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In this work, we analyze the relativistic quantum motion of a charged vector particle in the presence of an Aharonov-Bohm (AB) and Coulomb
potentials in the non-commutative space-time produced by idealized cosmic strings and global monopoles via the well-know Duffin-Kemmer-
Petiau equation. With the help of Wigner functions, we have solved the system ibsthi—1)"*" andP = (—1)7 parity. The expressions

for the bound state energies and wave functions in both commutative and non-commutative spaces have been obtained.
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1. Introduction theory. In the same direction, approximation techniques for-
merly developed in the context of nucleon-nucleus scattering,
The analysis of gravitational interactions with a quantum meavere generalized, giving a good description for experimen-
chanical system has recently attracted attention in particléal data of meson-nucleus scattering. The deuteron-nucleus
physics and has been an active field of research.The genesdattering was also studied using the DKP equation, moti-
way to understand the interaction between relativistic quanvated by the fact that this theory suggests a kitnucture
tum mechanical particles and gravity is to solve the generadirom combining two spint/2. Also, we can cite the works
relativistic form of their wave equations. These solutions areon the meson-nuclear interaction and the relativistic model
valuable tools for examining and improving models and nu-of «—nucleus elastic scattering where they have been treated
merical methods for solving complicated physical problems.by the formalism of the DKP theory. Recently, there is a re-
In the conventional relativistic approach, the interac-newed interest in the DKP equation. It has been studied in
tion of S = 0 andS = 1 hadrons with different nuclei the context of quantum chromodynamics (QCD), covariant
has been described by the second-order Klein-Gordon (KGjlamiltonian formalism, in the causal approach, in the con-
equation for S=0 and Proca equation for S=1 particles. Itext of five-dimensional Galilean invariance, in the scatter-
is well known that is very difficult to tackle these second-ing of K™ nucleus, in the presence of the Aharonov-Bohm
order equations mathematically and to derive the physics begrotential, in the Dirac oscillator interaction, in the study of
hind them. Therefore, considerable interest in recent yeardiermodynamics properties, on the supersymmetric, and fi-
has been devoted to examining the interactions of S=0 anﬂa”y in the presence of some shape of interactions. These
S=1 hadrons with nuclei by using the first-order relativisticexamples, in some cases, break the equivalence between the

Duffin-Kemmer-Petiau (DKP) equation [1-4]. theories based on the DKP equation and KG and Proca equa-
One important question related to the DKP equation conlions (see Refs. [13,14] and the references therein).
cerns the equivalence between its spiand 1 sectors and The study of quantum systems in curved space-times

the theories based on the second-order KG and Proca equgees back to the end of the 1920s and to the beginning of
tions. Historically, the loss of interest in the DKP stems fromthe 1930s, when the generalization of the ®&dmger and

the equivalence of the DKP approach to the Klein-GordorDirac equations to curved spaces was discussed, motivated
(KG) and Proca descriptions in on-shell situations, in addi-by the idea of constructing a theory which combines quan-
tion to the greater algebraic complexity of the DKP formu-tum physics and general relativity. Spinor fields and parti-
lation. However, in the 1970s, this supposed equivalenceles interacting with gravitational fields have been the sub-
was questioned in several situations involving the breakingect of many investigations. Among of them, we can men-
of symmetries and hadronic possess, showing that in sont@n those concerning the determination of the renormalized
cases, the DKP and KG theories can give different resultsvacuum expectation value of the energy-momentum tensor
Moreover, the DKP equation appears to be richer than the K@nd the problem of the creation of particles in expanding uni-
equation if the interactions are introduced. In this contextyerses, and those connected with quantum mechanics in dif-
alternative DKP-based models were proposed for the studferent background space-times [5]. The analysis of gravita-
of meson-nucleus interactions, yielding a better adjustmertional interactions with a quantum mechanical system has re-
to the experimental data when compared to the KG-basedently attracted attention in particle physics and has been an
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active field of research.The general way to understand the ifalternatively called Weyl-Moyal product) [53] with
teraction between relativistic quantum mechanical particles

and gravity is to solve the general relativistic form of their (f * g) (x)=exp [1070,,0,,] f () g (). (1)
wave equations. These solutions are valuable tools for exam- '

ining and improving models and numerical methods for solvy, .o« 0ii — @i/ and© is the non-commutative parame-

ing complicated physical problems. In addition, the influenceter [18-25]. The position and momentum satisfying the fol-
of the gravitational field on quantum mechanical systems atl'owing commutation relations

tracted attention in particle physics several years ago. As an
example, the analysis of the hydrogen atom in curved space- . ) S I .
time has been considered in an arbitrarily curved space-time 12> %] = 1©ij,  [Pi, ;] =0, [23, 5] = di; . (2)
6-12].
[ ! The Aharonov—Bohm effect [26], is a quantum mechanical
According to the modern concepts of theoretical physicsphenomenon in which an electrically charged particle is af-
topological defects, where they have been formed by the vadected by an electromagnetic potenti&l A), despite being
uum phase transition in the early Universe, play an importantonfined to a region in which both the magnetic fi@cand
role in the physical properties of systems, and they appear islectric fieldE are zero. In 1959, Aharonov and Bohm, us-
gravitation as monopoles, strings, and walls. Among theming the Schiddinger equation, considered the scattering of an
cosmic strings and monopoles seem to be the best candidateigctron in an external static magnetic field produced by an
to be observed. The former are linear defects, and the spacifinitely long solenoid and found an effect that does not de-
time produced by an idealized cosmic string is locally flat,pend on the depth of penetration of the electrons into the re-
however, globally conical, with a planar angle deficit deter-gion of magnetic force lines. This showed that in quantum
mined by the string tension. So, they do not produce locaimechanics, the electromagnetic field acts on charged particles
gravitational interaction; however, they modify the geometryeven when the particles cannot reach the region where the
of the space-time producing planar and solid angle deficitfield is localized. The interest in the Aharonov-Bohm effect
respectively (See Refs [13, 14] and references therein). lies in the overthrow of the classical dictum that the vector po-
tential is only an auxiliary quantity which facilitates the cal-

The idea of non-commutative space-time geometry Wagjation of the observable magnetic and electric fields. The
at first proposed by Heisenberg and revived again by Snyéffect will also manifest itself when we remove the slits and

der [15]: this non-commutativity of space has played an im'study the scattering of the electron waves off the solenoid.

portant role in understanding various phenomena for physicgy, yhe jgealized limit of an infinitely thin solenoid where we

In this way, we can cite the study of the thermal properties ofyq,,4 expect that the geometric cross- section should van-
both Klein-Gordon and Duffin-Kemmer-Petiau (DKP) 0sCil- jsp, ‘the Aharonov-Bohm effect ensures that the electrons still

lators [16, 17]. The study of non-commutative spaces and ayer Finally, we note that theB effect has been consid-

their implications in physics is an extremely active area of, oq by different authors for different situations [26-29].

research. It has been argued in various instances that non- o . .
Before continuing, an important remark concerning the

commutativity should be considered as a fundamental fea- B effect can be made. Henneberg concluded [27], based on

ture of space-time at the Planck scale. On the other sidf . L
. i . auli’s criterion [29, 33], that the Aharonov-Bohm effect ex-
the study of quantum systems in a non-commutative (NC ts, and the problem if the Pauli criterion can be applied to

space has been the subject of much interest in last years, %%e Aharonov-Bohm effect has not yet been considered care-

suming that non-commutativity may be, in fact, a result Off lly. It can be considered as playing a purely mathematical
guantum gravity effects. In these studies, some attention has, " playing a purely

been given to the models of non-commutative quantum mer_ole. However, a series of experiments presents evidence for
chanics (NCQM). The interest in this approach lies in the factthe realltgl of thef,?rt]]arlgno;{—Bohmleﬁect [27't29’ 3I§]AMThef
that NCQM is a fruitful theoretical laboratory where we can fr:ger;pr(t)r ET:]SH?@\B eff |n<ter|]c aBgu:lr rT\f)rEebn UKT t(z hr)nor
get some insight into the consequences of non-commutativit © electro eriecthas been solved by ¥retzschma

in field theory by using standard calculation techniques o 33]. The total Hilbert space of the elgenfun_cnons Is split
. . o into two subspaces. the symmetry of the motion of the elec-

quantum mechanics. Various non-commutative field theor){ n around the magnetic flux makes Pauli’s criterion inappli-

models have been discussed as well as many extensions of Y pp

guantum mechanics. Of particular interest are the so-calleﬁable' Many authors have ignored the inapplicability of the

phase space non-commutativity, which has been investigateccfIterlon of Pauli [34], for example, see Ref [41].

in the context of quantum cosmology, black holes physicsand ~The outline of this paper is as follows: Sec. 2 is devoted
the singularity problem. This specific formulation is neces-10 the DKP equation in curved space-time. In Secs. 3 and 4,

sary to implement the Bose-Einstein statistics in the contexV® focus on the solutions of the vector bosons in the pres-
of NCQM [18-25]. ence of the Aharonov-Bohm and Coulomb potentials in the

gravitational field of topological defects in both commutative
In our case, one way to deal with the NC space is toand non-commutative space-times. Finally, Sec. 5 will be a
change the standard product of the fields by the star productonclusion.
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2. The DKP equation in curved space The parametet’ is the deficit angle associated with
conical geometry obeying’ = 1 — 4y, andn is
2.1. The formalism the linear mass density of the string. It is defined
) o ) in the range(0, 1], and corresponds to a deficit angle
The first-order relativistic DKP equation for a free charged Q = 27 (1 — @'). Here, the tetrad!" , are chosen to be
vector bosons of mas¥ in flat space-time is given by [1-4] (a
Y 100 0
&
(183, - %) =0, © =550 0 1)
. S 00 0 gy
whereg*(n = 0, 1,2, 3) are the DKP matrices which satisfy
the following commutation rules e Now, in the case of the global monopoles, with the fol-

lowing metric [50-52]

K QU QA AUk _ KUV QA v QK
BEBYB + BB BT = g™ B + g7 B, 4) d82:dtQ—dTQ—bIQTQ(d92+3in29d§02), (12)

andg*” = diag(1, —1, —1, —1) is the Minkowski metric ten- whereb’? = 1 — 87Gn? and the parameterbeing the
sor. For the flat space, the beta matrices are chosen as in  energy scale of symmetry breaking, the spin connec-
Ref. [36,37] (see Appendix A). tion coefficients are [49]
In curved space-time, (3) can be written by [38—43]
L~ 1 ie Mc 0 0 0 O
MO+ zwpapS® — —A, | - — ¥ =0, (5
{Zﬁ<“+2°"“" he “) h} ®) 0 0 ¥ 0
w@ab = O _b/ 0 O i
with A,, denotes the vector potential associated with the elec- 0O 0 0 0
tromagnetic field 5** = [, 3°] and 3 are the Kemmer
matrices: these matrices are related to their Minkowski coun- 0 o 0 0
terparts via _ 0 0 0 ¥'sing
ﬁ = et 5(1 (6) Weab = 0 0 0 coy ’ (13)
(@ —b'sih —cod 0 O
Et]iir?pm connection is calculated by using the following re- with the tetradef‘a) are chosen to be
Waab = €€y Ty = €l O (@) 7) 10 0 0
where o= 01 (1) 0 (14)
" Hmp (@) 0 0 b'r (1)
Iy = 5 (Gpvx + Gorw — Gurp) 8 00 0 grsme

are the Christoffel symbols [43]. with the aids of Eqs. (6), Now, we are ready to discuss the problem of the applicability
(7) and (8), spin connection coefficients are: of the Pauli criterion in the presenceAB potential for both

cosmic strings and global monopoles.

e For the metric corresponding to the cosmic strings

[44-48] 2.2. The Pauli criterion

ds? = di2 — dr® — 12d6% — a’*r?sin? 0dp?,  (9) As we know, the KAM satisfy the following relations

J x J=1ihJ, (15)
where-co < t < 400,0 < 7,0 < 0 < 7, and
0 < ¢ < 2m, the spin connection coefficients are [49] whereJ = L + S, and with the following standard commu-
tations rules [53, 54]

[Ji, J]} = ihGiijk, (16)
0 0 00 )
Woap = 0 0 1 0 [JZH]:E]_th:‘:v [J 7J:|:] —07 (17)
¢ 0 -1 0 0 [’ where 5
00 00 J, = —ilh—. (18)
dp
0 0 0 /0_ Here J. = J, £ iJ, are the ladder operators. The KAM
Wopab = 0 0 0 a/sme . (10) s based on these commutation relations where Pauli re-
,O i ,O 0 a'cog quired that the appropriate eigenfunctions be those which are
—a'sid  —a’cog 0 0 square-integrable and are closed under the operation of the
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ladder operators. This condition is called the Pauli criterionthe possible arbitrary values of the circulation is the real num-
and consequently, the commutations relations in Egs. (15her¢ Adl = 0. So, the presence of a doubly-connected re-
(16) and (17) are pertinent for the Pauli criterion to be appli-gion of space is perfectly consistent with a null value of the

cable. magnetic flux at the solenoid: so, by using the following sub-
In the presence of thAB potential with the following  stitutions [53]
components
¢ szj/\ (97 50) = )‘hw.ﬂx (97 90) ; (26)
A, =A9=0, A, = —, 19 i
o 7 2rrsing (19) J*hin (0,0) = j (5 + 1) B*¢;x (0, ¢) (27)
the KAM becomes .
with
JxJ=1ihJ + 2iahzcos¢95(co§)9 — 1)er. (20)
A=m—a, m=(0,£1,£2,...), (28)
From this equation we have J=\+n, n'=01,2,.... (29)
J., J+| = £hJ 21 . . .
[ ] * (21) the normalized eigenfunctions are of the form
[J2,J+] = F2ah?[J16 (cosd — 1)
. — . 4‘|M imep
+5 (co$0 — 1) J4]. (22) ¥ai (6,9) = ea i By (c0B) €,
9 m=0,+1,+2,..., (30)
J, = —ih < - z‘a) (23)
e

where

In this stage, an important remark about the applicability of _ . 12

Pauli criterion in the presence @B can be made: inthe . = _ (/23 +(in/2)A (2J+1 INGERPY +1)> (31)
non-relativistic case, Cheng [28] shows that, in the presence dr T (j—[A[+1)

of AB, the KAM does not satisfy the fundamental commuta- ) )

tion relations (15), (16) and (17), and instead of this equatiorficcording to the sign of, we have

we have Eqgs. (20), (21) and (22). These rules are different

N

from Egs. (15), (16) and (17). As described in [28], in the Uangr (0,9) = ex, 5, P (cod) e™#,

region of the existence of the magnetic field which is inacces- M=m—a>0, ji =X\ +n

sible to the electron, the commutation relations of the KAM 0. 0) = PR (cod)) i (32)
should take it into account. This type of commutations re- Uaajs (0:0) = x5 P (COP) €777,

lations as said to be global [28], and consequently, the Pauli A =m—a<0, jo=-A+n

criterion is inapplicable.
The eigenso'utions Oﬂz and J2 under the fo”owing The Inappllcablllty of the Pauli criterion modified Comp|ete|y

boundary condition & = 0, , the total Hilbert space S: the total Hilbert space S is split into
two subspacesy,, andS_. S is spanned by all the eigen-
¥ (0,9),_, . =0. (24)  functionswy, ;, (8, ¢), and.S_ is spanned by all the eigen-

functions 1, (6, ). These two subspaces are not con-
are presented by Kretzschmar [33]. This condition meangected by the ladder operators.
that the particle is restricted to the doubly-connected region |n what follows, we calculate the KAM for both cosmic
of § # 0,m: the topological explanation of th&B effect  strings and global monopoles in non-commutative space: the

assumes that the presence of a solenoid makes the configgse of commutative space-time is well treated in [49].
uration space non-simply connected. The Aharonov-Bohm

effect specifies that there can be a shift in the interference o case of cosmic strings
fringes whenever there is a superposition of waves with dif-
ferent winding numbers about the hole, and it gives that phasg non-commutative cosmic strings, replacing the vedtBr

shift in the interference pattern as by the relation
P
%Adl' (25) Ap = 2ra’rsind’ (33)
we have the following relation
The presence of the hole-in-space at the solenoid enables the g
existence of a vector potentiad (r) with nonzero circula- . ih2a )
tion, while keeping a zero magnetic fielsl = V x A every- I xJ=ihd + — codd(cos’d — 1)e,. (34)

where in space. However, it does not require that this circula-
tion be nonzero, - and, in fact, it can be arbitrary, and among e case of global monopoles

Rev. Mex. Fis66 (2) 192—-208
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The case of non-commutative global monopoles, with where the wave functiotp [36, 37, 56-58] has the following
P form
Ap = 2mb'rsing’ (35)

Eq. (19) becomes

2ih%a = F .
3% 3 =i+ 5 Ecoshi(co —1)e,  (36) U InORI=e (20D0,:D-1,82D0, 85 D1, B1 Dy,

T
Here, we note the following:(i) the non-commutative-space E3Do, E3Dy1, HiD 1, Ho Do, H3D 1)
does not, affect the KAM relations of commutations in both
cosmic strings and global monopoles cases. In the limit
wherea’ — 1 (b — 1), we recover the same results as
in the case of flat space, (ii) as the topologies of the config- i . .
uration spaces in both cosmic strings and global monopole§€re D denotes the Wigner functions [36, 37, 59], by using
models are different however the respect® vectors turn ~ SOMe properties of these functions suchias = D’ ,
out to be the same. This situation can be explained as fo = 0;+1, =1, and with the help of recurrent formulas
lows: generally, when we investigate the effect of curvature
of space on théB effect, we consider the situation in which
there is not only a tube of magnetic force lines but also an ex-

(39)

ternal static cylindrically symmetric gravitational field with 0pD_| = 1 (aD_y — vDy),

symmetry axis of that coincides with the axis of the mag- 2

netic tube. Nevertheless in the large distances from the sym- A —cosf 1

metry axis, the space becomes locally flat, and the region of g P-1=35 (@D—2 +vDo) (40)
spatial curvature (the gravitational tube) may either coincide 1

with the magnetic tube or include it or, finally, be included in 99Dy = 3 (vD_1 —vDyy),

it [54,55]. Besides, we can see that Egs. (19), (20) and (21) \ 1

are obviously different from Egs. (19), (16) and (17). Ac- . o==(wD_1 +vDy;) (41)
cording to Cheng [28], the KAM of the particle, in both cases, sin ¢ 2

does not satisfy the fundamental commgtatpn relafuons ofthe 8ot = 1 (vDo — aDss)

angular momentum even when the particle is restricted to the 2

doubly-connected space where it does not touch the magnetic X+ cosf 1

field on the z-axis. The region where the magnetic field exists —ang D+1= 5 @Do+aDis) (42)

and is inaccessible to the particle should also be taken into
account in the physically meaningful commutation relations.

3. The vector bosons with the Aharonov- wherev = \/j(j+1)/2 anda = /(j —1)(j +2), the
Bohm and Coulomb potentials in the pres- €igenvalue of/. and.J* are:
ence of topological defects in the commuta-

tive space
3.1. The solutions in the cosmic strings J.D7,  =AD?, | (43)
The components of th&B vector potential in the background J2DZA75 =j(G+1) DJ;M,
of cosmic strings are written as Jo A4 (7 =012, (44)
AO = %7 AT = AG = 07 A‘P = Zﬂa’fsine' (37)
From Eqg. (5), the DKP equation with th&B and Coulomb
potentials with
0 k ] : 2
(& (5-1) visto, + = @ - o) o
C T T
+ ﬂ (0, — i) — a'sim B3 [t ih (d
a'rsing | % J. = o \ap ) (45)
Mc _
_ afcosgmﬂ - h}w —0, (38) A=moe (46)
a
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Inserting these relations into (38), and after an algebraic calPutting them into the system of equations, we obtain
culation, we obtain the following system of equations

s (E—kq> FEi+i (8 +- ) H1+ HQ—%(I)L (60)

M h

2
- <8r + r) Ey — ; (By+ E3) = ~Lo,,  (47)
) Ela (61)

h .
_Z(E kq>¢1 Mc
1 kq . 1 ch r h
—|\E——|E1+i|l0-+—- ) Hy
ch r r

—i <a7, + i) o =21, (62)

) h
+ %H2 = %@1, (48) . .
i kq iv Me o = %HQ. 63)
r
— (E> Ey, — — (Hy— H3) = —®&,, (49) ) )
ch r r h After an algebraic calculation, we have
Zh(E—kq>E3—l’(ar+1>H3—wH2 i2+gi+ 1 Ef@ ’
¢ " " " dr? ~ rdr o (ch)? r
Mc
et 2 (50) 2 .
h _<Mc) _J(J+1)}¢1:0. (64)
gk g, 1 Vg = Mep 51 ! "
T \E T Pt pPe= b G Now, using the following substitutions
1 kq d Mc 4 (M204 — E2)
L (E-M)e, - Lo, = LK 52 P I G
m( 1) o - 00 = S 52 p=tr € . (69)
Mc kq 2VE
e 66
T \E- ) D3 + 450 = =B, (53) Y= ST hee (66)
&, = M7 (67)
T
—1i (8,. + 1) P — E452 %Hb (54) Eq. (64) becomes
r T
d*R (r) JG+D) =2 ¢ 1
v Mc — —=>—=-)R(r)=0. (68
M Putting that
<5‘ + ) By + ‘152 hCH:a, (56) p
R(r) = Np exp (=2) H (o), (69)

To solve this system of equations, we define the operato . .
17 [36,37] where: (68) is transformed into

d’H dH
1 0 0 0 2 dQ(p)—F(Q(s—i-l)p—pQ) (p)—i—[(s(s—&-l)
P dp
o 0 IIs O 0

T=\g o m o |P 2

00 o GG =7) = (s )| ) =0
0 -1 with

IIy=| 0 -1 0 |. (57) s+c+l=-n,(n=012..), (70)

-1 0 0 or
1 1\
The eigenvalue equatidiyy = P results in two different s=—5H\(itg) —* (71)

in parity states?” = (-1 )]H andP = (- )J' Finally, the solutions are

S

3.1.1. Solutions with the parity = (—1)"""
((M62)2 - E2)n!

In this case, we have d =
(ch)2(n+s+1)T'(n+2s+2)
Py =0,03 =21, =0 (58)
s+1 _B) L2s+1 72
Ey = —FEy, Ey =0, Hy = H; (59) xp eXp( 9) (72)
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- Mc? e For the subspac§, , where\; > 0 andj; = \; + n/,
nl 14 12 the total spinor is
—_—\ 2
<n+%+\/(j+%)2*72> 0
2 D
M
= < NG 0
1 + ~? - _D+1
<”+%+\/(|m;’a|+”/+%)2_72> _iBt J\ZCZZ (Ei %) D
Equation (73) can be put into another form as .
M 5 ]\;02 (E - TQ) D+1
C —1
En=—F—, (74) w7z (0r ) D1
VIt = () HaDy
—1 1
where M2 (- 7) Dy
5 with
1 .
R=nto+ (j + 2) — 2 b, = N,WPJ:Al (cod)) p’e 2 L25H1, (78)
. N e For the case of subspace , where\, < 0 and
m—« — i i
n+2+\/(‘ = ‘+n,+2) — 2, lo = =X + 7/, the total spinor is
0
In the non-relativistic approximation, the behavior of the D,
spectrum of energy, for very small values of the constant 0
can be expanding in a power seriesyias follows [59] —Dy1
,YQ 74 N 3 _iBt M_icl2 (E - %) D
P {1_2N2_2N4 (j +3 4) I } R P =€ 0 o
= (BE-4)D
where Me? ( rJ) o
Me? (851,1/ F)Dfl
N — , |Im—«a 2 (T) FQDO
= | | a7z (Or +7) D
) with
is the principal quantum number, ahti] means the biggest By = Npop P2 (CO9) p'e” 22T (80)

integer inferior to/V: the different terms in (75) can be inter- ] . ) .
preted as follows: the first term corresponds to the rest energy-1-2.  Solutions with the parity = (1)’
of th.e particle. The ;econd term is 'the same as the ene':r'gy.of@y using the operatoﬁ, we extracted the following rela-
particle of mass M in a Coulomb field in the non-relativistic tions:
approximation. This term depends on geometrical parame-—
ters of space’. The third term determines the relativistic cor- b3 =&,,FE3=F,H3 = H{,Hy = 0. (81)
rection to the energy. We see that the correction to the energﬁ’!utting them into our system, we obtain
depends on the quantum numberj = n’ + |(m — «)/d/|, '
and with the geometric parameter of space-titheFinally, (@ + 2) B, +2%E + %% =0, (82)
in both limits« — 0 (annihilation of the Aharonov-Bohm r r

otential) andr’ — 1 (flat space), we obtain ;
P ) (fatspace) , Zh(E—kq>E1+i(8r+l>H1—]\§C§51_O, (83)

E(NR) Mc C r r

n = —— (76)
1 2,2 ; k ; M
VAT Z(E—q>E2—2WHl—0@2:0, (84)
with NR denotes the non-relativistic, ch r r h
3 k M
1 12 - (E—q)¢1+”¢o—cE1=0, (85)
K:n+§+ (j+2> — 92 ch r r h
i kq Mc
andj = |m| + n'. Eq. (76) coincide with the habitual spec- o <E - T) P2+ 0,P0 + ——Fz =0, (86)
trum of the energy of Coulomb potential [59]. ) ) v
Concerning the total wave function, we consider both i <5T + ) by + Z@Q + —CHl =0. (87)
subspaces’, andS_ r r h
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As a first remark, no way to decouple this system. So, tdMe can see that the spectrum of the energy coincide with the

solve them, we will focus only on the states wjth= 0: this
situation can be treated straightforwardly. Thus, we have:

2 M
(ar + ) Ey + 70450 =0, (88)
T

. 1 M
SR i+ ) m - Mla, — o, (89)
ch r r h
i kq Mec
ch<E7") E277¢2707 (90)
i kq Mc
Cﬁ( 7‘) 1 A 1 07( )

; M
‘(e kq By + 0,80 + ——Fy =0, (92)
ch T h

1 M
i (ar n ) b+ —CH, =0, (93)
r h
or
2 2d 2 1 kq\>
- 42 _ -4 - (-2
{dTQJrrdr r2+(ch)2< r)
2
- (M) }E _o. (o)
h
Putting that
F(r
and using the Egs. (65) and (66), we obtain
d*F (p) 2-9* ¢ 1
- L 22 )F(p) = 96
R e LA R o
Now, when we write that
F(p)=Np*le 2v(p) (97)
Eq. (96) is transformed into
d*v (p) dv (p)
2% Y \F) 2\ PP
s +2(+1)p-p? i
+[(s(s4+1) = (2=9%)) = (C+s+1) pl v (p) =0 (98)
with .
5= —l+v9-4° V29_4’7 (99)
Finally, the total eigensolutions are
2
E, - e , (100)
1+ 2l —
(n+%+%(974'\/2)§)
" (Mc2)? — E2p) ’
n(p) = (ch)2(n+s+1)T(n+2s+2)
s+1 P\ r2a+1
x p*lexp ( 2) [2a+1, (101)

habitual spectrum of energy of Coulomb potential, [59], and
not depend on the geometry of space.

3.2. The solutions in global monopoles

The metric of the space-time in this case is given by

ds® = dt* — dr* — b”*r? (d6* + sin® 0dp®),  (102)
with the components of the 4-vector potential are
k
Ap="2 A, =A4y=0, A, = (103)
T

© 27brsing’
whereb? = 1 — 8rGn? and the parameterbeing the energy
scale of symmetry breaking. From Eq. (5), the DKP equation
with the AB and Coulomb potentials is written by:

kq

B , i /
{hc (E — T) +i310, + o (00 — b5251)}z/)

Lo (8, — i) — b'sig 31
prsing \ (¥ 1

- c03963ﬁ2> - ]‘éc}@p —0, (104)
By using Egs. (13) and (14), Eq. (104) becomes

- (j N 2) B~ B+ ) = 2o (109)
% (E— kf) E1+z‘<jr +i>H1

+o =2, (106)

é (E - ’j?) B — % (H, — H3) = %fﬁz (107)
cih (E k'q) Egi<$ +i>H3

_b% L= %@, (108)

. (E _ ’i) @y = 0B (109)

. <E _ ’jff) - ao="Cp, (10

L (E _ ’W> )

“ig ) e e =N 12

Z,i; (B — B3) = %fb (113)

i (j + i) By + 1 0r = %Hg (114)
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As in the case of cosmic strings, we distinguished two casesSo, the eigenvalues are given by

3.2.1. Solutions with the parity = (—1)’ "

Using the operatof, we have

Z<Ekq)E1+i<ar+1)H1
ch r r

% Me
—Hy = —@ 115
b 2 7 1 ( )
M
i (E_’“l> o, = Mep (116)
c r h
1 M
—i (ar + ) & == CH, (117)
T h
2iv Mec
—¢; = —H. 118
b 1 A 2, ( )

After an algebraic calculation, and by putting (116), (117),

and (118) in (115), we obtain

Poo2d 1 (o ke)T o (Me)
dr?2  rdr (Cﬁ)z r h

JG+1)
_ }451 _ 0. (119)
T
With the aid of the following relation
o = B0 (120)
T
and by inserting (65) (66) in (119), we have
2R (7") j(i/—;l) —’Y2 ¢ 1
2 S g i R(r)=0. (121)
Now let us make a change of variable
R(r) = Np**'exp (—g) H(p). (122)
In this case, (121) is transformed into
d*H (p) dH (p)
2 )
et 26+1)p—p7) i
+ [(s(s—i—l)— (j(j+1)—72))
s =0 a2
with
L JGe Y S e
T ITy) T

2
E, = Me (126)

2
1+ — R
<7L+%_(7J(g$1)+%_72)2>

(Mc2)? — E2p) '
(ch)2(n+s+1)T (n+2s+2)

&, =

x p*+lexp (_g) L2t

with j = |(m — «)/V'| +n/.
Equation (129) can be rewritten into another form as

Mc?

(127)

o — 128
= (129)
with .
1 JjG+1 1 57
/
/€=n+2+{b/2+4_7

andj = |(m —a)/V'| + n’. As in the case of the cosmic
string, we can make the following remarks: (i) for very small
values ofy, the energy spectrum can be expanding in a power
series iny. This expansion gives

o8 ol
E,~Mc? 1_2N’2_ — %4—... , (129)
QN/S{J%;;U_'_%}
with
N = n+n’+‘mb_/a +1

l

is the principal quantum number, afil’] means the biggest
integer inferior toN’ : the different terms in (129) can be
interpreted as follow: the first term corresponds to the rest
energy of the particle. The second term is the same as the
energy of a particle of mass M in a Coulomb field in the non-
relativistic approximation. This term depends on the geomet-
rical parameter of space-tinté. The third term determines
the relativistic correction to the energy. As in the case of the
cosmic string, we see also that the correction to the energy
depends on the quantum number; = |(m — a)/b'| + n/,
and the geometric parameter of space-time

In both limits « — 0 (annihilation of the Aharonov-
Bohm potential) and’ — 1 (flat space), we obtain

Mc?

En = (130)

with

mm s ‘+12 2
K =n —_ —_ —
5 its 7%

is obtained by following the condition of quantification de- @ndj = [m| +n'. Thus, we recover the habitual spectrum of

fined by

s+¢+1l=-n,(n=0,1,2,...). (125)

the energy of Coulomb potential [59].
Now, concerning the total wave function, we consider two
subspace&; andS_
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e For the case of subspace,, whereA; > 0 and
j1 = A1 + n, the total spinor is

wn)\ljl =e .7 : 0 D4 (131)

with

By = Npor P, (cOP) pe™ 2 L2

(132)

e For the case of subspace , where A, < 0 and
ja = —Xg + 1/, the total spinor is

D_4

| i (p- @) D_
_iEt Mc? ( r 1
wn)\ljz =e h 0 by

(133)

with

£ r2s+1
£ 2o,

@1 = Nyop P2 (COD) pe™ (134)

3.2.2. Solutions with the parity = (—1)

Following the definition of the operatd¥, we have

Mc
)E2—|—2b E1—|—T¢0—0 (135)

C
( k>1—|—z< 1>H1—A§C¢1_0(136)
p_k

Y gy - Z”Hl—%@:o (137)
br h

) Mc

Mec
>¢2+a¢0+hE2_o (139)

O + )¢1+bV¢ %leoam)

201

As described above, we focus only on the special case where

j = 0: following the same procedure we obtain
M
(a + >E2 + hc% —0 (141)

1 M
E—kf Ei+i| 0+~ Hl—ic¢1=0(142)
ch r h

(g K g, Meg, o (143)
ch T h

(gt g, Mep _ o (144
ch r h

C
=2 =0 (145)

1 M
i (ar + r) oy + %Hl — 0 (146)

(E—k>@2+8¢0+
ch r

or with the componenk,, we obtain

2 2d 2 1 kq\ >
T p_
{dr2 +Td7“ r2 + (Cﬁ)2 ( 7“)

2
— (Mc> }E2 =0 (147)
h
Using Egs. (65), (66), and putting that
F
B="0.0), (148)
and by expanding Eq. (147), we have
d*F (p) 2-9* ¢ 1 B
Now, let's make that
F(p)=Npte 2u(p), (150)
Eqg. (149) is transformed into
d*v (p) dv (p)
2 )
s 2(6+1)p—0p7) i
+[s6+n-2-27)
- (<+s+1>p}v<p> —0 (s
with
_ /Q 2
- # (152)

Finally, the eigensolutions are
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takes the form

2 2
E, = Mc” (153) {dQ (M) - (BD) 2 (kg) E©
o \/1 7 % dr? (ch)? (ch)*r
nt+i+3(9-442)2 5
, iD= (%))
5 2 - i RO (ry=0. (159)
((Mcz) —E2>n! r
Flp) = (ch)2(n+s+1)T (n+2s+2) Now, using the following substitutions
, A(et = (BO)?)
% ps+1 exp (_g) Lia+1. (154) P = f?”, f = ﬁ202 y (160)
L i (161)
4. The vector bosons with the Aharonov-bohm he et
and Coulomb potentials in the presence & (_l +1)—-" ¢ 1)
of topological defects in non-commutative dp? p? p 4
Space % RO (p) = 0, (162)
4.1. The solutions in non commutative cosmic strings and putting that
As described above, according to the padty we distin- RO (p) = Np*T'e™ 2 H (p), (163)
guished two cases Eq. (162) is transformed into
d*H (p) dH (p)
. 2 2
4.1.1. Case of the paritp = (—1)’*" e 2(s+1p=p°) dp
TheAB vector potential in the background of a cosmic string + [ (s(s+1)—(I(1+1)— 72))
takes the form
A="0 a—ay=0, A= 2 (sy) _(Hs“)p}H(p):O’ (164)
r 2ma’r sin 0

To solve (164), we use the Frobenius method [60—62]. This

In non-commutative cosmic strings, by putting (120) in can pe written as a power series expansion around the origin:
(119), we have

) o e\ H(p) =" crp. (165)
& (M2 - 2k 36+ — (%) k=0
ar? (ch)? N (ch)’r - r2 R(r) Putting (165) into (164), we obtain the following recurrence
relations:
LO| (ke \ 1 (.. . E+((+s+1)
2h (@h)?) = (‘7 A = EGrD+2ernGrnt 399
kg 2\ 4 By starting withcy = 1, we have
J— —_— — = 1
(ch) >r4] R(r) =0, (156) ¢ = C+s+1) (167)
2(s+1) "’
where 1+ (C+s+1)
= —"qa;. 1
. / / @ 2+4(5+1) “ (68)
J=R+n, (0 =0,1,2,..) (157) Now, imposing thaty+; = 0, we obtain
m—«
h
The quantum numbeyrare the eigenvalues of, and.J2, re- where 9 L
spectively: we can see that these eigenvalues depend on the s = 21 + (j + 1> —2) .
magnetic fluxa and the geometric parameter of spate 2 2

Using the perturbation technique, Eq. (156), &= 0, Finally, the eigensolutions are
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andj = |m| +n'. Eq. (174) coincide with the habitual spec-

1 trum of energy of Coulomb potential [59].

203

2 2 :
© \/((MC2) - (E(O)) )”! For the expectation value of * [39, 63, 64], we have
R =
w = s s DT (1 25+ 2)
L0 ( s 175
<ot (=5) 2 (170) / O] o (AT9)
2 0
E(O) - M62
nl ™ 1+ 2 Putting (170) into (175), we have
(nr 3+ (223 —2)
k
M 2 k 212 _ 0 2
_ ¢ | @) - 2 (\/<(Mc) (EO) )) n!
1+ = o= T
\/ ("+%+\/(i+%)2—72>2 (ch)2(n+s+1)I (n+ 25 +2)
with j = |(m — a)/d’| + /.
The last equation can be also put into another form as % /p25+2 k —p L2s+1> dp. (176)
M02 0
BY = —— 172
nl /1 +")/2I€72 ( )
where By using the following relation [63, 64]
— + 1 + ) + 1 ’ 2
K=mn 5 7 5 e o
In the non-relativistic approximation: for very small values /e_xl"ﬁsLﬁ (z) L}, () dz = (-1)"™"
of the constany, the energy spectrum can be expanding in a 0
power series iny as follows [59] . T(o+s+ 1) (B+m+1)T(s+1)
2 4 N I(n—m)! -
E((;):Mcg A ' 1_§ .| ar ml(n—m)T(B+1)T(s—n+m+1)
n 2N2 2N* \j+1 4
’ wa By [ TS T L0 177)
where 852 B+1,n—m+1
N=|n+n+ ’m/a +1 we obtain [52,63, 64]-
a
J 3
is the principal quantum number, afii] means the biggest 4 {\/(M02)2 — (E(O))Z}
integer inferior toV : the different terms in (173) can be (r=3)= 14+ } (178)
interpreted as follows: the first term corresponds to the rest (2s4+1)(2s) (n+s+1) s+1
energy of the particle. The second term is the same as the 14
energy of a particle of mass M in a Coulomb field in the 4 {\/(M02)2 —(E@) }
non-relativistic approximation. This term depends on geo- <7"_4> =
metrical parameters of spaeé The third term determines (2s=1)s(2s+1) (n+s+1)
the relativistic correction to the energy. We see that the cor- 3n 3n(n—1)
rection to the energy depends on the quantum number x 1+5 +1 + (s+1) (25 + 3) (179)
j =n'+|(m—«a)/d|, and with the geometric parameter
of space-time:’. Finally, in the case of a commutative space ] ] ) )
(© = 0), in both limitsa. — 0 (annihilation of the Aharonoy- NOW: ith the aid of the following relations,
Bohm potential) and’ — 1 (flat space), we obtain
Mc? ©.L=06L,, 180
EY = \/% (174) o (180)
+ K~ L.
| K Per— 22 1 0(0%), (181)
with 4hr
1 1\? 1 1 L6 )
= - - 2 == 182
& n—|—2+ <]+2> v P +4ﬁr3+0(@)7 ( )
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we obtain 4.1.2. Case of the parity = (—1)’

N O /m-a . kq\? As in the case of commutative space, we only consider the
EWNO =~ JU+1) == i
h a fic case wherg = 0: consequently, we want to solve the dif-

ferential equations for the componerdis or F' (r). Thus,

9 ((M02)2 _ (E(O))2>4 in non-commutative cosmic strings, the differential equations
for the component’ (r) is given by
(2s—1)s(2s+1)(n+s+1) ,
kq _ (kg
3n 3n(n—1) £+E2_M264_2(hC>E_2 (hc) F(r)
x |1+ - (183) a2 h2c2 2 -2 "
s+1  (s+1)(2s+3) (ch)™r
) () (CLE
a (Ch) 2h (Ch)2 rg
3
2((Me)* = (B©)?) " N
><(2s+1)(28)(n+s+1){1 s+1} +<2_(hc>>r4 Fr) =0 (188)

Now, concerning the total wave function, we have two case$Jsing the perturbation technique, (188), dr= 0, takes the
according to the subspas andS_

form
For the case of subspace., where A\; > 0 and ©)? 2 k (0)
* For ; pace,, ! 2 (BY) = ()t 2 (k) Ef
j1 = A1 +n/, the total spinor is = 4 _
0 d7a2 h202 (Ch)z r
D,
2 — | 4
0 - <2”°) FO=" (1) = 0. (189)
—Dyy r
_ —i (p_ka\p . . . . .
0 iBt Mc2 T 1 0 As in the case of cosmic strings, the eigensolutions are
g =€ ( 0 ) o (184) gs.the el
M /2
v (B =) Dy EO — - — . (190)
ez (Or + 1) D \/ * (n+%+§(9—472)%)2
7= (57) HaDo )
ez (O + 7) Do o O\ 2 2
_ !
with 0 ((Mc - (B) )n
) A £ (p) = ()2 +s+ )T (n+2s+2)
Qsl — NnorPJ: 1 (COEQ) s 7§L2s+1 (185) & n-—+s n S
e For the case of subspace , where Ay < 0 and p
j2 = —X2 + 1/, the total spinor is x p*hexp (‘g) Lyt (191)
0 In the general case, the spectrum of energy is written as
D_,
2
0 ENC _ O (m—-a 9 _ kq
—Dyy h a he
. i (E-*)D_
0 _ Bt Mc2 T 1 0 4
PO e ( 0 ) "  (186) _ ( 730))2)
i k
Mc? (E_qu>D+1 [ 2s—1)a 23+1)(n+s+1)
MZ? (aﬁ F) D
,152 (QZTD) HQDO 3n (TL - 1)
370z (Or +7) D s+1 (s+1) (25 +3)
ith
" e ( ) (ko) E
D = Nyuor P (cOP) pPe™ SL25FL. (187) h\ (ch)?
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2<(Mc2)2—(E5?))2)3 {H . ]

m+s+1)T(n+2s+2) s+1

cosmic string, we see also that the correction to the energy
depends on the quantum numberj = |(m — a)/V'| + n/,

and the geometric parameter of space-tihdn the case of

a commutative spac®(= 0), and in both limitso. — 0 (an-

4.2. The solutions in non-commutative g|oba| nihilation of theAharonov-Bohm potential) and’ — 1 (ﬂat

(192)

monopoles space), we obtain
By using the same procedure as in the case of non- EO _ Mc? (197)
. . . . . . nl 9
commutative cosmic strings, the eigensolutions are recapit- V142572
ulated as follows: .
with
j+1 1 1 2
4.2.1. Forcase of the parity = (—1) K =t 5 I (j n 2) 2
5 3 andj = |m| + n/. Thus, as in the case of cosmic string,
\/<(Mc2)2 _ (Eflo)) )n! we recover the habitual spectrum of the energy of Coulomb
RO () potential.
" | (eh)2(n+s+1)T (n+2s5+2) Finally, we have
C. 2
pvoy _ 9 (m - a) iG+1 <kq>
x p*tlexp (,B) LZSJFI, (193) h b2 he
2
M 2 —_ (0)
BY = £ . (194) (E©) )
1+ — T~ 571 23+1)(n+5+1)
{n+%+(3(g,+21)+%—"{2)§}
1 3n(n—1)
with j = |(m — «)/b'| + n’. EQ. (194) can be rewritten into b s+ 1 (s+1)(25s+3)
another form as
2 ) (kq) E
B9 - M (195) T :
nl W (ch)
. 2 2\ 3
with > ) 2 ((are2)” = (B©)%) 0
, 1 jG+1D 1 52 X 1+ . (198)
H:TL+§+ T‘FZ*V (25+1)(23)(n+s+1) s+ 1

andj = [(m — «)/b'| +n'. Asin the case of cosmic strings, Now, concerning the total wave function, we have two cases:
we can make the following remarks: (i) for very small values

of 4, the energy spectrum can be expanding in a power series ® For the case of subspace,, where A, > 0 and

in . This expansion gives j1 = A1+ 0/, the total spinor is
0
2 4 D_
EQ~pme |1-1 i .|, @9s) !
" 2N s [iG+D 112 0
2N {Tﬁ} -Dy,
. | =i (E- @) D_
0 _iBEt Mc? ( r 1 0
with WO = 0 3 (199)
N = |n+n"+|(m-a)/t|+1 ﬁ(E_qu)DJrl
—_——— .
J o2 (%% +) Do
is the principal guantum number, apdl’] means the biggest yzcz (3%) 1H2D0
integer inferior toN’ : the different terms in (196) can be M2 (31’ + F) D1

interpreted as follow: the first term corresponds to the rest

energy of the particle. The second term is the same as the with

energy of a particle of mass M in a Coulomb field in the non- gﬁgo) = N0, PN (co9) pse—%LflSH, (200)
relativistic approximation. This term depends on the geomet-

rical parameter of space-timté. The third term determines For the case of subspace , where \, < 0 and

the relativistic correction to the energy. As in the case of the jo = —A2 + 1/, the total spinor is
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0
D,
0
—Dy
. F5 (E—") D_
0 _iBt M c? ( r 1 0
Ukyy =€ 0 o (201)
]\4102 (E - %) D+1
a7z (Or +7) D
w7 (777) HaDo
N2 (ar + %) Dy
with
D" = Nyor P22 (cOF) pPe” SL25FL. (202)
4.2.2. For case of the paritp = (—1)
The eigensolutions are
. 3
(o)
F) _
) s DTt 25 4 2)
x p*lexp (—g) L2+, (203)
Mc?
EO = < (204)

" \/1+ (n+%+;2
e 2)

we have

FNO) _ _% (m —

(9-472)3)

- (0)%)’

X [1+

2s+1)(n+s+1)

[281
|

3n(n—1) }
s—|—1 (s+1)(2s+3)

© (kq) E
E( —) [( (c?i)2 )

2 ((Mc2)2 —

(E(O))2)3

“2s11)(2s

5. Conclusion

This paper is devoted to studying the solutions of the rela-
tivistic quantum motion of a charged vector particles in the

Y(n+s+1)

{1 + H”J ] (205)

presence of an Aharonov-Bohm and Coulomb potentials in
the space-times produced by idealized cosmic strings and
global monopoles in non-commutative space-time. These so-
lutions have been obtained, and the influence of the parame-
ter of the geometry of both topological defects has been dis-
cussed. Also the remarks, which Cheng [24] has been pro-
posed concerning thaB effect, have been extended in our
case: thus, the presenceAl® potential changes completely
the fundamental commutation relations of the angular mo-
mentum. Following the works of [28, 29, 33], we note that (i)
the KAM relations are not satisfied, even when the particle
is restricted to the doubly connected space where it does not
touch the magnetic field on the z-axis. Besides, (ii) the region
where the magnetic field exists and where it is inaccessible
to the electron should be taken into account in the physical
commutation relations; finally (iii), the Pauli criterion which
said that “the appropriate eigenfunctions are those which are
square-integrable and are closed under the operation of lad-
der operators” is inapplicable to the veck®. The existence

of the magnetic field on the z-axis is the principal cause of
breaking down the symmetry of the particle’s motion around
the z-axis. The eigenfunctions and eigenvalueg,afnd J?

have been presented under the following boundary condition
Y (1,0,0)|p—0.» = 0, the space is split into two subspaces,
S.is spanned by all the wave functian, », (6, ), andS_is
spanned by all the wave functiafy, », (¢, ). By applying

the perturbative approach, we studied the vector bosons in the
NC space: the spectrum of energy in the gravitational field of
cosmic strings and global monopoles are different. It is ex-
plicitly shown that (i) the KAM relations are not affected by
the paramete® of the NC space, and (ii) the degeneracy of
the initial spectral line is broken in the transition from com-
mutative space-time into the non-commutative space-time.

Appendix
A. The matrices

The matrices3 used in this paper are [36, 37]

.
.

o O OO
.

o O o oo
OO O O OO

8 =

==k N ==R=R=R=E=)

|

<
cococoocococo Tt o
cococoococot+ oo
coocococotT ooo
coococococococoo
coococococococoo
cococococococoo

o oo oo

o O o o
o O O
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