)dτ, (2)

where0 < q − 1 ≤ α < q , q ∈ Z+, t0 is the initial time
andΓ(.) is the Gamma function.
Definition 2.3 In a Caputo’s sense, the Laplace transform of
fractional derivative with orderα for a functionu(t) is de-
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fined by [12]

∞∫

0

e−vtDα
t0u(t)dt = vαU(v)−

n∑
m=0

vα−m−1um(0),

(n− 1 < α ≤ n). (3)

Definition 2.4A two parameter function of the Mittag-Leffler
(ML) function is defined by

Eα,β(z) =
∞∑

j=0

zj

(αj + β)
, α > 0, β > 0. (4)

Definition 2.5 The Laplace transform of ML is given by

L{tam+α−1E
(m)
α,β } =

m!sα−β

(sα − a)m+1
. (5)

3. Methodology of the new solution

Now we propose a simple analytical method for solving non-
linear and non-homogeneous fractional differential equa-
tions.

To show the basic idea, let us consider the following frac-
tional differential equation:

Dα
t u(t; ε) + Nu(t; ε) + Lu(t; ε) = f(t; ε), (6)

with intial conditions

Dβ
t u(0; ε) = u(0; ε) = 0, α > β, (7)

whereα = [α1, α2, ..., αn], β = [β1, β2, ..., βn], indicating
fractional orders,Dα

? = [Dα1
? Dα2

? , ..., Dαn
? ] 0 < αi ≤ 2,

i = 1, 2, ..., n, N is a nonlinear operators,L is a Linear oper-
ator andf is a known function.

Now, we seek to find the solution in order ofε, say, power
of ε, that is

u(t; ε) =
∞∑

n=0

unεn. (8)

We now substitute Eqs. (8) into (6) and (7) and carry out
the expansions in terms of the small parameter to obtain the
following system of linear fractional differential equations:

Dα
t un(t) + Aun(t) = f(t), (9)

with intial conditions

Dβ
t un(0) = un(0) = 0, α > β, (10)

whereA is a linear operator.
Therefore, the linear fractional differential Eqs. (9) with

initial conditions (10) can now be solved in succession us-
ing the fractional differential property of Laplace transform
in Eq. (3).

Note that in this method, it is necessary to express
the fractional differential equation in dimensionless form to

bring out the important dimensionless parameter that govern
the behaviour of the system.

To demostrate the effectiveness of the proposed method,
let us consider the general form of Duffing equation which is
given by [13,14]:

d2x(t̄)
dt̄2

+ a
dx(t̄)

dt̄
+ bx(t̄) + cx3(t̄) = F (t̄), (11)

with initial conditions

x(0) =
d

dt̄
x(0) = 0. (12)

Now, we shall use the proposed fractional operator in
Rosaleset al. [15,16] to construct a fractional Duffing os-
cillator. The idea is to introduce an auxiliary parameter (σ) in
the system such that thisσ must have a dimension in seconds
and consistent with the dimension of the ordinary deriva-
tive operator. In the work [16], the parameterσ was intro-
duced for the first time, but its geometric interpretation is not
treated. After that, this method was applied in the work [15].

Now using the proposed idea, we have

d

dt̄
→ 1

σ1−β

dβ

dt̄β
, 0 < β ≤ 1,

d2

dt̄2
→ 1

σ2−α

dα

dt̄α
, 1 < α ≤ 2 . (13)

Using (13), the Eq. (11) can be written in terms of fractional
time derivatives as:

1
σ2−α

dαx

dt̄α
+ a

1
σ1−β

dβx

dt̄β
+ bx + cx3 = F (t̄). (14)

Now expressing Eq. (14) in dimensionless form, we take
initial displacementx0(t̄) as a characteristic distance, and the
system’s angular frequencyω0 =

√
k as a characteristic time.

Thus, we let

u =
x

x 0
, t =

t̄

ω0
, (15)

whereu andt denote dimensionless quantities.
Therefore, substituting (15) in (14), we have

xα
0

ωα
0 σ2−α

dαu

dtα
+ a

xβ
0

ωβ
0 σ1−β

dβu

dtβ

+ bx0u + cx3
0u

3 = F (ω0t)

=⇒ Dα
t u + a?Dβ

t u + b?u + c?u3 = ελ cos ω(δt), (16)

with initial conditions

u(0) = Dβ
t u(0) = 0, (17)

where

a? = a
xβ−α

0

ωβ−α
0 σα−β−1

, b? = bx1−α
0 ωα

0 σ2−α,

c? = cx3−α
0 ωα

0 σ2−α, ε =
ωα

0 σ2−α

xα
0

(0 < ε ¿ 1)

and F (ω0t) = λ cosω(δt).
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The function ω(δt) is a slowly varying (sv) function
which is defined as follows:
Definition 3.1 (see R. Bojanic and E. Seneta [17]):ω is a sv
function if it is a real-valued, positive, and measurable func-
tion on[A,∞), A > 0 , and if

lim
t→∞

ω(δt)
ω(t)

= 1, (18)

for every δ > 0.
Therefore, we shall chooseω(δt) = 1 − e−δt, ( 0 <

δ ¿ 1) and letω to be a sv function oft with right hand
derivatives of all orders att = 0, such thatω(0) = 0 and
|ω| ¿ 1,

The symbolsDα
t andDβ

t are describing the orders of Ca-
puto fractional time derivatives, which is defined in Eqs. (1)
and (2).

Now let
u(t; ε, δ) = U(t̂, τ ; ε, δ), (19)

so that
τ = δt, (20)

and

t̂ = t +
1
δ
[µ2(τ)ε2 + µ3(τ)ε3 + . . .],

µi(0) = 0(i = 2, 3, 4, ...). (21)

From Eqs. (20) and (21) we have, respectively,

dτ

dt
= δ, (22)

and
∂t̂

∂τ
=

1
δ
[µ2′(τ)ε2µ3′(τ)ε3 + . . .], (23)

∂t̂

∂t
= 1, (24)

∴ du

dt
=

∂U

∂t̂

∂t̂

∂t
+

∂U

∂t̂

∂t̂

∂τ

dτ

dt
+

∂U

∂τ

dτ

dt
=⇒ (25)

du

dt
=

∂U

∂t̂
+

∂U

∂t̂
[µ2′(τ)ε2+µ3′(τ)ε3+...]+δ

∂U

∂τ
. (26)

Now using Eq. (26), we have

Dα
t u =

{
∂U

∂t̂
+

∂U

∂t̂
φ(ε) + δ

∂U

∂τ

}α

(27)

and

Dβ
t u =

{
∂U

∂t̂
+

∂U

∂t̂
φ(ε) + δ

∂U

∂τ

}β

, (28)

whereφ(ε) = µ′2(τ)ε2 + µ′3(τ)ε3 + ...
Substituting Eqs. (27) and (28) in Eq. (16), we have

Dα
t̂
U + αφ(ε)Dα

t̂
U + αδUτDα−1

t̂
U + ... + a?[Dβ

t̂
U

+ βφ(ε)Dβ

t̂
U + βδUτDβ−1

t̂
U + ...] + b?U + c?U3

= ελ cos ω(τ). (29)

We now assume the solution in the following asymptotic
series:

U(t̂, τ ; ε, δ) =
∞∑

j=0

∞∑

i=1

U ij(t̂, τ)εiδj = ε(U10 + δU11 + ...)

+ ε2(U20+δU21 + ...)+ε3(U30+δU31 + ...)

+ ... (30)

Equating equations of order(εi, δj) in Eq. (29) using the
series (30), we obtain the following linear fractional differen-
tial equations:

O(ε) : Dα
t̂
U10+a?Dβ

t̂
U10 + b?U10=λ cosω(τ), (31)

O(ε, δ) : Dα
t̂
U11 + a?Dβ

t̂
U11 + b?U11 = 0, (32)

O(ε2) : Dα
t̂
U20 + a?Dβ

t̂
U20 + b?U20 = 0, (33)

O(ε2, δ) : Dα
t̂
U21 + a?Dβ

t̂
U21 + b?U21

= −αU10
τ Dα−1

t̂
U10 − a?βU10

τ Dβ−1

t̂
U10, (34)

O(ε3) : Dα
t̂
U30 + a?Dβ

t̂
U30 + b?U30

= −αµ′2D
α
t̂
U10−a?βDβ

t̂
U10−c?3(U10)3 (35)

O(ε3, δ) : Dα
t̂
U31 + a?Dβ

t̂
U31+b?U31=− αµ′2D

α
t̂
U11

− a?βDβ

t̂
U11 − αU10

τ Dα−1
t̂

U20

− a?βU10
τ Dβ−1

t̂
U20 − 3c?3(U10)2U11, (36)

etc.

Now using the scales Eqs. (19)-(21) and the series Eq.
(30) on initial conditions Eq. (17), we obtain the following
initial conditions:

U ij(0, 0) = 0∀ij, (37)

O(ε) : Dβ

t̂
U1j(0, 0) = 0∀j, (38)

O(ε2) : Dβ

t̂
U20(0, 0) = 0, (39)

O(ε2, δ):Dβ

t̂
U21(0, 0)=−βU10

τ (0, 0)Dβ−1

t̂
U10(0, 0), (40)

O(ε3) : Dβ

t̂
U30(0, 0) = −βµ′Dβ

t̂
U10(0, 0), (41)

O(ε3, δ) : Dβ

t̂
U31(0, 0) = −βµ′Dβ

t̂
U11(0, 0)

− βU10
τ (0, 0)Dβ−1

t̂
U20(0, 0), (42)

etc.

Now, using the fractional differential property of Laplace
transform in Eq. (3), we can easly obtain the values ofU ij

as:
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U10 =
λ cos ω(τ)

b?

{
1 +

∞∑

j=0

(−1)j

j!
b?jtj(α−β)−β(j+1)−1Ej

α−β,−β(j+1)(−a?t̂α−β)

}

+
a?λ cosω(τ)

b?

∞∑

j=0

(−1)j

j!
b?jtα(j−1)−β−2Ej

α−β,−(α+1)+β(1−j)(−a?t̂α−β),

U11 = 0, U20 = 0, U21 = −L−1

{
L[αU10

τ Dα−1
t̂

U10 + a?βU10
τ Dβ−1

t̂
U10]

sα + a?sβ + b?

}
,

U30 = −L−1

{
L[αµ′2D

α
t̂
U10 + a?βDβ

t̂
U10 + c?(U10)3]

sα + a?sβ + b?

}
, U31 = 0. (43)

Now, if we substitute the values ofU ij which are given in Eq. (43) into Eq. (30) and plot the displacement-time graphs,
then we obtain Figs. 1 and 2.

FIGURE 1. Solution in fractional orders,(α = 5/4, β = 3/4),
(α = 3/2, β = (1/2) and(α = 7/4, β = 1/4).

FIGURE 2. Solution in integer orders,α = 2, β = 1, a∗ = 0.2,
a∗ = 0 anda∗ = −0.2.

4. Conclusion

In this paper, a new analytical method to solve non-linear and
non-homogeneous fractional differential equations was pro-
posed. This new analytical method is an elegant combina-
tion of well known methods; perturbation and Laplace meth-
ods. This method was used to analyze the fractional Duff-
ing oscillator. The performance of this method is reliable,
effective and can be used to solve other non-linear and non-
homogeneous fractional differential equations; it can also be
extended to solve non-linear and non-homogeneous partial
fractional differential equations.
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