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1. Introduction

The analysis of gravitational interactions with a quantum me-
chanical system has recently attracted attention in particle
physics and has been an active field of research.The general
way to understand the interaction between relativistic quan-
tum mechanical particles and gravity is to solve the general
relativistic form of their wave equations. These solutions are
valuable tools for examining and improving models and nu-
merical methods for solving complicated physical problems.

In the conventional relativistic approach, the interac-
tion of S = 0 and S = 1 hadrons with different nuclei
has been described by the second-order Klein-Gordon (KG)
equation for S=0 and Proca equation for S=1 particles. It
is well known that is very difficult to tackle these second-
order equations mathematically and to derive the physics be-
hind them. Therefore, considerable interest in recent years
has been devoted to examining the interactions of S=0 and
S=1 hadrons with nuclei by using the first-order relativistic
Duffin-Kemmer-Petiau (DKP) equation [1–4].

One important question related to the DKP equation con-
cerns the equivalence between its spin0 and1 sectors and
the theories based on the second-order KG and Proca equa-
tions. Historically, the loss of interest in the DKP stems from
the equivalence of the DKP approach to the Klein-Gordon
(KG) and Proca descriptions in on-shell situations, in addi-
tion to the greater algebraic complexity of the DKP formu-
lation. However, in the 1970s, this supposed equivalence
was questioned in several situations involving the breaking
of symmetries and hadronic possess, showing that in some
cases, the DKP and KG theories can give different results.
Moreover, the DKP equation appears to be richer than the KG
equation if the interactions are introduced. In this context,
alternative DKP-based models were proposed for the study
of meson-nucleus interactions, yielding a better adjustment
to the experimental data when compared to the KG-based

theory. In the same direction, approximation techniques for-
merly developed in the context of nucleon-nucleus scattering,
were generalized, giving a good description for experimen-
tal data of meson-nucleus scattering. The deuteron-nucleus
scattering was also studied using the DKP equation, moti-
vated by the fact that this theory suggests a spin1 structure
from combining two spin-1/2. Also, we can cite the works
on the meson-nuclear interaction and the relativistic model
of α−nucleus elastic scattering where they have been treated
by the formalism of the DKP theory. Recently, there is a re-
newed interest in the DKP equation. It has been studied in
the context of quantum chromodynamics (QCD), covariant
Hamiltonian formalism, in the causal approach, in the con-
text of five-dimensional Galilean invariance, in the scatter-
ing of K+ nucleus, in the presence of the Aharonov-Bohm
potential, in the Dirac oscillator interaction, in the study of
thermodynamics properties, on the supersymmetric, and fi-
nally in the presence of some shape of interactions. These
examples, in some cases, break the equivalence between the
theories based on the DKP equation and KG and Proca equa-
tions (see Refs. [13,14] and the references therein).

The study of quantum systems in curved space-times
goes back to the end of the 1920s and to the beginning of
the 1930s, when the generalization of the Schrödinger and
Dirac equations to curved spaces was discussed, motivated
by the idea of constructing a theory which combines quan-
tum physics and general relativity. Spinor fields and parti-
cles interacting with gravitational fields have been the sub-
ject of many investigations. Among of them, we can men-
tion those concerning the determination of the renormalized
vacuum expectation value of the energy-momentum tensor
and the problem of the creation of particles in expanding uni-
verses, and those connected with quantum mechanics in dif-
ferent background space-times [5]. The analysis of gravita-
tional interactions with a quantum mechanical system has re-
cently attracted attention in particle physics and has been an
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active field of research.The general way to understand the in-
teraction between relativistic quantum mechanical particles
and gravity is to solve the general relativistic form of their
wave equations. These solutions are valuable tools for exam-
ining and improving models and numerical methods for solv-
ing complicated physical problems. In addition, the influence
of the gravitational field on quantum mechanical systems at-
tracted attention in particle physics several years ago. As an
example, the analysis of the hydrogen atom in curved space-
time has been considered in an arbitrarily curved space-time
[6–12].

According to the modern concepts of theoretical physics,
topological defects, where they have been formed by the vac-
uum phase transition in the early Universe, play an important
role in the physical properties of systems, and they appear in
gravitation as monopoles, strings, and walls. Among them,
cosmic strings and monopoles seem to be the best candidates
to be observed. The former are linear defects, and the space-
time produced by an idealized cosmic string is locally flat,
however, globally conical, with a planar angle deficit deter-
mined by the string tension. So, they do not produce local
gravitational interaction; however, they modify the geometry
of the space-time producing planar and solid angle deficit,
respectively (See Refs [13,14] and references therein).

The idea of non-commutative space–time geometry was
at first proposed by Heisenberg and revived again by Sny-
der [15]: this non-commutativity of space has played an im-
portant role in understanding various phenomena for physics.
In this way, we can cite the study of the thermal properties of
both Klein-Gordon and Duffin-Kemmer-Petiau (DKP) oscil-
lators [16, 17]. The study of non-commutative spaces and
their implications in physics is an extremely active area of
research. It has been argued in various instances that non-
commutativity should be considered as a fundamental fea-
ture of space-time at the Planck scale. On the other side,
the study of quantum systems in a non-commutative (NC)
space has been the subject of much interest in last years, as-
suming that non-commutativity may be, in fact, a result of
quantum gravity effects. In these studies, some attention has
been given to the models of non-commutative quantum me-
chanics (NCQM). The interest in this approach lies in the fact
that NCQM is a fruitful theoretical laboratory where we can
get some insight into the consequences of non-commutativity
in field theory by using standard calculation techniques of
quantum mechanics. Various non-commutative field theory
models have been discussed as well as many extensions of
quantum mechanics. Of particular interest are the so-called
phase space non-commutativity, which has been investigated
in the context of quantum cosmology, black holes physics and
the singularity problem. This specific formulation is neces-
sary to implement the Bose-Einstein statistics in the context
of NCQM [18–25].

In our case, one way to deal with the NC space is to
change the standard product of the fields by the star product

(alternatively called Weyl-Moyal product) [53] with

(f ∗ g) (x)=exp
[
iΘij∂xi

∂xj

]
f (x) g (x) . (1)

whereΘij = Θεij andΘ is the non-commutative parame-
ter [18–25]. The position and momentum satisfying the fol-
lowing commutation relations

[x̂i, x̂j ] = iΘij , [p̂i, p̂j ] = 0, [x̂i, p̂j ] = iδij . (2)

The Aharonov–Bohm effect [26], is a quantum mechanical
phenomenon in which an electrically charged particle is af-
fected by an electromagnetic potential(V, A), despite being
confined to a region in which both the magnetic fieldB and
electric fieldE are zero. In 1959, Aharonov and Bohm, us-
ing the Schr̈odinger equation, considered the scattering of an
electron in an external static magnetic field produced by an
infinitely long solenoid and found an effect that does not de-
pend on the depth of penetration of the electrons into the re-
gion of magnetic force lines. This showed that in quantum
mechanics, the electromagnetic field acts on charged particles
even when the particles cannot reach the region where the
field is localized. The interest in the Aharonov-Bohm effect
lies in the overthrow of the classical dictum that the vector po-
tential is only an auxiliary quantity which facilitates the cal-
culation of the observable magnetic and electric fields. The
effect will also manifest itself when we remove the slits and
study the scattering of the electron waves off the solenoid.
In the idealized limit of an infinitely thin solenoid where we
would expect that the geometric cross- section should van-
ish, the Aharonov-Bohm effect ensures that the electrons still
scatter. Finally, we note that theAB effect has been consid-
ered by different authors for different situations [26–29].

Before continuing, an important remark concerning the
AB effect can be made. Henneberg concluded [27], based on
Pauli’s criterion [29, 33], that the Aharonov-Bohm effect ex-
ists, and the problem if the Pauli criterion can be applied to
the Aharonov-Bohm effect has not yet been considered care-
fully. It can be considered as playing a purely mathematical
role. However, a series of experiments presents evidence for
the reality of the Aharonov-Bohm effect [27, 29, 32]. The
eigenproblems of the kinetic angular momentum (KAM) of
the electron in theAB effect has been solved by Kretzschmar
[33]. The total Hilbert space of the eigenfunctions is split
into two subspaces. the symmetry of the motion of the elec-
tron around the magnetic flux makes Pauli’s criterion inappli-
cable. Many authors have ignored the inapplicability of the
criterion of Pauli [34], for example, see Ref [41].

The outline of this paper is as follows: Sec. 2 is devoted
to the DKP equation in curved space-time. In Secs. 3 and 4,
we focus on the solutions of the vector bosons in the pres-
ence of the Aharonov-Bohm and Coulomb potentials in the
gravitational field of topological defects in both commutative
and non-commutative space-times. Finally, Sec. 5 will be a
conclusion.
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2. The DKP equation in curved space

2.1. The formalism

The first-order relativistic DKP equation for a free charged
vector bosons of massM in flat space-time is given by [1–4]

(
iβµ∂µ − Mc

~

)
ψ = 0, (3)

whereβµ(µ = 0, 1, 2, 3) are the DKP matrices which satisfy
the following commutation rules

βκβνβλ + βλβνβκ = gκνβλ + gνλβκ, (4)

andgµν = diag(1,−1,−1,−1) is the Minkowski metric ten-
sor. For the flat space, the beta matrices are chosen as in
Ref. [36,37] (see Appendix A).

In curved space-time, (3) can be written by [38–43]

{
iβ̃µ

(
∂µ +

1
2
ωµabS

ab − ie

~c
Aµ

)
− Mc

~

}
Ψ = 0, (5)

with Aµ denotes the vector potential associated with the elec-
tromagnetic field,Sab =

[
βa, βb

]
and β̃µ are the Kemmer

matrices: these matrices are related to their Minkowski coun-
terparts via

β̃µ = eµ
(a)β

a. (6)

The spin connection is calculated by using the following re-
lation

ωµab = e′(a)le
j
(b)Γ

l
jµ − ej

(b)∂µe′(a)j , (7)

where

Γµ
νλ =

gµρ

2
(gρν,λ + gρλ,ν − gνλ,ρ) , (8)

are the Christoffel symbols [43]. with the aids of Eqs. (6),
(7) and (8), spin connection coefficients are:

• For the metric corresponding to the cosmic strings
[44–48]

ds2 = dt2 − dr2 − r2dθ2 − a′2r2 sin2 θdϕ2, (9)

where−∞ < t < +∞, 0 6 r, 0 6 θ 6 π, and
0 6 ϕ 6 2π, the spin connection coefficients are [49]

ωθab =




0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


 ,

ωϕab =




0 0 0 0
0 0 0 a′sinθ
0 0 0 a′cosθ

−a′sinθ −a′cosθ 0 0


 . (10)

The parametera′ is the deficit angle associated with
conical geometry obeyinga′ = 1 − 4η, and η is
the linear mass density of the string. It is defined
in the range(0, 1], and corresponds to a deficit angle
Ω = 2π (1− a′). Here, the tetradeµ

(a) are chosen to be

eµ
(a) =




1 0 0 0
0 1 0 0
0 0 1

r 0
0 0 0 1

a′rsinθ


 . (11)

• Now, in the case of the global monopoles, with the fol-
lowing metric [50–52]

ds2 = dt2 − dr2 − b′2r2
(
dθ2 + sin2θdϕ2

)
, (12)

whereb′2 = 1− 8πGη2 and the parameterη being the
energy scale of symmetry breaking, the spin connec-
tion coefficients are [49]

ωθab =




0 0 0 0
0 0 b′ 0
0 −b′ 0 0
0 0 0 0


 ,

ωϕab =




0 0 0 0
0 0 0 b′sinθ
0 0 0 cosθ

−b′sinθ −cosθ 0 0


 , (13)

with the tetradeµ
(a) are chosen to be

eµ
(a) =




1 0 0 0
0 1 0 0
0 0 1

b′r 0
0 0 0 1

b′rsinθ


 . (14)

Now, we are ready to discuss the problem of the applicability
of the Pauli criterion in the presence ofAB potential for both
cosmic strings and global monopoles.

2.2. The Pauli criterion

As we know, the KAM satisfy the following relations

J × J = i~J , (15)

whereJ = L + S, and with the following standard commu-
tations rules [53,54]

[Ji, Jj ] = i~εijkJk, (16)

[Jz, J±] = ±~J±,
[
J2, J±

]
= 0, (17)

where
Jz = −i~

∂

∂ϕ
. (18)

HereJ± = Jx ± iJy are the ladder operators. The KAM
is based on these commutation relations where Pauli re-
quired that the appropriate eigenfunctions be those which are
square-integrable and are closed under the operation of the
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ladder operators. This condition is called the Pauli criterion,
and consequently, the commutations relations in Eqs. (15),
(16) and (17) are pertinent for the Pauli criterion to be appli-
cable.

In the presence of theAB potential with the following
components

Ar = Aθ = 0, Aϕ =
φ

2πrsinθ
, (19)

the KAM becomes

J× J = i~J + 2iα~2cosθδ
(
cos2θ − 1

)
er. (20)

From this equation we have

[Jz, J±] = ±~J± (21)
[
J2, J±

]
= ∓2α~2

[
J±δ

(
cos2θ − 1

)

+ δ
(
cos2θ − 1

)
J±

]
. (22)

Jz = −i~
(

∂

∂ϕ
− iα

)
. (23)

In this stage, an important remark about the applicability of
Pauli criterion in the presence ofAB can be made: in the
non-relativistic case, Cheng [28] shows that, in the presence
of AB, the KAM does not satisfy the fundamental commuta-
tion relations (15), (16) and (17), and instead of this equation
we have Eqs. (20), (21) and (22). These rules are different
from Eqs. (15), (16) and (17). As described in [28], in the
region of the existence of the magnetic field which is inacces-
sible to the electron, the commutation relations of the KAM
should take it into account. This type of commutations re-
lations as said to be global [28], and consequently, the Pauli
criterion is inapplicable.

The eigensolutions ofJz and J2 under the following
boundary condition atθ = 0, π,

ψ (θ, ϕ)|θ=o,π
= 0. (24)

are presented by Kretzschmar [33]. This condition means
that the particle is restricted to the doubly-connected region
of θ 6= 0, π: the topological explanation of theAB effect
assumes that the presence of a solenoid makes the config-
uration space non-simply connected. The Aharonov-Bohm
effect specifies that there can be a shift in the interference
fringes whenever there is a superposition of waves with dif-
ferent winding numbers about the hole, and it gives that phase
shift in the interference pattern as�

Adl. (25)

The presence of the hole-in-space at the solenoid enables the
existence of a vector potentialA (r) with nonzero circula-
tion, while keeping a zero magnetic fieldB = ∇×A every-
where in space. However, it does not require that this circula-
tion be nonzero, - and, in fact, it can be arbitrary, and among

the possible arbitrary values of the circulation is the real num-
ber

�
Adl = 0. So, the presence of a doubly-connected re-

gion of space is perfectly consistent with a null value of the
magnetic flux at the solenoid: so, by using the following sub-
stitutions [53]

Jzψjλ (θ, ϕ) = λ~ψjλ (θ, ϕ) , (26)

J2ψjλ (θ, ϕ) = j (j + 1) ~2ψjλ (θ, ϕ) , (27)

with

λ = m− α, m = (0,±1,±2, . . .) , (28)

j = |λ|+ n′, n′ = 0, 1, 2, . . . . (29)

the normalized eigenfunctions are of the form

ψλj (θ, ϕ) = cλ,jP
−|λ|
j (cosθ) eimϕ,

m = 0,±1,±2, . . . , (30)

where

cλ,j = e(iπ/2)λ+(iπ/2)|λ|
(

2j+1
4π

Γ (j+ |λ|+1)
Γ (j− |λ|+1)

)1/2

. (31)

According to the sign ofλ, we have





ψλ1j1 (θ, ϕ) = cλ1,j1P
−λ1
j1

(cosθ) eimϕ,

λ1 = m− α > 0, j1 = λ1 + n′

ψλ2j2 (θ, ϕ) = cλ2,j2P
λ2
j2

(cosθ) eimϕ,

λ2 = m− α < 0, j2 = −λ2 + n′.

(32)

The inapplicability of the Pauli criterion modified completely
the total Hilbert space S: the total Hilbert space S is split into
two subspaces,S+, andS−. S+ is spanned by all the eigen-
functionsψλ1j1 (θ, ϕ), andS− is spanned by all the eigen-
functionsψλ2l2 (θ, ϕ). These two subspaces are not con-
nected by the ladder operators.

In what follows, we calculate the KAM for both cosmic
strings and global monopoles in non-commutative space: the
case of commutative space-time is well treated in [49].

• case of cosmic strings

In non-commutative cosmic strings, replacing the vectorAB
by the relation

Aϕ =
Φ

2πa′rsinθ
, (33)

we have the following relation

J × J = i~J +
2i~2α

a′ cosθδ
(
cos2θ − 1

)
er. (34)

• case of global monopoles
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The case of non-commutative global monopoles, with

Aϕ =
Φ

2πb′rsinθ
, (35)

Eq. (19) becomes

J× J = i~J +
2i~2α

b′2
cosθδ

(
cos2θ − 1

)
er (36)

Here, we note the following:(i) the non-commutative-space
does not, affect the KAM relations of commutations in both
cosmic strings and global monopoles cases. In the limit
wherea′ → 1 ( b′ → 1), we recover the same results as
in the case of flat space, (ii) as the topologies of the config-
uration spaces in both cosmic strings and global monopoles
models are different however the respectiveAB vectors turn
out to be the same. This situation can be explained as fol-
lows: generally, when we investigate the effect of curvature
of space on theAB effect, we consider the situation in which
there is not only a tube of magnetic force lines but also an ex-
ternal static cylindrically symmetric gravitational field with
symmetry axis of that coincides with the axis of the mag-
netic tube. Nevertheless in the large distances from the sym-
metry axis, the space becomes locally flat, and the region of
spatial curvature (the gravitational tube) may either coincide
with the magnetic tube or include it or, finally, be included in
it [54, 55]. Besides, we can see that Eqs. (19), (20) and (21)
are obviously different from Eqs. (19), (16) and (17). Ac-
cording to Cheng [28], the KAM of the particle, in both cases,
does not satisfy the fundamental commutation relations of the
angular momentum even when the particle is restricted to the
doubly-connected space where it does not touch the magnetic
field on the z-axis. The region where the magnetic field exists
and is inaccessible to the particle should also be taken into
account in the physically meaningful commutation relations.

3. The vector bosons with the Aharonov-
Bohm and Coulomb potentials in the pres-
ence of topological defects in the commuta-
tive space

3.1. The solutions in the cosmic strings

The components of theAB vector potential in the background
of cosmic strings are written as

A0 = kq
r , Ar = Aθ = 0, Aϕ = Φ

2πa′r sin θ . (37)

From Eq. (5), the DKP equation with theAB and Coulomb
potentials

{
β0

~c

(
E − kq

r

)
+ iβ1∂r +

iβ2

r

(
∂θ − β2β1

)}
ψ

+
{

iβ3

a′rsinθ

[
(∂ϕ − iα)− a′sinθβ3β1

− a′cosθβ3β2

]
− Mc

~

}
ψ = 0, (38)

where the wave functionψ [36, 37, 56–58] has the following
form

ψ (r, θ, ϕ) = e−
iEt
~

(
Φ0D0, Φ1D−1, Φ2D0, Φ3D+1, E1D−1,

E2D0, E3D+1,H1D−1,H2D0, H3D+1

)T
.

(39)

HereD denotes the Wigner functions [36, 37, 59], by using
some properties of these functions such asDσ = Dj

−m,σ,
σ = 0, +1,−1, and with the help of recurrent formulas

∂θD−1 =
1
2

(aD−2 − νD0) ,

λ− cos θ

sin θ
D−1 =

1
2

(aD−2 + νD0) (40)

∂θD0 =
1
2

(νD−1 − νD+1) ,

λ

sin θ
D0 =

1
2

(νD−1 + νD+1) (41)

∂θD+1 =
1
2

(νD0 − aD+2) ,

λ + cos θ

sin θ
D+1 =

1
2

(νD0 + aD+2) (42)

whereν =
√

j (j + 1)/2 anda =
√

(j − 1) (j + 2), the
eigenvalue ofJz andJ2 are:

JzD
j
−λ,s = λDj

−λ,s (43)

J2Dj
−λ,s = j (j + 1) Dj

−λ,s,

j =| λ | +n′, (n′ = 0, 1, 2, . . .) (44)

with

Jz = − i~
a′

(
d

dϕ
− iα

)
, (45)

λ =
m− α

a′
. (46)
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Inserting these relations into (38), and after an algebraic cal-
culation, we obtain the following system of equations

−
(

∂r +
2
r

)
E2 − ν

r
(E1 + E3) =

Mc

~
Φ0, (47)

i

c~

(
E − kq

r

)
E1 + i

(
∂r +

1
r

)
H1

+
iν

r
H2 =

Mc

~
Φ1, (48)

i

c~

(
E − kq

r

)
E2 − iν

r
(H1 −H3) =

Mc

~
Φ2, (49)

i

c~

(
E − kq

r

)
E3 − i

(
∂r +

1
r

)
H3 − iν

r
H2

=
Mc

~
Φ3, (50)

− i

c~

(
E − kq

r

)
Φ1 +

ν

r
Φ0 =

Mc

~
E1, (51)

− i

c~

(
E − kq

r

)
Φ2 − d

dr
Φ0 =

Mc

~
E2, (52)

− i

c~

(
E − kq

r

)
Φ3 +

ν

r
Φ0 =

Mc

~
E3, (53)

−i

(
∂r +

1
r

)
Φ1 − iν

r
Φ2 =

Mc

~
H1, (54)

iν

r
(Φ1 − Φ3) =

Mc

~
H2, (55)

i

(
∂r +

1
r

)
Φ3 +

iν

r
Φ2 =

Mc

~
H3, (56)

To solve this system of equations, we define the operator
Π̂ [36,37] where:

Π̂ =

∣∣∣∣∣∣∣∣

1 0 0 0
0 Π3 0 0
0 0 Π3 0
0 0 0 −Π3

∣∣∣∣∣∣∣∣
P,

Π3 =

∣∣∣∣∣∣

0 0 −1
0 −1 0
−1 0 0

∣∣∣∣∣∣
. (57)

The eigenvalue equation̂Πψ = Pψ results in two different
in parity states:P = (−1)j+1 andP = (−1)j .

3.1.1. Solutions with the parityP = (−1)j+1

In this case, we have

Φ0 = 0, Φ3 = −Φ1, Φ2 = 0 (58)

E3 = −E1, E2 = 0,H3 = H1 (59)

Putting them into the system of equations, we obtain

i

c~

(
E−kq

r

)
E1+i

(
∂r+

1
r

)
H1+

iν

r
H2=

Mc

~
Φ1, (60)

− i

c~

(
E − kq

r

)
Φ1 =

Mc

~
E1, (61)

−i

(
∂r +

1
r

)
Φ1 =

Mc

~
H1, (62)

2iν

r
Φ1 =

Mc

~
H2. (63)

After an algebraic calculation, we have
{

d2

dr2
+

2
r

d

dr
+

1
(c~)2

(
E − kq

r

)2

−
(

Mc

~

)2

− j (j + 1)
r2

}
φ1 = 0. (64)

Now, using the following substitutions

ρ = ξr, ξ2 =
4

(
M2c4 − E2

)

~2c2
, (65)

γ =
kq

~c
, ς =

2γE

~cξ
, (66)

Φ1 =
R (r)

r
, (67)

Eq. (64) becomes

d2R (r)
dρ2

+
(
−j (j + 1)− γ2

ρ2
−ζ

ρ
− 1

4

)
R (r) = 0. (68)

Putting that

R (r) = Nρs+1 exp
(
−ρ

2

)
H (ρ) , (69)

(68) is transformed into

ρ2 d2H (ρ)
dρ2

+
(
2 (s + 1) ρ− ρ2

) dH (ρ)
dρ

+
[(

s (s + 1)

− (
j (j + 1)− γ2

) )− (ζ + s + 1) ρ

]
H (ρ) = 0

with
s + ς + 1 = −n, (n = 0, 1, 2, . . .) , (70)

or

s = −1
2

+

√(
j +

1
2

)2

− γ2. (71)

Finally, the solutions are

Φ1 =




√(
(Mc2)2 − E2

)
n!

(c~) 2 (n + s + 1) Γ (n + 2s + 2)




1
2

× ρs+1 exp
(
−ρ

2

)
L2s+1

n , (72)
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Enl =
Mc2

√
1 + γ2(

n+ 1
2+

√
(j+ 1

2 )
2−γ2

)2

=
Mc2

√
1 + γ2(

n+ 1
2+

√
(|m−α

a′ |+n′+ 1
2 )

2−γ2

)2

, (73)

Equation (73) can be put into another form as

Enl =
Mc2

√
1 + γ2κ−2

, (74)

where

κ = n +
1
2

+

√(
j +

1
2

)2

− γ2

= n +
1
2

+

√(∣∣∣∣
m− α

a′

∣∣∣∣ + n′ +
1
2

)2

− γ2.

In the non-relativistic approximation, the behavior of the
spectrum of energy, for very small values of the constantγ,
can be expanding in a power series inγ as follows [59]

Enl'Mc2

[
1− γ2

2N2
− γ4

2N4

(
N

j + 1
2

− 3
4

)
+ . . .

]
, (75)

where

N =


n + n′ +

∣∣∣∣
m− α

a′

∣∣∣∣
︸ ︷︷ ︸

j

+1




is the principal quantum number, and[N ] means the biggest
integer inferior toN : the different terms in (75) can be inter-
preted as follows: the first term corresponds to the rest energy
of the particle. The second term is the same as the energy of a
particle of mass M in a Coulomb field in the non-relativistic
approximation. This term depends on geometrical parame-
ters of spacea′. The third term determines the relativistic cor-
rection to the energy. We see that the correction to the energy
depends on the quantum numbern, j = n′ + |(m− α)/a′|,
and with the geometric parameter of space-timea′. Finally,
in both limits α → 0 (annihilation of the Aharonov-Bohm
potential) anda′ → 1 (flat space), we obtain

E
(NR)
nl =

Mc2

√
1 + γ2κ−2

, (76)

with NR denotes the non-relativistic,

κ = n +
1
2

+

√(
j +

1
2

)2

− γ2

andj = |m| + n′. Eq. (76) coincide with the habitual spec-
trum of the energy of Coulomb potential [59].

Concerning the total wave function, we consider both
subspacesS+ andS−

• For the subspaceS+, whereλ1 > 0 andj1 = λ1 + n′,
the total spinor is

ψnλ1j1 = e−
iEt
~




0
D−1

0
−D+1

−i
Mc2

(
E − kq

r

)
D−1

0
i

Mc2

(
E − kq

r

)
D+1

−i
Mc2

(
∂r + 1

r

)
D−1

i
Mc2

(
2iν
r

)
H2D0

−i
Mc2

(
∂r + 1

r

)
D+1




Φ1 (77)

with

Φ1 = NnorP
−λ1
j1

(cosθ) ρse−
ρ
2 L2s+1

n . (78)

• For the case of subspaceS−, where λ2 < 0 and
l2 = −λ2 + n′, the total spinor is

ψnλ2j2 = e−
iEt
~




0
D−1

0
−D+1

−i
Mc2

(
E − kq

r

)
D−1

0
i

Mc2

(
E − kq

r

)
D+1

−i
Mc2

(
∂r + 1

r

)
D−1

i
Mc2

(
2iν
r

)
H2D0

−i
Mc2

(
∂r + 1

r

)
D+1




Φ1 (79)

with

Φ1 = NnorP
λ2
j2

(cosθ) ρse−
ρ
2 L2s+1

n . (80)

3.1.2. Solutions with the parityP = (−1)j

By using the operator̂Π, we extracted the following rela-
tions:

Φ3 = Φ1, E3 = E1,H3 = H1,H2 = 0. (81)

Putting them into our system, we obtain(
∂r +

2
r

)
E2 + 2

ν

r
E1 +

Mc

~
Φ0 = 0, (82)

i

c~

(
E − kq

r

)
E1 + i

(
∂r +

1
r

)
H1 − Mc

~
Φ1 = 0, (83)

i

c~

(
E − kq

r

)
E2 − 2

iν

r
H1 − Mc

~
Φ2 = 0, (84)

− i

c~

(
E − kq

r

)
Φ1 +

ν

r
Φ0 − Mc

~
E1 = 0, (85)

i

c~

(
E − kq

r

)
Φ2 + ∂rΦ0 +

Mc

~
E2 = 0, (86)

i

(
∂r +

1
r

)
Φ1 +

iν

r
Φ2 +

Mc

~
H1 = 0. (87)
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As a first remark, no way to decouple this system. So, to
solve them, we will focus only on the states withj = 0: this
situation can be treated straightforwardly. Thus, we have:

(
∂r +

2
r

)
E2 +

Mc

~
Φ0 = 0, (88)

i

c~

(
E − kq

r

)
E1 + i

(
∂r +

1
r

)
H1 − Mc

~
Φ1 = 0, (89)

i

c~

(
E − kq

r

)
E2 − Mc

~
Φ2 = 0, (90)

− i

c~

(
E − kq

r

)
Φ1 − Mc

~
E1 = 0, (91)

i

c~

(
E − kq

r

)
Φ2 + ∂rΦ0 +

Mc

~
E2 = 0, (92)

i

(
∂r +

1
r

)
Φ1 +

Mc

~
H1 = 0, (93)

or {
d2

dr2
+

2
r

d

dr
− 2

r2
+

1
(c~)2

(
E − kq

r

)2

−
(

Mc

~

)2
}

E2 = 0. (94)

Putting that

E2 =
F (r)

r
χ (θ, ϕ) , (95)

and using the Eqs. (65) and (66), we obtain

d2F (ρ)
dρ2

+
(
−2− γ2

ρ2
− ζ

ρ
− 1

4

)
F (ρ) = 0. (96)

Now, when we write that

F (ρ) = Nρs+1e−
ρ
2 v (ρ) (97)

Eq. (96) is transformed into

ρ2 d2v (ρ)
dρ2

+
(
2 (s + 1) ρ− ρ2

) dv (ρ)
dρ

+
[(

s (s+1)− (
2−γ2

))− (ζ+s+1) ρ
]
v (ρ) =0 (98)

with

s =
−1 +

√
9− 4γ2

2
. (99)

Finally, the total eigensolutions are

En =
Mc2

√
1 + γ2

(
n+ 1

2+ 1
2 (9−4γ2)

1
2

)2

, (100)

Fn (ρ) =




√
(Mc2)2 − E2n!

(c~) 2 (n + s + 1)Γ (n + 2s + 2)




1
2

× ρs+1 exp
(
−ρ

2

)
L2a+1

n . (101)

We can see that the spectrum of the energy coincide with the
habitual spectrum of energy of Coulomb potential, [59], and
not depend on the geometry of space.

3.2. The solutions in global monopoles

The metric of the space-time in this case is given by

ds2 = dt2 − dr2 − b′2r2
(
dθ2 + sin2 θdϕ2

)
, (102)

with the components of the 4-vector potential are

A0 =
kq

r
, Ar = Aθ = 0, Aϕ =

Φ
2πb′r sin θ

, (103)

whereb2 = 1− 8πGη2 and the parameterη being the energy
scale of symmetry breaking. From Eq. (5), the DKP equation
with theAB and Coulomb potentials is written by:

{
β0

~c

(
E − kq

r

)
+ iβ1∂r +

iβ2

b′r

(
∂θ − b′β2β1

)}
ψ

+

{
iβ3

b′rsinθ

(
(∂ϕ − iα)− b′sinθβ3β1

− cosθβ3β2

)
− Mc

~

}
ψ = 0, (104)

By using Eqs. (13) and (14), Eq. (104) becomes

−
(

d

dr
+

2
r

)
E2 − ν

b′r
(E1 + E3) =

Mc

~
Φ0 (105)

i

c~

(
E − kq

r

)
E1 + i

(
d

dr
+

1
r

)
H1

+
iν

b′r
H2 =

Mc

~
Φ1 (106)

i

c~

(
E − kq

r

)
E2 − iν

b′r
(H1 −H3) =

Mc

~
Φ2 (107)

i

c~

(
E − kq

r

)
E3 − i

(
d

dr
+

1
r

)
H3

− iν

b′r
H2 =

Mc

~
Φ3 (108)

− i

c~

(
E − kq

r

)
Φ1 +

ν

b′r
Φ0 =

Mc

~
E1 (109)

− i

c~

(
E − kq

r

)
Φ2 − d

dr
Φ0 =

Mc

~
E2 (110)

− i

c~

(
E − kq

r

)
Φ3 +

ν

b′r
Φ0 =

Mc

~
E3 (111)

−i

(
d

dr
+

1
r

)
Φ1 − iν

b′r
Φ2 =

Mc

~
H1 (112)

iν

b′r
(Φ1 − Φ3) =

Mc

~
H2 (113)

i

(
d

dr
+

1
r

)
Φ3 +

iν

b′r
Φ2 =

Mc

~
H3 (114)
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As in the case of cosmic strings, we distinguished two cases.

3.2.1. Solutions with the parityP = (−1)j+1

Using the operator̂Π, we have

i

c~

(
E − kq

r

)
E1 + i

(
∂r +

1
r

)
H1

+
iν

b′r
H2 =

Mc

~
Φ1, (115)

− i

c~

(
E − kq

r

)
Φ1 =

Mc

~
E1, (116)

−i

(
∂r +

1
r

)
Φ1 =

Mc

~
H1, (117)

2iν

b′r
Φ1 =

Mc

~
H2, (118)

After an algebraic calculation, and by putting (116), (117),
and (118) in (115), we obtain

{
d2

dr2
+

2
r

d

dr
+

1
(c~)2

(
E − kq

r

)2

−
(

Mc

~

)2

−
j(j+1)

b′2

r2

}
Φ1 = 0. (119)

With the aid of the following relation

Φ1 =
R (r)

r
, (120)

and by inserting (65) (66) in (119), we have

d2R (r)
dρ2

+

(
−

j(j+1)
b′2 − γ2

ρ2
− ζ

ρ
− 1

4

)
R (r) = 0. (121)

Now let us make a change of variable

R (r) = Nρs+1 exp
(
−ρ

2

)
H (ρ) . (122)

In this case, (121) is transformed into

ρ2 d2H (ρ)
dρ2

+
(
2 (s + 1) ρ− ρ2

) dH (ρ)
dρ

+
[ (

s (s + 1)− (
j (j + 1)− γ2

))

− (ζ + s + 1) ρ

]
H (ρ) = 0 (123)

with

s = −1
2

+

√(
j +

1
2

)2

− γ2 (124)

is obtained by following the condition of quantification de-
fined by

s + ς + 1 = −n, (n = 0, 1, 2, . . .) . (125)

So, the eigenvalues are given by

En =
Mc2

√
1 + γ2(

n+ 1
2−( j(j+1)

b′2 + 1
4−γ2)

1
2

)2

(126)

Φ1 =




√
(Mc2)2 − E2n!

(c~) 2 (n + s + 1) Γ (n + 2s + 2)




1
2

× ρs+1 exp
(
−ρ

2

)
L2s+1

n (127)

with j = |(m− α)/b′|+ n′.
Equation (129) can be rewritten into another form as

Enl =
Mc2

√
1 + γ2κ′−2

, (128)

with

κ′ = n +
1
2

+
{

j (j + 1)
b′2

+
1
4
− γ2

} 1
2

and j = |(m− α)/b′| + n′. As in the case of the cosmic
string, we can make the following remarks: (i) for very small
values ofγ, the energy spectrum can be expanding in a power
series inγ. This expansion gives

Enl'Mc2

[
1− γ2

2N ′2−
γ4

2N ′3
{

j(j+1)
b′2 + 1

4

} 1
2

+ . . .

]
, (129)

with

N ′ =


n + n′ +

∣∣∣∣
m− α

b′

∣∣∣∣
︸ ︷︷ ︸

l

+1




is the principal quantum number, and[N ′] means the biggest
integer inferior toN ′ : the different terms in (129) can be
interpreted as follow: the first term corresponds to the rest
energy of the particle. The second term is the same as the
energy of a particle of mass M in a Coulomb field in the non-
relativistic approximation. This term depends on the geomet-
rical parameter of space-timeb′. The third term determines
the relativistic correction to the energy. As in the case of the
cosmic string, we see also that the correction to the energy
depends on the quantum numbern, j = |(m− α)/b′| + n′,
and the geometric parameter of space-timeb′.

In both limits α → 0 (annihilation of the Aharonov-
Bohm potential) andb′ → 1 (flat space), we obtain

Enl =
Mc2

√
1 + γ2κ−2

, (130)

with

κ′ = n +
1
2

+

√(
j +

1
2

)2

− γ2,

andj = |m|+ n′. Thus, we recover the habitual spectrum of
the energy of Coulomb potential [59].

Now, concerning the total wave function, we consider two
subspaceS+ andS−
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• For the case of subspaceS+, where λ1 > 0 and
j1 = λ1 + n, the total spinor is

ψnλ1j1 = e−
iEt
~




0
D−1

0
−D+1

−i
Mc2

(
E − kq

r

)
D−1

0
i

Mc2

(
E − kq

r

)
D+1

−i
Mc2

(
∂r + 1

r

)
D−1

i
Mc2

(
2iν
b′r

)
H2D0

−i
Mc2

(
∂r + 1

r

)
D+1




Φ1 (131)

with

Φ1 = NnorP
−λ1
j1

(cosθ) ρse−
ρ
2 L2s+1

n . (132)

• For the case of subspaceS−, where λ2 < 0 and
j2 = −λ2 + n′, the total spinor is

ψnλ1j2 = e−
iEt
~




0
D−1

0
−D+1

−i
Mc2

(
E − kq

r

)
D−1

0
i

Mc2

(
E − kq

r

)
D+1

−i
Mc2

(
∂r + 1

r

)
D−1

i
Mc2

(
2iν
b′r

)
H2D0

−i
Mc2

(
∂r + 1

r

)
D+1




Φ1 (133)

with

Φ1 = NnorP
λ2
j2

(cosθ) ρse−
ρ
2 L2s+1

n . (134)

3.2.2. Solutions with the parityP = (−1)j

Following the definition of the operator̂Π, we have
(

∂r +
2
r

)
E2 + 2

ν

b′r
E1 +

Mc

~
Φ0 = 0 (135)

i

c~

(
E − kq

r

)
E1 + i

(
∂r +

1
r

)
H1 − Mc

~
Φ1 = 0 (136)

i

c~

(
E − kq

r

)
E2 − 2

iν

b′r
H1 − Mc

~
Φ2 = 0 (137)

− i

c~

(
E − kq

r

)
Φ1 +

ν

b′r
Φ0 − Mc

~
E1 = 0 (138)

i

c~

(
E − kq

r

)
Φ2 + ∂rΦ0 +

Mc

~
E2 = 0 (139)

i

(
∂r +

1
r

)
Φ1 +

iν

b′r
Φ2 +

Mc

~
H1 = 0 (140)

As described above, we focus only on the special case where
j = 0: following the same procedure we obtain

(
∂r +

2
r

)
E2 +

Mc

~
Φ0 = 0 (141)

i

c~

(
E − kq

r

)
E1 + i

(
∂r +

1
r

)
H1 − Mc

~
Φ1 = 0 (142)

i

c~

(
E − kq

r

)
E2 − Mc

~
Φ2 = 0 (143)

− i

c~

(
E − kq

r

)
Φ1 − Mc

~
E1 = 0 (144)

i

c~

(
E − kq

r

)
Φ2 + ∂rΦ0 +

Mc

~
E2 = 0 (145)

i

(
∂r +

1
r

)
Φ1 +

Mc

~
H1 = 0 (146)

or with the componentE2, we obtain

{
d2

dr2
+

2
r

d

dr
− 2

r2
+

1
(c~)2

(
E − kq

r

)2

−
(

Mc

~

)2
}

E2 = 0 (147)

Using Eqs. (65), (66), and putting that

E2 =
F (r)

r
χ (θ, ϕ) , (148)

and by expanding Eq. (147), we have

d2F (ρ)
dρ2

+
(
−2− γ2

ρ2
− ζ

ρ
− 1

4

)
F (ρ) = 0. (149)

Now, let’s make that

F (ρ) = Nρs+1e−
ρ
2 v (ρ) , (150)

Eq. (149) is transformed into

ρ2 d2v (ρ)
dρ2

+
(
2 (s + 1) ρ− ρ2

) dv (ρ)
dρ

+
[ (

s (s + 1)− (
2− γ2

))

− (ζ + s + 1) ρ

]
v (ρ) = 0 (151)

with

s =
−1 +

√
9− 4γ2

2
. (152)

Finally, the eigensolutions are
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En =
Mc2

√
1 + γ2

(
n+ 1

2+ 1
2 (9−4γ2)

1
2

)2

(153)

Fn (ρ) =




√(
(Mc2)2 − E2

)
n!

(c~) 2 (n + s + 1) Γ (n + 2s + 2)




1
2

× ρs+1 exp
(
−ρ

2

)
L2a+1

n . (154)

4. The vector bosons with the Aharonov-bohm
and Coulomb potentials in the presence
of topological defects in non-commutative
space

4.1. The solutions in non commutative cosmic strings

As described above, according to the parityP , we distin-
guished two cases

4.1.1. Case of the parityP = (−1)j+1

TheAB vector potential in the background of a cosmic string
takes the form

A0 =
kq

r
, Ar = Aθ = 0, Aϕ =

Φ
2πa′r sin θ

. (155)

In non-commutative cosmic strings, by putting (120) in
(119), we have

{
d2

dr2
−

(
Mc2

)2−E2

(c~)2
−2 (kq) E

(c~)2 r
−

j (j+1)−
(

kq
c~

)2

r2

}
R (r)

−LΘ
2~

[(
kqE

(c~)2

)
1
r3

+

(
j (j+1)

−
(

kq

c~

)2
)

1
r4

]
R (r) = 0, (156)

where

j = |λ|+ n′, (n′ = 0, 1, 2, . . .) (157)

λ =
m− α

a′
. (158)

The quantum numberj are the eigenvalues ofJz andJ2, re-
spectively: we can see that these eigenvalues depend on the
magnetic fluxα and the geometric parameter of spacea′.

Using the perturbation technique, Eq. (156), forΘ = 0,

takes the form{
d2

dr2
−

(
Mc2

)2 − (
E(0)

)2

(c~)2
− 2 (kq)E(0)

(c~)2 r

−
j (j + 1)−

(
kq
c~

)2

r2

}
R(0) (r) = 0. (159)

Now, using the following substitutions

ρ = ξr, ξ2 =
4

(
M2c4 − (

E(0)
)2

)

~2c2
, (160)

γ =
kq

~c
, ς =

2γE(0)

~cξ
, (161)

{
d2

dρ2
+

(
− l (l + 1)− γ2

ρ2
− ζ

ρ
− 1

4

) }

×R(0) (ρ) = 0, (162)

and putting that

R(0) (ρ) = Nρs+1e−
ρ
2 H (ρ) , (163)

Eq. (162) is transformed into

ρ2 d2H (ρ)
dρ2

+
(
2 (s + 1) ρ− ρ2

) dH (ρ)
dρ

+
[ (

s (s + 1)− (
l (l + 1)− γ2

))

− (ζ + s + 1) ρ

]
H (ρ) = 0, (164)

To solve (164), we use the Frobenius method [60–62]. This
can be written as a power series expansion around the origin:

H (ρ) =
∞∑

k=0

ckρk. (165)

Putting (165) into (164), we obtain the following recurrence
relations:

ck+1 =
k + (ζ + s + 1)

k (k + 1) + 2 (s + 1) (k + 1)
ak (166)

By starting withc0 = 1, we have

c1 =
(ζ + s + 1)
2 (s + 1)

, (167)

c2 =
1 + (ζ + s + 1)
2 + 4 (s + 1)

a1. (168)

Now, imposing thatck+1 = 0, we obtain

ζ + s + 1 = −n, (169)

where

s = −1
2

+

((
j +

1
2

)2

− γ2

) 1
2

.

Finally, the eigensolutions are
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R(0)
n (r) =




√(
(Mc2)2 − (

E(0)
)2

)
n!

(c~) 2 (n + s + 1) Γ (n + 2s + 2)




1
2

× ρs+1 exp
(
−ρ

2

)
L2s+1

n , (170)

E
(0)
nl =

Mc2

√
1 + γ2(

n+ 1
2+

√
(|m−α

a′ |+n′+ 1
2 )

2−γ2

)2

=
Mc2

√
1 + γ2(

n+ 1
2+

√
(j+ 1

2 )
2−γ2

)2

. (171)

with j = |(m− α)/a′|+ n′.
The last equation can be also put into another form as

E
(0)
nl =

Mc2

√
1 + γ2κ−2

, (172)

where

κ = n +
1
2

+

√(
j +

1
2

)2

− γ2.

In the non-relativistic approximation: for very small values
of the constantγ, the energy spectrum can be expanding in a
power series inγ as follows [59]

E
(0)
nl 'Mc2

[
1− γ2

2N2
− γ4

2N4

(
N

j + 1
2

−3
4

)
+ . . .

]
, (173)

where

N =


n + n′ +

∣∣∣∣
m− α

a′

∣∣∣∣
︸ ︷︷ ︸

j

+1




is the principal quantum number, and[N ] means the biggest
integer inferior toN : the different terms in (173) can be
interpreted as follows: the first term corresponds to the rest
energy of the particle. The second term is the same as the
energy of a particle of mass M in a Coulomb field in the
non-relativistic approximation. This term depends on geo-
metrical parameters of spacea′. The third term determines
the relativistic correction to the energy. We see that the cor-
rection to the energy depends on the quantum numbern,
j = n′ + |(m− α)/a′|, and with the geometric parameter
of space-timea′. Finally, in the case of a commutative space
(Θ = 0), in both limitsα → 0 (annihilation of the Aharonov-
Bohm potential) anda′ → 1 (flat space), we obtain

E
(0)
nl =

Mc2

√
1 + γ2κ−2

, (174)

with

κ = n +
1
2

+

√(
j +

1
2

)2

− γ2

andj = |m|+ n′. Eq. (174) coincide with the habitual spec-
trum of energy of Coulomb potential [59].

For the expectation value ofr−k [39,63,64], we have

〈
r−k

〉
=

∞�
0

r−k
∣∣∣φ(0)

n (r)
∣∣∣
2

drδmm′ . (175)

Putting (170) into (175), we have

〈
r−k

〉
=




2k

(√(
(Mc2)2 − (

E(0)
)2

))k

n!

(c~) 2 (n + s + 1) Γ (n + 2s + 2)




×
∞�
0

ρ2s+2−ke−ρ
(
L2s+1

n

)2
dρ. (176)

By using the following relation [63,64]

∞�
0

e−xx%+sL%
n (x)Lβ

m (x) dx = (−1)n−m

× Γ (% + s + 1)Γ (β + m + 1) Γ (s + 1)
m! (n−m)!Γ (β + 1) Γ (s− n + m + 1)

×3 F2

( −m, s + 1, β − %− s
β + 1, n−m + 1

)
(177)

we obtain [52,63,64]-

〈
r−3

〉
=

4
{√

(Mc2)2 − (
E(0)

)2
}3

(2s + 1) (2s) (n + s + 1)

[
1 +

n

s + 1

]
, (178)

〈
r−4

〉
=

4
{√

(Mc2)2− (
E(0)

)2
}4

(2s− 1) s (2s + 1) (n + s + 1)

×
[
1+

3n

s + 1
+

3n (n− 1)
(s + 1) (2s + 3)

]
, (179)

Now, with the aid of the following relations,

Θ.L = ΘLz, (180)

r̂ = r − L.Θ
4~r

+ 0
(
Θ2

)
, (181)

1
r̂

=
1
r

+
L.Θ
4~r3

+ 0
(
Θ2

)
, (182)
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we obtain

E(NC) = −Θ
~

(
m− α

a′

) (
j (j + 1)−

(
kq

~c

)2
)

×
[

2
((

Mc2
)2 − (

E(0)
)2

)4

(2s− 1) s (2s + 1) (n + s + 1)

×
[
1 +

3n

s + 1
+

3n (n− 1)
(s + 1) (2s + 3)

]]
(183)

− Θ
~

(
m− α

a′

) [(
(kq)E

(c~)2

)

×
2

((
Mc2

)2 − (
E(0)

)2
)3

(2s + 1) (2s) (n + s + 1)

{
1 +

n

s + 1

} ]
.

Now, concerning the total wave function, we have two cases
according to the subspaceS+ andS−

• For the case of subspaceS+, where λ1 > 0 and
j1 = λ1 + n′, the total spinor is

ψ
(0)
nλ1j1

= e−
iEt
~




0
D−1

0
−D+1

−i
Mc2

(
E − kq

r

)
D−1

0
i

Mc2

(
E − kq

r

)
D+1

−i
Mc2

(
∂r + 1

r

)
D−1

i
Mc2

(
2iν
r

)
H2D0

−i
Mc2

(
∂r + 1

r

)
D+1




Φ
(0)
1 (184)

with

Φ
(0)
1 = NnorP

−λ1
j1

(cosθ) ρse−
ρ
2 L2s+1

n . (185)

• For the case of subspaceS−, where λ2 < 0 and
j2 = −λ2 + n′, the total spinor is

ψ
(0)
nλ2j2

= e−
iEt
~




0
D−1

0
−D+1

−i
Mc2

(
E − kq

r

)
D−1

0
i

Mc2

(
E − kq

r

)
D+1

−i
Mc2

(
∂r + 1

r

)
D−1

i
Mc2

(
2iν
r

)
H2D0

−i
Mc2

(
∂r + 1

r

)
D+1




Φ
(0)
1 (186)

with

Φ
(0)
j = NnorP

λ2
j2

(cosθ) ρse−
ρ
2 L2s+1

n . (187)

4.1.2. Case of the parityP = (−1)j

As in the case of commutative space, we only consider the
case wherej = 0: consequently, we want to solve the dif-
ferential equations for the componentsE2 or F (r). Thus,
in non-commutative cosmic strings, the differential equations
for the componentF (r) is given by




d2

dr2
+

E2 −M2c4

~2c2
−

2
(

kq
~c

)
E

(c~)2 r
−

2−
(

kq
~c

)2

r2





F (r)

− L.Θ
2~

[ 


(
kq
~c

)
E

(c~)2


 1

r3

+

(
2−

(
kq

~c

)2
)

1
r4

]
F (r) = 0. (188)

Using the perturbation technique, (188), forΘ = 0, takes the
form

{
d2

dr2
+

(
E

(0)
n

)2

− (
Mc2

)2

~2c2
−

2
(

kq
~c

)
E

(0)
n

(c~)2 r

−
2−

(
kq
~c

)2

r2

}
FΘ=0

n (r) = 0. (189)

As in the case of cosmic strings, the eigensolutions are

E(0)
n =

Mc2

√
1 + γ2

(
n+ 1

2+ 1
2 (9−4γ2)

1
2

)2

. (190)

F (0)
n (ρ) =




√(
(Mc2)2 −

(
E

(0)
n

)2
)

n!

(c~) 2 (n + s + 1) Γ (n + 2s + 2)




1
2

× ρs+1 exp
(
−ρ

2

)
L2s+1

n , (191)

In the general case, the spectrum of energy is written as

ENC = −Θ
~

(
m− α

a′

) (
2−

(
kq

~c

)2
)

×
[ 2

((
Mc2

)2 −
(
E

(0)
n

)2
)4

(2s− 1) a (2s + 1) (n + s + 1)

×
[
1 +

3n

s + 1
+

3n (n− 1)
(s + 1) (2s + 3)

] ]

− Θ
~

(
m− α

a′

) [ (
(kq)E

(c~)2

)
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×
2

((
Mc2

)2 −
(
E

(0)
n

)2
)3

(n + s + 1)Γ (n + 2s + 2)

[
1 +

n

s + 1

] ]
. (192)

4.2. The solutions in non-commutative global
monopoles

By using the same procedure as in the case of non-
commutative cosmic strings, the eigensolutions are recapit-
ulated as follows:

4.2.1. For case of the parityP = (−1)j+1

R(0)
n (r) =




√(
(Mc2)2 −

(
E

(0)
n

)2
)

n!

(c~) 2 (n + s + 1) Γ (n + 2s + 2)




1
2

× ρs+1 exp
(
−ρ

2

)
L2s+1

n , (193)

E
(0)
nl =

Mc2

√
1 + γ2{

n+ 1
2+( j(j+1)

b′2 + 1
4−γ2)

1
2

}2

. (194)

with j = |(m− α)/b′|+ n′. Eq. (194) can be rewritten into
another form as

E
(0)
nl =

Mc2

√
1 + γ2κ′−2

, (195)

with

κ′ = n +
1
2

+
{

j (j + 1)
b′2

+
1
4
− γ2

} 1
2

andj = |(m− α)/b′|+ n′. As in the case of cosmic strings,
we can make the following remarks: (i) for very small values
of γ, the energy spectrum can be expanding in a power series
in γ. This expansion gives

E
(0)
nl 'Mc2


1− γ2

2N ′2−
γ4

2N ′3
{

j(j+1)
b′2 + 1

4

} 1
2
+ . . .


 , (196)

with

N ′ =


n + n′ + |(m− α)/b′|︸ ︷︷ ︸

j

+1




is the principal quantum number, and[N ′] means the biggest
integer inferior toN ′ : the different terms in (196) can be
interpreted as follow: the first term corresponds to the rest
energy of the particle. The second term is the same as the
energy of a particle of mass M in a Coulomb field in the non-
relativistic approximation. This term depends on the geomet-
rical parameter of space-timeb′. The third term determines
the relativistic correction to the energy. As in the case of the

cosmic string, we see also that the correction to the energy
depends on the quantum numbern, j = |(m− α)/b′| + n′,
and the geometric parameter of space-timeb′. In the case of
a commutative space (Θ = 0), and in both limitsα → 0 (an-
nihilation of theAharonov-Bohm potential) andb′ → 1 (flat
space), we obtain

E
(0)
nl =

Mc2

√
1 + γ2κ−2

, (197)

with

κ′ = n +
1
2

+

√(
j +

1
2

)2

− γ2,

and j = |m| + n′. Thus, as in the case of cosmic string,
we recover the habitual spectrum of the energy of Coulomb
potential.

Finally, we have

E(NC) = −Θ
~

(m− α)

(
j (j + 1)

b′2
−

(
kq

~c

)2
)

×
[

2
((

Mc2
)2 − (

E(0)
)2

)4

(2s− 1) s (2s + 1) (n + s + 1)

×
[
1 +

3n

s + 1
+

3n (n− 1)
(s + 1) (2s + 3)

]]

− Θ
~

(m− α)

[(
(kq)E

(c~)2

)

×
2

((
Mc2

)2 − (
E(0)

)2
)3

(2s + 1) (2s) (n + s + 1)

[
1 +

n

s + 1

] ]
. (198)

Now, concerning the total wave function, we have two cases:

• For the case of subspaceS+, where λ1 > 0 and
j1 = λ1 + n′, the total spinor is

ψ
(0)
nλ1j1

= e−
iEt
~




0
D−1

0
−D+1

−i
Mc2

(
E − kq

r

)
D−1

0
i

Mc2

(
E − kq

r

)
D+1

−i
Mc2

(
∂r + 1

r

)
D−1

i
Mc2

(
2iν
b′r

)
H2D0

−i
Mc2

(
∂r + 1

r

)
D+1




Φ
(0)
1 (199)

with

Φ
(0)
1 = NnorP

−λ1
j1

(cosθ) ρse−
ρ
2 L2s+1

n . (200)

For the case of subspaceS−, where λ2 < 0 and
j2 = −λ2 + n′, the total spinor is
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ψ
(0)
nλ1j2

= e−
iEt
~




0
D−1

0
−D+1

−i
Mc2

(
E − kq

r

)
D−1

0
i

Mc2

(
E − kq

r

)
D+1

−i
Mc2

(
∂r + 1

r

)
D−1

i
Mc2

(
2iν
b′r

)
H2D0

−i
Mc2

(
∂r + 1

r

)
D+1




Φ
(0)
1 (201)

with

Φ
(0)
1 = NnorP

λ2
j2

(cosθ) ρse−
ρ
2 L2s+1

n . (202)

4.2.2. For case of the parityP = (−1)j

The eigensolutions are

F (0)
n (r) =




√(
(Mc2)2 −

(
E

(0)
n

)2
)

n!

(c~) 2 (n + s + 1) Γ (n + 2s + 2)




1
2

× ρs+1 exp
(
−ρ

2

)
L2s+1

n , (203)

E(0)
n =

Mc2

√
1 + γ2

(
n+ 1

2+ 1
2 (9−4γ2)

1
2

)2

. (204)

we have

E(NC) = −Θ
~

(m− α)

(
2−

(
kq

~c

)2
)

×
[

2
((

Mc2
)2 − (

E(0)
)2

)4

(2s− 1) s (2s + 1) (n + s + 1)

×
[
1 +

3n

s + 1
+

3n (n− 1)
(s + 1) (2s + 3)

] ]

− Θ
~

(m− α)

[(
(kq)E

(c~)2

)

×
2

((
Mc2

)2 − (
E(0)

)2
)3

(2s + 1) (2s) (n + s + 1)

[
1 +

n

s + 1

]]
. (205)

5. Conclusion

This paper is devoted to studying the solutions of the rela-
tivistic quantum motion of a charged vector particles in the

presence of an Aharonov-Bohm and Coulomb potentials in
the space-times produced by idealized cosmic strings and
global monopoles in non-commutative space-time. These so-
lutions have been obtained, and the influence of the parame-
ter of the geometry of both topological defects has been dis-
cussed. Also the remarks, which Cheng [24] has been pro-
posed concerning theAB effect, have been extended in our
case: thus, the presence ofAB potential changes completely
the fundamental commutation relations of the angular mo-
mentum. Following the works of [28,29,33], we note that (i)
the KAM relations are not satisfied, even when the particle
is restricted to the doubly connected space where it does not
touch the magnetic field on the z-axis. Besides, (ii) the region
where the magnetic field exists and where it is inaccessible
to the electron should be taken into account in the physical
commutation relations; finally (iii), the Pauli criterion which
said that “the appropriate eigenfunctions are those which are
square-integrable and are closed under the operation of lad-
der operators” is inapplicable to the vectorAB. The existence
of the magnetic field on the z-axis is the principal cause of
breaking down the symmetry of the particle’s motion around
the z-axis. The eigenfunctions and eigenvalues ofJz andJ2

have been presented under the following boundary condition
ψ (r, θ, ϕ)|θ=0,π = 0, the spaceS is split into two subspaces,
S+is spanned by all the wave functionψj1λ1 (θ, ϕ), andS−is
spanned by all the wave functionψj2λ2 (θ, ϕ). By applying
the perturbative approach, we studied the vector bosons in the
NC space: the spectrum of energy in the gravitational field of
cosmic strings and global monopoles are different. It is ex-
plicitly shown that (i) the KAM relations are not affected by
the parameterΘ of the NC space, and (ii) the degeneracy of
the initial spectral line is broken in the transition from com-
mutative space-time into the non-commutative space-time.

Appendix

A. The matricesβ

The matricesβ used in this paper are [36,37]

β0 =




0 0 0 0 0 0 0 0 0 0
0 0 0 0 +i 0 0 0 0 0
0 0 0 0 0 +i 0 0 0 0
0 0 0 0 0 0 +i 0 0 0
0 −i 0 0 0 0 0 0 0 0
0 0 −i 0 0 0 0 0 0 0
i 0 0 −i 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




,
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β1 =
1√
2




0 0 0 0 −i 0 +i 0 0 0
0 0 0 0 0 0 0 0 +1 0
0 0 0 0 0 0 0 +1 0 +1
0 0 0 0 0 0 0 0 +1 0
−i 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
+i 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0
0 −1 0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0




,

β2 =
1√
2




0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 +i 0 −i
0 0 0 0 0 0 0 0 +i 0
−1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

+1 0 0 0 0 0 0 0 0 0
0 0 +i 0 0 0 0 0 0 0
0 −i 0 +i 0 0 0 0 0 0
0 0 −i 0 0 0 0 0 0 0




β3 =




0 0 0 0 0 +i 0 0 0 0
0 0 0 0 0 0 0 +1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
+i 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 +1 0 0 +i 0 0 0 0




.
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