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Conformal cyclic evolution of phantom energy dominated universe
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From the Wheeler-Dewitt solutions, the scale factor of the initial universe is discussed. In this study, scale factors from Wheeler-Dewitt
solutions, loop quantum gravity, and phantom energy dominated stages are compared. Certain modifications have been attempted in sca
factor and quantum potentials driven by canonical quantum gravity approaches. Their results are discussed in this work. Despite an incremen
of phantom energy density, avoidance of Big Rip is reported. Scale factors predicted from various models are discussed in this work. The
relationship between scale factors and the smooth continuation of Aeon is discussed by the application of conformal cyclic cosmology.
Quantum potentials for various models are correlated and a correction parameter is included in the cosmological constant. Phantom energ
dominated, final stage non-singular evolution of the universe is found. Eternal increment of phantom energy density without interacting
with dark matter is reported for the consequence of the evolution of the future universe. Also, the non-interacting solutions of phantom
energy and dark matter are explained. As the evolution continues even after the final singularity is approached, the validity of conformal
cyclic cosmology is predicted. Non zero values for the scale factor for the set of eigenvalues are presented. Results are compared with
supersymmetric classical cosmology. The non-interacting solutions are compared with SiBI solutions.

Keywords: Phantom energy; Wheeler-Dewitt theory; scale factor quantization; loop quantum cosmology; cosmological constant; non inter-
acting phantom cosmology.

PACS: 98.80.Qc; 02.40.Xx; 98.80.k; 98.80.Bp DOI: https://doi.org/10.31349/RevMexFis.66.209

1. Introduction background-independent resolution, the loop quantum grav-
ity provides a tool to understand the quantum nature of the
Thr scale factor determines the evolution of the universe. Agig Bang. Time and critical density dependence of the scale
the initial stages, it is closest to its minimum value. At laterfactor are determined by loop quantum cosmology. Simi-
stages, the scale factor approaches infinity, classically. Herqaaﬂy, pre-Big Bang scenario is characterized by the confor-
Table I shows the divergence of various singularities. mal cyclic cosmology. This confirms the cyclic evolution of
The classical cosmological model does not provide dethe yniverse. In such resolutions, the conservation of infor-
tailed information about the dynamics of the universe at thgnation is required to be understood. In recent days, Penrose
singularity, due to the vanishing scale factor. Particularly, theéxpressed his ideas about the confirmation of the existence
classical analysis of the singularity does not make sense. The Hawking points from previous Aeon, through the CMB
Wheeler-Dewitt analysis and the LQC provides detailed inygdiation [1].
for_mation about Hubble parameter at the initial stages of the  The classical singularity is a mathematical point, in which
universe. o . the cosmological parameters such as energy conditions, pres-
The initial singularity is the mysterious problem from gyre and curvature face divergences [2]. Every classical cos-
the theoretical standpoint predictions. The classical analysi§m|ogica| scenario avoids the initial singularity. The singu-
did not resolve the initial singularity; quantum treatment islarity can be analysed through a quantum mechanical per-
required. To analyse the initial singularity. With the help of gpective. The quantum mechanical solutions provide the un-
derstanding of initial conditions of the universe. Dynamics of
TABLE |. Divergence of various cosmological parameters. the universe is approached with many theoretical models such
Type Divergence as Big Bang [3], Ekpyrotic [4], cyclic [5], Lambda CDM [7]
and many more. The initial conditions of the universe resem-

I ) . .
apb ble like quantum mechanical vacuum fluctuations [8]. The

I P Wheeler-Dewitt model was proposed for the quantization of

n PP the gravity [9]. Itis applied for the quantum analysis of initial

\% P stages of the universe.
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From such solutions, the universe is said to be createtbads to the continued evolution of the universe without ap-
spontaneously from quantum vacuum [10]. The quantunproaching the final singularity.
universe that pops out of a vacuum does not require any Big
Bang-like singularities [11]. Similarly, such a scenario re-2. Conformal Cyclic Cosmology
quires no initial boundary conditions. In contrast to other
models, the LQG makes consistent results over renormalfhe Conformal Cyclic Cosmology (CCC) provides alterna-
ization of quantum parameters for quantizing the gravity, tative explanations for existing cosmological models [20-22].
avoid infrared ultraviolet divergences [12]. The Loop Quan-The CCC predicts the evolution of the universe as cycles or
tum Cosmology resolves the classical singularity and examAeons. The repeated cycles are referred to as Aeons. Each
ines the universe quantum mechanically [13]. In LQC, theAeon starts from a Big Bang and ends up with a Big Crunch.
guantum nature of the Big Bang is analysed [14]. The loopThe CCC follows conformal structure over the metric struc-
guantum model suggests that at singularity, the quantum uniure. The CCC approaches the initial stages of the universe in
verse bounces back as the density approaches the criticalower entropic state which was higher for the remote part of
level. Hence, the Big Bang is replaced with a Big Bounce iinthe previous Aeon [22]. The universe without inflation is pre-
the loop quantum cosmological scenario [15]. The formatiordicted by conformal cyclic cosmology. The CCC explains the
of the quantum mechanical universe from the quantum vacmbalance between the thermal nature of radiation and mat-
uum is discussed here with the help of the Wheeler-Dewitter in the earlier phases of the universe. The suppression of
theorem. With scale factor quantization, the behaviour of theyravitational degrees of freedom is a consequence of remote
guantum cosmological constant is also discussed. A timepast Aeon which has low gravitational entropy. Thus the uni-
varying cosmological parameter is proposed to have a consiserse is proposed as the conformal evolution over the Aeon.
tent value for the cosmological constant, which is currently at is possible to cross over the Aeons, due to the conformal in-
need of the hour. The scale factor solutions are discussed fetriance of physics of massive particles which survived from
thek = 0 model. past Aeon. The materials of galactic clusters remain as the

. form of Hawking radiation. Due to the evaporation, massive
To construct a local supersymmetric quantum cosmo-

logical model an alternative procedure is presented in [16]part|cles can be available as photons for the future Aeons,

A superfield formulation is introduced and applied to theafter the survwal_from Big Bang _smgqlanty. The cosmo
. : logical constant\ is suggested as invariant in all Aeons. In
Friedmann-Robertson-Walker FRW model. Scalar field cos- . C '
. . - . CCC the inflation is said to be absent. Theovertakes the
mologies with perfect fluid in a Robertson-Walker metric are.

discussed in [17]. Asymptotic solutions for the final Fried- mflat!on, thaF provides expon_enual €expansion. The C.CC IS
; . ) . consistent with LCDM [23], without implementing inflation.

mann stage with simple potentials are found in the SameI'he CCC does not violate the second law of thermodynam-
work. It also predicts that the perfect fluid and curvature, 241, Th f | i logical model log-
may affect the evolution of the universe. Scalar phantom en=> [24]. The conformal cyclic cosmo ogical mode topolog

. ) . . ically analyses the past and future singularities as surfaces
ergy as a cosmological dynamical system is reported in [18] ith smooth boundaries. Hence, future and past boundaries
Three characteristic solutions can be identified for the canon- : A . .
. . are equated with the same kind of topology. Relationship be-
ical formalism. Effect of local supersymmetry on cosmology

is discussed in [19]. The authors discuss the case of a Si‘\fveen past and future singularities mainly exist in the scale

persymmetric FRW model in a flat space in the superfiel actpr: _Tho_ugh the smgularltles_ come under various types,
formulation he initial Big Bang and future Big Rip are compared in Ta-

ble 1ll. This comparison is of interest for of the Big Rip is
The interactions of phantom energy and matter fluid argonsidered as the end of the evolution of the universe. So the
reported in [20] Avoidance of cosmic doomsday in front of Scale factors from B|g Bang and B|g R|p can be mapped con-
phantom energy is reported in the same. What will happen foformally with each other. Comparisons of scale factor from
the universe, soon after such singularity is approached? Wilbop quantum cosmology and classical super symmetrical so-
Type | singularity stop the evolution of the universe? Will |ytions are discussed in this work.
it be the endpoint of all universes? Answers for these ques- |nformation on the existence of Hawking radiation from
tions are discussed in this work. Eyolution of the universe isprevious Aeon can be obtained from Hawking points. Such
explained by the various cosmological models. Hawking radiation obtained from Hawking points might be
Initially, this work starts with a basic introduction on con- the remnant of the super-massive blackhole of the previous
formal cyclic cosmology. In the next section, an introduc-Aeon. Such existence can be proven by mathematical and ex-
tion to phantom energy and dark energy is provided. In thgerimental solutions such as cosmic microwave background
next section, an overview for loop quantum cosmology is dis{1]. The conformal cyclic cosmology is theorized with the
cussed. We discuss quantization procedures. In the next se&eons. The universe evolves as Aeons. Evolution begins
tion, we analyze the solutions for Wheeler-Dewitt equationsfrom a singularity grows with exponential expansion, reaches
A comparison between Wheeler-Dewitt cosmology and clasthe critical density and then they end up with singularity
sical supersymmetric cosmology is drawn. In later sectionsagain. Before proceeding into such mappings, some intro-
we provide solutions for non-interacting dark energy whichduction about fundamental topics are required.
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3. Dark energy and Phantom energy Various cosmological singularities are reported in [31].
The scale factor has the following characterization.

The dark energy is a mysterious form of the energy content a(t) = colt — to|™ + 1t — to|™ + .. ., 1)
of the universe. The equation of statedetermines the ac-

celeration of the universe. From Einstein’s field equationswheren, < n; < ...,co > 0

cosmological constant is proposed for the consequences for The geodesics are parameterized as
the accelerated expansion of the universe [25]. In general,

the cosmological constant value is smaller than the expected P2

value from quantum gravity. Though the technical conflicts -
exist between the theory and experiment, cosmological con-
stant is included in Einstein’s field equations. and

@)

The phantom energy has the values of equation of state . P 3)
parametetw < —1. The phantom energy violates the null a?(t)f(r)’
energy conditions. The phantom energy is proposed as a cans
didate for the sustainability of traversable wormholes [26].
Wormholes metric with the dominance of phantom energy is f2(r) 1 ()

studied in [27]. Symmetric distribution of phantom energy in Tk

a static wormhole is also reported. The phantom energy has |; has peen used for simplicity a constant geodesic motion

super-luminal properties. Such properties are similar to thos@ 5nqs = 0 and 1 for null and time like geodesics. For null
predicted by supergravity or higher derivative gravitationalgeodesi0§ -0

theories [28-30].

i
In the evolutionary phase of the universe, the singularities I p_ ,
can be classified by the diverging parameters. Big Rip singu- a(t)t' =P = [ a(t)t', ®)
larity appears in a finite time. The finite-time singularity will to
occur with weak conditions gf > 0 andp + 3P > 0 in an P=P(r—1). (6)

expanding universe.

A Type | singularity has a scale factor divergence along If 170 = 0, th‘? scale facto.r vanishesf@t Hence, there
with the associated to energy density and pressure. Type IYill b€ either a Big Bang or Big Crunch. ¥, = 0, then the
singularities are referred to as sudden feature singularitieSCa€ factor will be finite ato. A sudden future singularity
Divergence of pressure with finite scale factor and energyVill @Ppear in the evolution of the universe.sJ§ < 0, then
density occurs. Type Il is referred to as big freeze singu-n€ universe will face Big Rip a. If the cosmological mod-
larity. In Type IIl energy density and pressure diverge with €IS exist withrg < —1, then the null geodesics will avoid
a finite scale factor. Type IV singularity is referred to ast® Big Rip singularity. In our solutionsy, — (—oc,0),
big separation singularity, where energy density pressure aét — (0,0¢), & = 0,%1, andey — (0, 00). Various cos-
scale factor remain finite, but the time derivative of pressurdnological singularities [32-34] are reported in Table 1l.
or energy density diverge. The universe can be extended af- « = const is not the only option to obtain an accelerated

ter it approaches singularities of either Type Il or IV, b ecausé&©SMIC expansion. There are dark energy parameterizations
they are relatively weak. The strong Big Rip singularities isthat can cross the phantom divided-line with success and also

resolved here using loop quantum cosmology. Among thesEeProduces = —1.
singularities Type zero is experienced by the universe at the
earlier stages and Type | is encountered at later times.

TaBLE Ill. Strength of singularities is determeined by the various

parameters.
. » 7o m k co Tipler Krolak
TABLE Il. Types of singularities. (C00,0) (m0,00) 0,+1 (0, 00) Strong _ Strong
Type Singularity 0 (0,1) 0,1 (0,00) Weak Strong
- X - - 0 [1,00) 0,%£1 (0, 00) Weak  Weak
Type 0 Big Crunch or Big Bang singularity
Lo . (0,1)  (mo,00) 0,%£1 (0, 00) Strong  Strong
Type | Big Rip singularity
. . 1 (1,00) 0,1 (0,00) Strong Strong
Type Il Sudden future singularity
. . 1 (I,00) =1 (0,1)U(1,00) Strong Strong
Type Future scale factor singularity
. L . 1 (1,3) -1 1 Weak Strong
Type IV Big separation singularity
. o . . . 1 [3,00) -1 1 Weak Weak
Type V w singularity, little rip pseudo singularity
(1,00)  (n0,00) 0,%£1 (0, 00) Strong  Strong
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TABLE IV. Dark energy parameterizations with best fits anedistances values using SNe la JLA data. Referred from [35].

Model Parameterization
LCDM H?(2) = H[Qm(1 4+ 2)* + (1 — Q1))
Linear H?(2) = H3[Qm(1+ 2)° + (1 — Q) (1 + 2)30Fw0twn) g=3uas]
CPL H2(2) = H2[Qm (1 + 2)° + (1 — Q) (1 + 2)20Fwotun) o 58]
BA H2(2) = H2[Qm(1+ 2) 4 (1 — Q) (1 4 2)2AF20) 5 (1 4 2)3w1/2
9(wg—wp.5)2
LC H(2) = H2[Qm (1 4+ 2)° + (1 — Q) (1 4 2)2(—200t3w0.5) o o[ 0225
3wy 22
JBP H2(2) = HE[Qm(1+ 2)? + (1 — Qu)(1 + 2)20+00) xe30157 ]
WP H?(2) :H&{Qm(1+z)3+(1—Qm)(1+z)3[1+1+u4{fn%}}
Six bidimensional dark energy parameterizations aré~or LDGP modeluq = —1, the crossing occurs at= co.

studied and tested with available SNe la and BAO data [35]. At a redshiftz, > zc, we haveperi(z,) = 0. Hence, the
Obtained results are in favour of the LCDM model. Variousphantom GR picture of QDGP diverges.
parameterizations are reported in the same reference. The

Friedmann-Raychaudri equation is 1/3(21+wq)
49, Om
H(z) 2 Ze = ch -1 (13)
BEP = () =$5G(on + por) i
Hy
X [Qom (1 + 2)% + Qoprf(2)], 7) The future Big Rip can be avoided due to the parameters
) ) H,H — 0 asa — oo. This asymptotic behavior reflects the
@ _ E[QT,L + Qpgr(l+3Q)], (8) fact that the phantom effects might haye been dumped. The
a 2 total equation of state parameter is defined by
whereH (z) is the Hubble parametef; the gravitational con-
stant, and the subindéxindicates the present-day values for 1+ wior(2)
the Hubble parameter and matter densities. For dark energy L
_ (4 2) (L wg)Q (L4 2)0e) )
ppe(2) = po(nE) f(2), ) B E()[/Qr. + E(2) '
with )
. This shows thabeg(z) > —1.
B 1+w(z) . For the quantization of the singularity, the basic under-
f(z) = exp 3/ 1z ©|- (10) standing of quantum geometry is required. The quantum geo-
0 metric analysis, done via loop quantum geometry is discussed
For quiessence models, = const. in the next session.
Solution of f(z) is therefore,
F(z) = (14 2)*0+w), (11)

4. Loop quantum cosmology - a brief analysis
For cosmological constani; = —1 andf = 1.

In addition to the simplest models in which the universeThe canonical quantum gravitational formalism is based on
contains only cold dark matter and a cosmological constanthe quantization of the metric. It attempts to quantize the
class of braneworld models can lead to a phantom-like accephase space as a Hilbert space. In canonical formalism, the
eration of the late universe [36]. This model does not requirgphase space variables are replaced by operators. But the
any phantom matter. The quintessence leads to a crossing fafrmalism faces some constraints. There are Hamiltonian,
the phantom divide-line = 1. This model avoids the future diffeomorphism and Gauss constraints. To solve these con-
Big Rip by decreasing the Hubble parameter. straints, Loop Quantum Gravity is proposed. The model has

Forwg > —1, a smooth crossing of the phantom divide numerous success in resolving the initial singularity. The
occurs at a redshifi; that depends on the values of the free model provides background free solutions for the canonical

parameters§)y, 2q andwg. zc is obtained as gravity approaches. The Loop Quantum Gravity explains the
discreet nature of the spacetime. On cosmological scales,
(14 2¢)% 9 E(zc) = M ] (12)  Loop Quantum Cosmology is proposed for the unperturbed

(14 wg)€2q evolution of the universe.
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CONFORMAL CYCLIC EVOLUTION OF PHANTOM ENERGY DOMINATED UNIVERSE 213

Loop Quantum Cosmology is based on the canonical The parametek determines the minimum eigenvalue pa-
guantum gravitational formalism. The Loop Quantum Grav-rameter of LQG and the discreteness of quantum geometry
ity does not require renormalization; this makes LQG stand38]. The parameter is denoted as
special over other quantization approaches. From canonical
guantization, one can expect non zero discrete values for ge- A= 2(\/§7w)%lpz. (22)
ometric quantities as quantum observables. Hence, the Loop
quantization approach provides non zero values for area and If the Hamiltonian constraint is vanishélder = 0, it
volume. Area and volume in LQG are formulated as operaleads to

tors.
sin?(\3) 812G 23)
A— A (15) 3 P
V V. (16)  with
The constraints reduce the possibilities of quantization. = Heﬁ, (24)
Setting constraints as= 0, then the solution of the quantum 4
evolution will be the energy density. From the Hamiltonian equation,

é19) = 0. (17) Vv

In general, every cosmological scenario faces singulari- b 3 sin(\
ties during the initial stages of evolution. The initial condi- Mers = —47TG7%H6” =3 ()\ f) cos(AB)V.  (25)
tions of the universe possess strong singularity. The initial
Big Bang singularity bears high curvatures and energy den- This equation can call the modified Friedmann equation
sity divergences. To resolve this singularity conditions, LQCas
is equipped with the application of LQG theory. LQG at- -
tempts to derive non-perturbative and background indepen- 02 = Ve — 8rG (1 _ p) (26)
dent quantization of general relativity. In LQC there is a 9V2 3 peit )
straightforward link between full theory and the cosmolog- . L
ical models, which is in contrast to other cosmological ap_where the critical density is inferred as
proaches. The full theory of quantum gravity is required to 3
be constructed. The LQC is based on symmetrical reduc- perit = g3z ~ 0-41op0 (27)
. . . . Y
tion. But this methodology faces mathematical problems in
full theory. So, current research is happening on symmetrical, Similarly, the Raychaudhuri equation is also modified
non-symmetrical models and their relationships. with the help of3 = 3, Hef

In Robertson-Walker metric for a flgk: = 0) homoge- )
neous isotropic universe in Loop Quantum Gravity (LQC)is ¢ _ 74;er <1 _ P) — 47pG (1 _ 2”) . (28)

a Perit Pcrit

ds* = —dt* — a®(t)(dr® + r?(df? + sin® 0d¢?), (18)
which holds the conservation law
with a(t) scale factor and t is the proper time. The effective

Hamiltonian in LQC p=3H(p+p), (29)
-3 sin?(\3) :
- g 19 where the pressure is
Fe 8my2G  N? v (19)
. . , —0H,

The details of quantum dynamics are provided by the ef- p= Tma“ (30)
fective Hamiltonian, an@{may provides the matter Hamilto-
nian. Some new quantum variablgsandV’, can be intro- Hubble parameter in gravitational Hamiltonian is re-
duced in the quantum regime. The conjugate variablaed  placed by the holonomies. They are non linear functions of
V satisfy the commutation relation, a anda. The spacetime behaves with discreteness, near the

Planckian scale. Quantum replacement for classicabSizg

{8,V}=ArGn. (20) s written asno [39].

WhereV = a3 andy = 0.2375 is the Barbaro-Immirizi
parameter [37]. The phase space variable from classical dy-
namics is

n(t)o(t) = a(t)*Va, (31)
wherev is the mean size units in 3D space anthe num-

8= 7@ 1) ber of sections in the region. Implementation of discreteness
' of quantum geometry results in the dynamics. It depends on
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the patch size and independent of the number of patehes [41,42].

Holonomies are represented as In LQC, the scalar field is considered as an internal clock.
. The Hubble distance is defined as
C =~a. (32)

H'=-. (43)
These modified equations express the Ricci flow on FRW a
background. We may discuss about the curvatures. Invariamh LQG formalism, the canonical part satisfies
form of Ricci curvature will be

. {H,v9a*} = 47G. (44)
—6(H24+ 2 . o .
R=6 ( + a) The scale factor is quantized with Ashtekar variables [14]
as follows,
= 87Gp (13w+2 P (1+3w)>. (33) _ L
Perit Al =V Swy. (45)

From the Eq. (33), it can be observed that the curvatur(?tS

) conjugate momenta is represented as
scalar approaches negative values for the chosen parameters

such asp = Perit andw < —1. Hence Anti-Desitter kind of ' B = pvo—% \/gég, (46)
future universe may appear. Also, the conformal Aeon will
face regulated future singularity as AdS like singularity. with
Similarly, the Ricci components can be written in terms 5
of lapse functionV and scale factor as defined in [40], Ip| = Vit a?, (47)
. 1q
a a k. aN c=~Vi—, (48)
= R a— P — P . 4
R 6<N2Q+N2cﬂ+a2 aN3> (34) _ o N
which satisfies
The Friedmann equation can be obtained in terms of 871Gy
Ashtekar variables as {e,p} = : (49)
3Vo
3 ,
H = fﬁ(f(c —T)24+12)/|p| Here,&! andé? are fiducial triads and,; is fiducial metric.
T These equations reveal the relationships between triads and
+ Hmatte(p) = 0, (35)  scale factors.
where — (50)
p|2
1 -
T =VyT, (36) "
. _ pi*
P=i-1i, (37) v =s9mlPyrg 5D
and The holonomye(*(o¢/%s"*) becomes shift operator in
1 p. The quantization is confirmed by promoting the Poisson
c=Vye. (38)  bracket into a commutator. The Poisson bracket of the vol-

. ume with connection components can be represented as
In general, the AdS universe expands eternally. But there

exists a maximum cut-off by loop quantum cosmological so- ; 3 ik EJB E¢
lutions. Those solutions predict that when the energy density {Aq Vdet Bld°z} = 2nGe eape [det | (52)
reachesgyi; then the universe will nucleate future Aeon.

With The metric of an isotropic slice is

w = %, (39) qij = a?dry = 63 63- (53)

as\ — 0 which results inGh — 0, then the equations will
behave classicaly as

Heree! is a co-triad. The geometry of spatial sli%e is
encoded in the structural metig;,. The canonical momenta
K, is driven by extrinsic curvature. Diffeomorphisms con-

2 8rG 40 straints produce deformations of a spatial slice. This may be
3 P (40) connected to the decoherence of quantized space in the sin-
i —AnG gularity. In LQG the geometrical formalism is defined by the
=3 (p+3p), (41)  triad formalisme?, not by the spatial metric. Summations

over the indices connect the triads vector fields. The advan-
R =8nG(p+3p), (42) tage of choosing the triad over metric is that the triad vectors
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can be rotated without changing the metric. This entails ad5. Wheeler-Dewitt solution for initial scale fac-

ditional gauge freedom with groupO(3) acting oni. tor
To understand the space of metrics or structure tensors,
Ashtekar variables are introduced. Wheeler-DeWitt equations attempted to quantize the initial
Triads can be written as denstized form. That the densisingularity. Like Einstein’s field equation Wheeler-DeWitt
tized triads conjugate extrinsic curvature coefficient. equation is also a field equation. The Wheeler-Dewitt ap-
, proach attempts to quantize gravity by connecting General
ki = Kape;, (54)  Relativity and Quantum Mechanics. The Wheeler-Dewitt
i b . b i equation resolves the Hamiltonian constraint using metric
The curvature is replaced with Ashteaker connections. Mini super-space models can be implemented to explain
‘ 4 ‘ the emergence of the universe [45-47]. Action of mini super-
AL =10 + k. (56)  space is defined as
Ashteaker connections conjugate to triads will be g — — G Ry/—gda. (65)
{AL(2), Ej(y)} = 87G3,556(x, ). (57)

Metric of the mini super-space is defined by
Hence, the spin connection will be
. ds* = o?[N?(t)dt* — a®(t)dQ3)]. (66)
riz,ijk?<aak+?ﬂaci). 58
o= €7 | dace] 9 “kCall €t (°8) The mini super-space is considered to be homogeneous and
isotropic.d$)3 is metric on3 sphere N2(t) is the lapse func-

The spatial geometry is obtained from densitized triads. tion. o is normalization parameter. From Egs. (65) and (66),

ECE? = ¢®det q (59) the Lagrangian is derived as
K3 K3 - °
-2
An expression for the inverse scale factor is L= JZ (k _ ;\‘ﬂ) (67)
qrJ
My = .
1= Jdetq (60) and the momentum is
e? ef] —aa
= — 61 a — - 68
(et e) (61) p N (68)
_ 1 51, (62) The canonical form of the Lagrangian can be written as
a
The inverse scale factdd;; can be quantized to volume L =paa— NHK, (69)
operator [43]. The bounded operator will be
where
_ -1
My = 2l2 <4v j 2\/‘/}+2 2\/‘/;) H=—5 (pa+k> (70)
2
+ 41 (, /Vj+§ — /ij%) . (63) The Wheeler-Dewitt theory determines the evolution of the
universe. The Hamiltonian is in the form
Quantization of the inverse scale factor does not diverge
at the singularity. Even though the volume operator diverges Hy =0, (71)
approaches to zero, the corresponding inverse scale factor
doesn't approach zero. R and
There are eigenstates of volume operatowith eigen- o o
values [44], pP=—aP— aP = (72)
da da
NN N : Then the WDWE is ch 48,4
V; = (711))2\/27 <j + 2) (G +1). (64) en the is changed as [48,49]
190 ,0 9
Those results for eigenspectrum and scale factor values woa oa ka” ) 4(a) = 0. (73)

are plotted in Fig. 2.
The full Hamiltonian depends upon the patch volume butHere, K = 0,+1, and -1 for flat, closed, and open bub-
not the number of patches or the total volume. bles, respectively. The quantum trajectories can be obtained,
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from quantum field theory and non-relativistic perspectivesHere,x? = 87G

[45,50]. Itis represented as From Eq. (77), and keeping = —2, and (b, /b2) > 0
Hence,
o ai=2, (74)
da Ja by Q)
~188 a(t)=¢e' b2 (83)
o= —2" (75)
a Oa

Scale factors from Wheeler-Dewitt and supersymmetric

The inflation occurs for the selected valuepcE —2 or .
4. The quantum vacuum experiences exponential expansio%Osmomgy can be compared. Comparing Egs. (82) and (83),

which is triggered by quantum potential [9]. The expansion (t+0)
. . . b
is analyzed for a flaf,e. k = 0 bubble. The analytic solution a(t)=e' 2 =ag
for Eq. (73) is, 1
o alTP rApgag K
¥(a) :zbll_p — by, (76) +1{3 ¢ Ty |-t - (84
whereb; andb, are arbitrary constants.
The scale factor can be determined as Scale factor of the bubble universe is compared with the clas-
by sical super symmetric solutions. At t,
(BB —1—pl) )
a(t) = x(t+1tp))B =0, [1—p|#0,3 77) a(te) = ebl%’ (85)
by (t-gio) 1 _3
et [L-pl=3. if (b1 /by) = 1 then
As discussed earlier fgr = —2 or 4, then(b; /b2) > 0.
Quantum potential corresponding to the small scale factor is ag = e?, (86)
by 1
Qa—0) = T at (78) Hence, the Eq. (82) becomes

Hence, the classical potentiel ) cancels out. The effect of
guantum potential on vacuum bubbles resembles to the scalar
filed potential [51] or cosmological constant [52]. The effec-
tive cosmological constant forla= 0 bubble is in the order

of

/{2 @364250 Ii4

a(t)=e*+ | 3 G 5 (t—to) | . (87)

This equation provides a modified scale factor for the dis-
A~3 <Zl> ) (79)  cussed solutions above.
2
The universe will expand rapidly for a scale factox 1

and it will stop its expansion faz > 1. Quantum potential 6. Non interacting solutions

plays the role of cosmological constant, which consequences

for the exponential expansion. The conformal cyclic cosmology (CCC) has different solu-
tions for the evolution of the universe. The model predicts

5.1. Comparison of results to supersymmetric classical that the universe evolves as conformal cycles. Hence, the

cosmology initial singularity can be modified. As from the conformal

i _ model, the initial singularity is smooth and has finite surface.
Results obtained for the functionp are compared 10 the  gimjjarly, the final singularity is also smooth with finite sur-

Eq. (76) and solution from Ref. [53]. is expected t0 haveace 1o obtain such finiteness, the initial singularity must
the form of a WKB solution, be subject to expansion and the final singularity must cope
o = e(SetSa), (80)  With contraction. Instead of future Big Crunch, one may be
curious about the conformal mapping between phantom dom-
Comparing Egs. (76) and (80) leads to the solution ofinated at final stages of the universe and initial stages of the
the scale factor. For supersymmetric cosmology the solutiogniverse. The phantom dominance final stages of the universe

obtained is are characterized below.
5(t) = ¢ (@ 3 (81) The scale factor by phantom dominated final stages with
=y ) w < —1 can be obtained from the relation
/12902.@2 A s
a®(t)=al +3 (600 + 32> (t — to). (82) a(t) = a(tm) (—w(l +w) <tt>) . (88)
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The scale factor will blown up with time
Wity
14+w)’
Friedmann equation in terms of matter flyigd and phan-
tom field ¢ can be written as

881G

3 (Pm + PM)-

(89)

H? = (90)

217

While crossing the phantom divide line the interaction pa-
rameter to be discussed for phantom and dark matter.

The universe will avoid phantom dominated Big Rip due
to the interaction between dark matter and the phantom en-
ergy. The energy conversion makes the conversion between
phantom energy to the dark matter. Then the universe is sug-
gested to face an accelerated expansion phase.

For the universe to continue its evolution by adding up
the phantom energy, the interaction between dark matter and

Energy density and pressure of the phantom field is obphantom energy must be nullified; the interaction between the

tained by the following equations.

po =~ + V(6), (91)

Py= =382 V(9) (92)

hereV (¢) indicates phantom field potential.

dark matter and the phantom energy depends on the coupling
constant.

1—e€,

C:T(l—i—’r)z’

(102)

which determines the type of interaction. If the coupling con-
stant is positive transformation of energy between phantom

The interaction between dark matter and dark energy cagnergy to dark matter happens. The positivity of the coupling

be explained with interaction terin

Ty = fo + 3Heypa, (93)
Uy = pm + 3HEmpm, (94)
with

v + Py
eI:1+wz:—L, (95)

m + Pm
€m = 1+ Wm = L7 (96)

Pm

wherep, in the energy density of dark energy apg the
energy density of dark matter.
The terme has values as, < 0 and1 < ¢,, < 2. The

constant is confirmed by, < 1. Hence, the future incre-
ment of phantom energy density will be deduced. But the
CCC and LQC requires the final state of the universe must be
equivalent to the initial density by the topological structure,
so the eternal increment of the phantom energy is necessarily
required.

Hence, the coupling constant term can be modified with

energy density ratio between dark matter and the phantom

energy field gives additional freedom for the interactign

Pm
r=—.

(97)
P

The interaction term is redefined here based on the phan-
tom energy considerations. The interaction can be explained

as
I' = 3HCQ (,0»5 + pm)7 (98)

whereC' is the coupling constant [54]. When the coupling

constant is positive, the energy will be transferred from dark
energy to dark matter. When the coupling constant is negaSettingw # 0 andN # 0, Hence

tive, the dark energy will be transferred from dark matter to
dark energy.
A similar kind of interaction can be found in [19].

TPy
=3H(ep — €, , 99
v (em —€2)7 e (99)
with
€m = 1+ wp (100)
€z =1+ w,. (101)
Rev. Mex. k5. 66

NC = Nrﬁ, (103)
vo - e ot
Setting LHS to zero
0= Nr— Nreg. (105)
Rearranging,
0=Nr—Nr(l+w,), (106)
0= Nr— Nr+ Nrw,. (207)
Then
0= Nruw,. (108)
r=0, (109)
or
C=0 (110)
For the case = 0,
Pm g, (111)
Pz
(2) 209-223
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Hence, p, has to attain maximum values as compared =

with p,,,. So the interaction between phantom and cold dark

matter stops. Yielding the existence of eternally increasing

phantom energy theoretically predicted from the Eq. (111).
The phantom dominated scale factor can be written as

- Quintezzence model

Fhantom maodeal

2
t ) 3¢ ey
Mﬂ=dmﬁ@—a+at> , (a2 7
with
€T
= , 11
7 1+7r (113)

Forw < —1, the scale factor approaches its maximum
values with non interacting solutions £ 0, C = 0). Hence,

a(t) — amax- (114)
. . . ~ FIGURE 1. Increment of phantom energy over time is shown in the
The dark energy interaction can be discussed within digure. As time increases the phantom energy keep on increases.
LQG model. Herew, > —1 is quintessence mode and Referred from [58].

w, < —1is phantom mode.

Density perturbations in the universe can also be domithe phantom energy density will increase over time. This can
nated by the Chaplygin gas, which has negative pressure [53)e understood with the help of Fig. 1. Therefore, the energy
In addition to non-interacting solutions of quintessence andensity will approach to maximum values.
phantom, Chaplying gases can fulfill such requirements. The \yhen the phantom energy density reaches values greater

Chaplygin gas can be a possible candidate for dark energy,,, the matter-energy density > p,, the future universe
[56]. The Chaplygin gas has an equation of state will approach the Big Rip. For the spatially FRW universe,

A the Friedmann equation can be written as
pP=-= (115)
g 81G
with A is a positive constant. H? = %(pp + pm), (118)
7. Final stages of the universe wherep,,, is the density of matter field ang}, is the density of

the phantom field. If the increasing phantom energy density
In the classical case, values for the scale factor can be olapproaches the valugs ~ perit, (Wherepe.i; ~ 0.41p,)

tained from [57] then the universe should bounce back as it does in Type 0 or
1 (24 + Bpt=)plt—« Big Bang singularity. As suggested from [19], the Big Rip
a = ap exp (6 AB(1—a) ) (116)  singularity can be avoided. But the implementation of loop

guantum modification of classical analysis is required to ex-
Depending upon the choice of parameters, future singuplain such a phenomenon.
larities will appear. The maximum value for the scale factor  The | QC has modified Friedmann equations [59] such as
can be obtained from Eq. (116). In this case, no strong sin-
gularities will appear for the values ¢f/2) < o < (3/4). e P
For the valuesy = 0.8, A = 1 andB = 1, the scale factor H? = 3 < - — ) : (119)
will face extreme values. Perit
Usually the Type | singularity faces the dominance from
phantom energy. The density of phantom energy increas
over time.
Equation (116) can be rewritten as

From the modified Friedmann equations, one can understand
%Rat the universe will bounce back, once if the critical den-

sity is attained. The increasing phantom energy density may
come close to Planck density values. This scenario is ob-

— tained by the non-interacting phantom energy model. Then,

NG instead of blow off, the universe will bounce back at the later
24+ B(pm + p) =) (pm + )= times of the evolution.

X i Al;)?l — a)pm Pr ) (117) Smooth mapping between the Eqgs. (77) , (117), (45),

(112) and (133) is required for the conformal evolution of the

At the very final stages, the standard model predicts thatiniverse. At the initial stages, the universe has the scale fac-
the future universe will have a very low matter density. Buttor as obtained from Eqs. (77) and (117) and at later stages,
it has been modified with Egs. (45) and (112).
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8. Phantom dominated possible state of uni- As per the classical evolution at the Big Rip, the universe

verse will get a continuous increment of the scale factor, energy
density, and pressure. The LQC has the maximum value for

At vanishing or diverging scale factors, the universe underthe energy density and Hubble rate. When the energy density

goes a Big Bang or Big Rip singularity, accordingly. The approaches value close to the critical density, the dynamical

loop quantum universe behaves as the de Sitter universe &ffects will be lead by the quantum effects. The acceleration

such regimes [12]. The universe itself appears to be a dparametei approaches to a negative value and the Hubble

Sitter space instead of the universe tunnelling into de Sitterate approaches zero. Instead of universe ripping apart by fi-

space [60]. The dynamic and geodesic equations do not havete time, it will re-collapse and evolution will continue for

cut offs in LQC as the energy density and Hubble rate arduture cycles of the universe. Curvature Independence Ricci

bonded together. In general, LQC invokes all singularitiesscalar will be

and that holds only weak singularities and curvature singu- 5k

larities. Previous attempts to resolve the Big Bang singular- R=6 <H2 + 4 + 2) . (125)

ity, such as the Wheeler-Dewitt theory which didn’t resolve a a

the nature of singularity. The classical trajectory of Wheeler+ence,

Deuwitt solution leads to a Big Bang singularity, that requires

a different theory rather than Wheele-Dewitt's work to solve R—=6 (47TG (p+3p) + L
the Big Bang singularity. The LQC satisfies such require- 3 a?
ments. It resolves all the classical singularities and elaborates 87G [ p
the possibility of extension of space beyond the classical sin- +—== ( + kx) (p+3p)
. Perit

gularity.

From Eqg. (27), it has been shown that the critical den- kx 26 (p Yk — 1 (126)
sity will be in the order ot~ 0.41p,; . The time dependent Y2A  2A \ perit X '

curvature scalar will be in the order of .. .
As A — 0, Ricci scalar approaches zero. Hekéjs the cur-

R =87G(p+ 3p). (120) vature index.y is different values fork = —1 and K = +1
[61],
In the classical Big Bang singularity, the scale factor, en- o o\ o
ergy density, and the curvature invariants vanish. In a Type 0 - szugl S, for K =1 (127)
singularity the null energy conditiofp + p) > 0 is satisfied. —Yus, for K = +1

But in a Type | singularity, the null energy conditions are
violated. Despite the divergence in the existence of energ£ﬁ2'63]'
density and pressure, the Type Ill singularity has finiteness Here,
in the scale fact_or. Hence, Type I sir}gularity is resolve_d as A = 12p = 431412, (128)
Type lll singularity and the universe will have the upper limit P
for the scale factor. As the universe approaches the uppehis is the minimum eigenvalue of the area operator. Then,
limit of the scale factor, the energy density also approaches
the maximum limit derived from LQC. Instead of completely fop = sin? u — fisin(fz) cos(f), (129)
ripping off, the universe will bounce back from the Big Rip, . . . o .
while the energy density approaches — 0.41p,,. Hence, revealing that , it is possible that the Big Rip singularity can
the Big Rip singularity is resolved. Here, in a similar way, P€ resolved.
the Hubble rate divergence may also be resolved. In classical
Big Rip solutions, the Hubble rate diverges. Meanwhile, ing,  Relating quantum potential A with N
LQC, the Hubble rate has its maximum numerical value as
The quantization is confirmed by promoting Poisson bracket
(121)  into commutator relations. In LQC, the inverse volume quan-
tization provides discrete values. The differentiation equation
with converts and difference equation.

1
Hmax = y
| | ZI

P = (122) Pl (p+Ap[= —|p - Ap[~)
8TG2)\2 dp 2Ap

. (130)

and The LQC model with FRW solutions has many salient
mathematical advantages. The LQC replaces the Big Bang

A=A, (123)  with a Big Bounce. There are many similarities and dif-
ferences between Wheeler-Dewitt theory and LQC. In gen-

A = 4+/3my. (124) eral, the classical relativity works very well, either until the
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scalar curvature reaches (0.157r/l§l) or the matter den- equal values in energy density. Hence, the Big Rip induced
sity reaches).01p,;. The classical evolution breaks down initial stages is also possible.

at the singularity. But the loop quantum evolution analyses The quantum potential from the WDW Eq. (78) can be

such scenario, as an extension of previous cycles of the unfreated with detailed mathematical analysis. The Eq. (78)
verse. The LQC introduces symmetry reduction formalism.can be modified with the help of Eq. (108).

The Wheele-Dewitt theory agrees with LQC with finite ac-

curacy. The LQC, provides non-zero eigenvalues for the area A ~ _bi N() (137)
gapA, and it introduces the elementary cgll The dynamics by a3’
of LQC is apalyzed with the implementat_ion of fiducial triads hereN (¢) is a time-varying parameter that keeps the phantom
é¢ and cotriadsy;, that defines a flat metrig”*. energy to be invariant throughout the evolution. The effective
In LQC, p anda are related to the scale factor as Hamiltonian is
o (s Mg = —3VSEN Ly, (138)
p=oa?, (132) TEA

) ) . i The Wheeler-Dewitt equation has the Hamiltonian as ex-
wheres = =1 is the orientation factor. The LQC is an ex- pjained from Eq. (70). The loop quantum version of the

actly solvable model. Hence, the scalar field is deployed agjamiitonian is Eq. (138). The LQC renormalizes the cosmo-
internal time [64]. As per the LQC formalism, it has bee”logical constant quantum mechanically.

proposed that the quantum bounce is generic. There is an

upper bound for the matter density. There is a fundamen- A= A (1 _ A ) (139)
tal discreteness of space-time, which is derived from its loop S8tGperit )
guantum nature. Loop quantum cosmological analysis can be ) ) . i
introduced by Wheeler-Dewitt solutions, for the universe to 1 1iS solution modifies the FRW equations as
emerge from vacuum also. The scale factor has the values for A
k = 0 model as from the Eq. (77). For the universe to be cre- H? = 3 (140)
ated out of vacuum, the singularity can be treated with LQC.
The matter bouncing scale factor from LQC is given by The resolution is free from the classical potentigl).
. The phantom energy, which is the function of critical density,
3 5 3 is scrutinized with LQC formulations. Earlier works suggest
Amb = <4pct + 1) (133)  that the quantum potential should be proportionaloThis

introduces more errors in obtaining meaningful values of the

Matter bouncing scale factor is proportional to the critical cosmological constant. Hence, we have modifiedAhga-
density, which is not included the Wheeler-Dewitt solutions.rameter with Eq. (137).

The Hubble rate for the matter bouncing scenario is
Lot 9.1. E?dtipgton—inspired Born-Infeld theory of gravity
Hpp(t) = 22—, 134 solutions
) ) o The late tome universe will face the Big Rip at a finite time.
The matter density at the bouncing scenario is also degych a scenario is referred to as cosmic doomsday. It can

rived from LQC formalisms. be analysed via the modified theory of classical and quantum
Pe gravity [65]. Eddington-inspired Born-Infeld singularity so-
pmb(t) = %tz +1 (135) lutions also can play a vital role in analyzing cosmological

singularities. EiBl model confirms the availability of auxil-

Universe bounces back with the values of energy densityiary finite scale factor in Big Rip like singular stages.
obtained from Eq. (135). The cosmological constant is dis- The EiBI action is defined as [66]
cussed as a quantum potential in WDW at Eq. (78). The
guantum potential is the cause for the accelerated expansionSEiBI:g/d% { /gWJrRW(F))\\/g} +Sm(g), (141)
of the quantum vacuum bubbles. Though the cosmological k
constant is quantized with LQC calculations, it requires mod
ifications to make it constant throughout the evolution.

The Eq. (135) can be modified via the following way.

‘wherek is a constant which is assumed to be positive. The
Big Bang singularity is removed by the EiBl model. Simi-
larly, the late time Big Rip (little Rip, Little Sibling Big Rip)
can also be avoided in this formalism.
pmb(t) = 3211 + Pe- (136) The future Big Rip is avoided for a scale factor of the
4 auxiliary metric as suggested from Eq. (42) of [65].

This makes the energy density of the universe in initial  If there is a minimum length (and maximum density) at

and later times as equal. Both— 0 andt — oo provide early times on homogeneous and isotropic space-times, then
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such predictions will lead to an alternative theory of the Bignot included. From Egs. (77) and (133) the scale factors for
Bang [66]. k = 0 model have been equated. The solution for scale factor
A modified Friedman equation is obtained for the EiBi depends upon the selection of cosmological variables.

model as From the WDW model stanspoint, there is the possibil-

SH? — 1 ko — 1 L\/ RE IR ities, for the scale factor to vanish as per the chosen values
=g |t 33 (kp+1)( p) of the parameters. But LQC avoid such a scenario. Even
3 at the singularity, LQC processes the non zero scale factor.
{(kp +1)(3 — kp) } (142)  Such results are the consequences of discreteness of quan-
(3—k2p2)2 |’ tized spacetime.

The minimum value for the scale factor is obtained as Hence, the Hubble parameter is modified with loop quan-

a9, i1 tum cosmology from Eq. (134). Compared to the Eq.

ap ~ 10777 (k) T ao. (143) (75), the universe bounces back at singularity with matter

bouncing energy densities, that which is calculated from Eq.

(135). The numerical predictions represents the value for
<Po)4 the matter density at the bounce back, whictpjs;. ~

ap — —_—

and the minimum length is predicted to be

(144)  0.41p,. The Wheeler-Dewitt quantum potential resolves
time-varying scale factors. After the time-varying parame-
Replacingp;, with p..;; obtained from LQG, then at en- ter N () is included in the quantum potential Eq. (78) and it
ergy densitieg, = 0.41p,,;, the universe will bounce back. becomes Eqg. (137), obtained results of scale factors are com-
Similarly, the minimum scale factor obtained from the EiBI pared with EiBI theory and classical supersymmetric cosmol-
calculationsy;, provides the same values as the minimal scaleogy. By comparing, it has been understood that the scale fac-
factor values predicted from the LQC. Both theories confirmtor acts as a function of the trigonometric tangent function.
the non-singular initial stages and singularity-free gravita-EiBl-inspired modified scale factor is reported in Eq. (147).
tional collapse. The minimum scale factor values are predicted from LQG
A tensor instability in the Eddington inspired Born-Infeld and are consistent with the minimum scale factor, which is
Theory of Gravity is reported in [67]. The modified scale fac- predicted from EiBI theory.
tor is obtained as

Pb

The time-varying parameteN (¢) confirms the consis-
(145) tent value for the cosmological constant over the cosmo-

a = ap[1 + tan® Y1), ) . . S
ol ) logical evolution. The cosmological constant which is pro-

wherey) is conformal time and posed for the accelerated expansion of the universe behaves
like a quantum potential. Hence, future bounce is available
2 with increasing phantom field. The FRW equations modified
T=a % (146) with the cosmological constant and their quantized results are

obtained from the LQC Egs. (139) and (140) respectively.
Relating the Egs. (133) and (145) leads the scale factofhe regular cosmological constant is renormalized within the
as LQC framework. This behaves as a function of the critical

1 1 density.
3 o ? 2 (3 .2 ?
a= Z'Oct +1 1+tan cht +1 n| . (147)

Equation (147) is the modified scale factor obtained from11. Conclusion
loop quantum and EiBi solutions. The modified scale factor
with the effect of EiBI solutions is obtained.

Although the WDW analysis attempted to quantize the sin-

gularity solutions, it also encountered a divergence problem.

Loop quantum cosmological analysis confirms the existence
f a non zero scale factor at the initial stages of the universe
y transforming the scale factor as an operator.

10. Discussion

From the solutions of Eq.(136) is has been understood th
the final stages of the universe will have the possibility to
attain the critical energy density with values near to Planck The author in [19] discussed that the interaction between
density. Further increment of energy density is forbiddenthe phantom energy and dark matter lead to reduced den-
Hence, the universe will bounce back to the formation of asity to a certain critical level. Consequently, the Big Rip is
new Aeon. This solution predicts the avoidance of a Big Rip.avoided in the future universe. But we express an alternative
In this work LQC-based work, modified solutions are to such conclusion; the universe will evolve even after the Big
implemented for the Wheeler-Dewitt solutions. Earlier, in Rip, which means that the universe will continue its evolution
Wheeler-Dewitt solution, the critical density parameter wasin some other way. Interaction between the phantom
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le-31 Scale factor resolution

9.7

9.6

bt
5]

Scale factor

L
'S

9.3}

3.80 3.85 3.90 3.95

Eigenvalues

3.65 3.70 3.75 4.00

FIGURE 2. Nonzero scale facor is predicted by LQG, as a funtion
of Planck length.

S. NATARAJAN, R. CHANDRAMOHAN AND R. SWAMINATHAN

confirmed. The mapping between the scale factors of various
models and various stages of the universe can be understood
by the procedure of quantization.

From the Eq. (33), if the values of cosmological param-
eters have specified values, suctpas p..; andw < —1,
the universe will have negative curvature instead of zero cur-
vature. Hence, AdS kind of future universe might have ap-
peared.

Non zero values for the scale factor for the set of eigen-
values can be understood from the Fig. 2. The quantized
scale factor never approaches zero at the initial stages of the
universe, in spite of classical scale factor facing zero at an
initial singularity. This could be the initial adjustment for the
conformal mapping of initial singularity in conformal cyclic
cosmology.

Similarly, the Hamiltonian matter bounce is compared
with the critical density parameter. The universe bounces
back with the densitiep.,; ~ 0.41p,. The cosmological
constant is quantized and renormalized within LQC formal-

energy and dark matter will be nonexisent while the couplingsm. Hence, inspired by the CCC model, the late time avoid-
constant approaches zero. Then, the energy density of thace of Big Rip and continuing evolution can be held.

phantom energy will continue to increase eternally. At later

Loop Quantum Cosmology provides some modifications

stages, the phantom energy density will be equal to the criten scale factor regularization, quantum potential, and Hamil-
ical density. Subsequently there is a possibility to bounceonian formulation. Additionally, included cosmological pa-
back for the future evolution. The role &f(¢) in Eq. (137)  rameter on phantom energy, gives a consistent value for phan-
on cosmological evolution is to conserve the phantom energyom energy throughout the evolution of the universe. Also,
Hence the phantom energy remains unperturbed throughoonhe can understand that the modified scale factor from EiBI
the evolution. Also, the non-interacting solutions of phantomtheory can act as a function of the critical density.

energy and dark matter hold the eternal nature of phantom An explanatory theory for the quantum emergence of the
energy (Eq. (110)). As the evolution continues even afteuniverse via conformal cyclic evolution is attempted and en-

the final singularity is approached, the viability of CCC, is visaged.
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