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Conformal cyclic evolution of phantom energy dominated universe

S. Natarajan
PG and Research Department of Physics

Sree Sevugan Annamalai College Devakottai India

R. Chandramohan
PG and Research Department of Physics

Sree Sevugan Annamalai College, Devakottai, India, PG Department of Physics,
Vidhyagiri College of Arts and Science, Puduvayal, India

R. Swaminathan
PG Department of Mathematics,

Vidhyagiri College of Arts and Science, Puduvayal, India

Received 10 July 2019; accepted 3 September 2019

From the Wheeler-Dewitt solutions, the scale factor of the initial universe is discussed. In this study, scale factors from Wheeler-Dewitt
solutions, loop quantum gravity, and phantom energy dominated stages are compared. Certain modifications have been attempted in scale
factor and quantum potentials driven by canonical quantum gravity approaches. Their results are discussed in this work. Despite an increment
of phantom energy density, avoidance of Big Rip is reported. Scale factors predicted from various models are discussed in this work. The
relationship between scale factors and the smooth continuation of Aeon is discussed by the application of conformal cyclic cosmology.
Quantum potentials for various models are correlated and a correction parameter is included in the cosmological constant. Phantom energy
dominated, final stage non-singular evolution of the universe is found. Eternal increment of phantom energy density without interacting
with dark matter is reported for the consequence of the evolution of the future universe. Also, the non-interacting solutions of phantom
energy and dark matter are explained. As the evolution continues even after the final singularity is approached, the validity of conformal
cyclic cosmology is predicted. Non zero values for the scale factor for the set of eigenvalues are presented. Results are compared with
supersymmetric classical cosmology. The non-interacting solutions are compared with SiBI solutions.
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1. Introduction

Thr scale factor determines the evolution of the universe. At
the initial stages, it is closest to its minimum value. At later
stages, the scale factor approaches infinity, classically. Here,
Table I shows the divergence of various singularities.

The classical cosmological model does not provide de-
tailed information about the dynamics of the universe at the
singularity, due to the vanishing scale factor. Particularly, the
classical analysis of the singularity does not make sense. The
Wheeler-Dewitt analysis and the LQC provides detailed in-
formation about Hubble parameter at the initial stages of the
universe.

The initial singularity is the mysterious problem from
the theoretical standpoint predictions. The classical analysis
did not resolve the initial singularity; quantum treatment is
required. To analyse the initial singularity. With the help of

TABLE I. Divergence of various cosmological parameters.

Type Divergence

I a,ρ,p

II p

III ρ,p

IV ṗ

background-independent resolution, the loop quantum grav-
ity provides a tool to understand the quantum nature of the
Big Bang. Time and critical density dependence of the scale
factor are determined by loop quantum cosmology. Simi-
larly, pre-Big Bang scenario is characterized by the confor-
mal cyclic cosmology. This confirms the cyclic evolution of
the universe. In such resolutions, the conservation of infor-
mation is required to be understood. In recent days, Penrose
expressed his ideas about the confirmation of the existence
of Hawking points from previous Aeon, through the CMB
radiation [1].

The classical singularity is a mathematical point, in which
the cosmological parameters such as energy conditions, pres-
sure, and curvature face divergences [2]. Every classical cos-
mological scenario avoids the initial singularity. The singu-
larity can be analysed through a quantum mechanical per-
spective. The quantum mechanical solutions provide the un-
derstanding of initial conditions of the universe. Dynamics of
the universe is approached with many theoretical models such
as Big Bang [3], Ekpyrotic [4], cyclic [5], Lambda CDM [7]
and many more. The initial conditions of the universe resem-
ble like quantum mechanical vacuum fluctuations [8]. The
Wheeler-Dewitt model was proposed for the quantization of
the gravity [9]. It is applied for the quantum analysis of initial
stages of the universe.
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From such solutions, the universe is said to be created
spontaneously from quantum vacuum [10]. The quantum
universe that pops out of a vacuum does not require any Big
Bang-like singularities [11]. Similarly, such a scenario re-
quires no initial boundary conditions. In contrast to other
models, the LQG makes consistent results over renormal-
ization of quantum parameters for quantizing the gravity, to
avoid infrared ultraviolet divergences [12]. The Loop Quan-
tum Cosmology resolves the classical singularity and exam-
ines the universe quantum mechanically [13]. In LQC, the
quantum nature of the Big Bang is analysed [14]. The loop
quantum model suggests that at singularity, the quantum uni-
verse bounces back as the density approaches the critical
level. Hence, the Big Bang is replaced with a Big Bounce iin
the loop quantum cosmological scenario [15]. The formation
of the quantum mechanical universe from the quantum vac-
uum is discussed here with the help of the Wheeler-Dewitt
theorem. With scale factor quantization, the behaviour of the
quantum cosmological constant is also discussed. A time-
varying cosmological parameter is proposed to have a consis-
tent value for the cosmological constant, which is currently a
need of the hour. The scale factor solutions are discussed for
thek = 0 model.

To construct a local supersymmetric quantum cosmo-
logical model an alternative procedure is presented in [16].
A superfield formulation is introduced and applied to the
Friedmann-Robertson-Walker FRW model. Scalar field cos-
mologies with perfect fluid in a Robertson-Walker metric are
discussed in [17]. Asymptotic solutions for the final Fried-
mann stage with simple potentials are found in the same
work. It also predicts that the perfect fluid and curvature
may affect the evolution of the universe. Scalar phantom en-
ergy as a cosmological dynamical system is reported in [18].
Three characteristic solutions can be identified for the canon-
ical formalism. Effect of local supersymmetry on cosmology
is discussed in [19]. The authors discuss the case of a su-
persymmetric FRW model in a flat space in the superfield
formulation.

The interactions of phantom energy and matter fluid are
reported in [20]. Avoidance of cosmic doomsday in front of
phantom energy is reported in the same. What will happen for
the universe, soon after such singularity is approached? Will
Type I singularity stop the evolution of the universe? Will
it be the endpoint of all universes? Answers for these ques-
tions are discussed in this work. Evolution of the universe is
explained by the various cosmological models.

Initially, this work starts with a basic introduction on con-
formal cyclic cosmology. In the next section, an introduc-
tion to phantom energy and dark energy is provided. In the
next section, an overview for loop quantum cosmology is dis-
cussed. We discuss quantization procedures. In the next sec-
tion, we analyze the solutions for Wheeler-Dewitt equations.
A comparison between Wheeler-Dewitt cosmology and clas-
sical supersymmetric cosmology is drawn. In later sections,
we provide solutions for non-interacting dark energy which

leads to the continued evolution of the universe without ap-
proaching the final singularity.

2. Conformal Cyclic Cosmology

The Conformal Cyclic Cosmology (CCC) provides alterna-
tive explanations for existing cosmological models [20-22].
The CCC predicts the evolution of the universe as cycles or
Aeons. The repeated cycles are referred to as Aeons. Each
Aeon starts from a Big Bang and ends up with a Big Crunch.
The CCC follows conformal structure over the metric struc-
ture. The CCC approaches the initial stages of the universe in
a lower entropic state which was higher for the remote part of
the previous Aeon [22]. The universe without inflation is pre-
dicted by conformal cyclic cosmology. The CCC explains the
imbalance between the thermal nature of radiation and mat-
ter in the earlier phases of the universe. The suppression of
gravitational degrees of freedom is a consequence of remote
past Aeon which has low gravitational entropy. Thus the uni-
verse is proposed as the conformal evolution over the Aeon.
It is possible to cross over the Aeons, due to the conformal in-
variance of physics of massive particles which survived from
past Aeon. The materials of galactic clusters remain as the
form of Hawking radiation. Due to the evaporation, massive
particles can be available as photons for the future Aeons,
after the survival from Big Bang singularity. The cosmo-
logical constantΛ is suggested as invariant in all Aeons. In
CCC the inflation is said to be absent. TheΛ overtakes the
inflation, that provides exponential expansion. The CCC is
consistent with LCDM [23], without implementing inflation.
The CCC does not violate the second law of thermodynam-
ics [24]. The conformal cyclic cosmological model topolog-
ically analyses the past and future singularities as surfaces
with smooth boundaries. Hence, future and past boundaries
are equated with the same kind of topology. Relationship be-
tween past and future singularities mainly exist in the scale
factor. Though the singularities come under various types,
the initial Big Bang and future Big Rip are compared in Ta-
ble III. This comparison is of interest for of the Big Rip is
considered as the end of the evolution of the universe. So the
scale factors from Big Bang and Big Rip can be mapped con-
formally with each other. Comparisons of scale factor from
loop quantum cosmology and classical super symmetrical so-
lutions are discussed in this work.

Information on the existence of Hawking radiation from
previous Aeon can be obtained from Hawking points. Such
Hawking radiation obtained from Hawking points might be
the remnant of the super-massive blackhole of the previous
Aeon. Such existence can be proven by mathematical and ex-
perimental solutions such as cosmic microwave background
[1]. The conformal cyclic cosmology is theorized with the
Aeons. The universe evolves as Aeons. Evolution begins
from a singularity grows with exponential expansion, reaches
the critical density and then they end up with singularity
again. Before proceeding into such mappings, some intro-
duction about fundamental topics are required.
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3. Dark energy and Phantom energy

The dark energy is a mysterious form of the energy content
of the universe. The equation of stateω determines the ac-
celeration of the universe. From Einstein’s field equations,
cosmological constant is proposed for the consequences for
the accelerated expansion of the universe [25]. In general,
the cosmological constant value is smaller than the expected
value from quantum gravity. Though the technical conflicts
exist between the theory and experiment, cosmological con-
stant is included in Einstein’s field equations.

The phantom energy has the values of equation of state
parameterω < −1. The phantom energy violates the null
energy conditions. The phantom energy is proposed as a can-
didate for the sustainability of traversable wormholes [26].
Wormholes metric with the dominance of phantom energy is
studied in [27]. Symmetric distribution of phantom energy in
a static wormhole is also reported. The phantom energy has
super-luminal properties. Such properties are similar to those
predicted by supergravity or higher derivative gravitational
theories [28-30].

In the evolutionary phase of the universe, the singularities
can be classified by the diverging parameters. Big Rip singu-
larity appears in a finite time. The finite-time singularity will
occur with weak conditions ofρ > 0 andρ + 3P > 0 in an
expanding universe.

A Type I singularity has a scale factor divergence along
with the associated to energy density and pressure. Type II
singularities are referred to as sudden feature singularities.
Divergence of pressure with finite scale factor and energy
density occurs. Type III is referred to as big freeze singu-
larity. In Type III energy density and pressure diverge with
a finite scale factor. Type IV singularity is referred to as
big separation singularity, where energy density pressure and
scale factor remain finite, but the time derivative of pressure
or energy density diverge. The universe can be extended af-
ter it approaches singularities of either Type II or IV, b ecause
they are relatively weak. The strong Big Rip singularities is
resolved here using loop quantum cosmology. Among these
singularities Type zero is experienced by the universe at the
earlier stages and Type I is encountered at later times.

TABLE II. Types of singularities.

Type Singularity

Type 0 Big Crunch or Big Bang singularity

Type I Big Rip singularity

Type II Sudden future singularity

Type III Future scale factor singularity

Type IV Big separation singularity

Type V ω singularity, little rip pseudo singularity

Various cosmological singularities are reported in [31].
The scale factor has the following characterization.

a(t) = c0|t− t0|η0 + c1|t− t0|η1 + . . . , (1)

whereη0 < η1 < ..., c0 > 0
The geodesics are parameterized as

t′ =

√
δ +

P 2

a2(t)
, (2)

and

r′ = ± P

a2(t)f(r)
, (3)

with

f2(r) =
1

1− kr2
. (4)

It has been used for simplicity a constant geodesic motion
P andδ = 0 and 1 for null and time like geodesics. For null
geodesicsδ = 0

a(t)t′ = P =

t∫

t0

a(t)t′, (5)

P = P (τ − τ0). (6)

If η0 > 0, the scale factor vanishes att0. Hence, there
will be either a Big Bang or Big Crunch. Ifη0 = 0, then the
scale factor will be finite att0. A sudden future singularity
will appear in the evolution of the universe. Ifη0 < 0, then
the universe will face Big Rip att0. If the cosmological mod-
els exist withη0 ≤ −1, then the null geodesics will avoid
the Big Rip singularity. In our solutions,η0 → (−∞, 0),
η1 → (η0,∞), k = 0,±1, andc0 → (0,∞). Various cos-
mological singularities [32-34] are reported in Table III.

ω = const is not the only option to obtain an accelerated
cosmic expansion. There are dark energy parameterizations
that can cross the phantom divided-line with success and also
reproduceω = −1.

TABLE III. Strength of singularities is determeined by the various
parameters.

η0 η1 k c0 Tipler Królak

(−∞, 0) (η0,∞) 0,±1 (0,∞) Strong Strong

0 (0, 1) 0,±1 (0,∞) Weak Strong

0 [1,∞) 0,±1 (0,∞) Weak Weak

(0, 1) (η0,∞) 0,±1 (0,∞) Strong Strong

1 (1,∞) 0, 1 (0,∞) Strong Strong

1 (1,∞) −1 (0, 1) ∪ (1,∞) Strong Strong

1 (1, 3) −1 1 Weak Strong

1 [3,∞) −1 1 Weak Weak

(1,∞) (η0,∞) 0,±1 (0,∞) Strong Strong
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TABLE IV. Dark energy parameterizations with best fits andσ−distances values using SNe Ia JLA data. Referred from [35].

Model Parameterization

LCDM H2(z) = H2
0 [Ωm(1 + z)3 + (1− Ωm)]

Linear H2(z) = H2
0 [Ωm(1 + z)3 + (1− Ωm)(1 + z)3(1+w0+w1)e−3w1z]

CPL H2(z) = H2
0 [Ωm(1 + z)3 + (1− Ωm)(1 + z)3(1+w0+w1) ×e

−3w1z
1+z ]

BA H2(z) = H2
0 [Ωm(1 + z)3 + (1− Ωm)(1 + z)3(1+w0) ×(1 + z2)3w1/2

LC H2(z) = H2
0 [Ωm(1 + z)3 + (1− Ωm)(1 + z)3(1−2w0+3w0.5) ×e

[
9(w0−w0.5)z

1+z

]
]

JBP H2(z) = H2
0 [Ωm(1 + z)3 + (1− Ωm)(1 + z)3(1+w0) ×e

3w1z2

2(1+z)2 ]

WP H2(z) = H2
0

{
Ωm(1 + z)3 + (1− Ωm)(1 + z)

3
[
1+

w0
1+w1 ln (1+z)

]}

Six bidimensional dark energy parameterizations are
studied and tested with available SNe Ia and BAO data [35].
Obtained results are in favour of the LCDM model. Various
parameterizations are reported in the same reference. The
Friedmann-Raychaudri equation is

E(z)2 =
(

H(z)
H0

)2

= 8πG(ρm + ρDE)

× [Ω0m(1 + z)3 + Ω0DEf(z)], (7)

ä

a
=

H2

2
[Ωm + ΩDE(1 + 3Ω)], (8)

whereH(z) is the Hubble parameter,G the gravitational con-
stant, and the subindex0 indicates the present-day values for
the Hubble parameter and matter densities. For dark energy

ρDE(z) = ρ0(DE)f(z), (9)

with

f(z) = exp


3

z∫

0

1 + w(z̃)
1 + z̃

dz̃


 . (10)

For quiessence models,w = const.
Solution off(z) is therefore,

f(z) = (1 + z)3(1+w). (11)

For cosmological constant,w = −1 andf = 1.
In addition to the simplest models in which the universe

contains only cold dark matter and a cosmological constant,
class of braneworld models can lead to a phantom-like accel-
eration of the late universe [36]. This model does not require
any phantom matter. The quintessence leads to a crossing of
the phantom divide-linew = 1. This model avoids the future
Big Rip by decreasing the Hubble parameter.

For wq > −1, a smooth crossing of the phantom divide
occurs at a redshiftzc that depends on the values of the free
parametersΩm, Ωq andwq. zc is obtained as

(1 + zc)3wqE(zc) =
Ωm

√
Ωrc

(1 + wq)Ωq
. (12)

For LDGP modelwq = −1, the crossing occurs ata = ∞.
At a redshiftz∗ > zc, we haveρeff(z∗) = 0. Hence, the

phantom GR picture of QDGP diverges.

z∗ =

(
4ΩrcΩm

Ω2
q

)1/3(21+wq)

− 1. (13)

The future Big Rip can be avoided due to the parameters
H, Ḣ → 0 asa → ∞. This asymptotic behavior reflects the
fact that the phantom effects might have been dumped. The
total equation of state parameter is defined by

1 + ωtot(z)

=
Ωm(1 + z)3 + (1 + ωq)Ωq(1 + z)3(1+ωq)

E(z)[
√

Ωrc + E(z)
. (14)

This shows thatωeff(z) ≥ −1.

For the quantization of the singularity, the basic under-
standing of quantum geometry is required. The quantum geo-
metric analysis, done via loop quantum geometry is discussed
in the next session.

4. Loop quantum cosmology - a brief analysis

The canonical quantum gravitational formalism is based on
the quantization of the metric. It attempts to quantize the
phase space as a Hilbert space. In canonical formalism, the
phase space variables are replaced by operators. But the
formalism faces some constraints. There are Hamiltonian,
diffeomorphism and Gauss constraints. To solve these con-
straints, Loop Quantum Gravity is proposed. The model has
numerous success in resolving the initial singularity. The
model provides background free solutions for the canonical
gravity approaches. The Loop Quantum Gravity explains the
discreet nature of the spacetime. On cosmological scales,
Loop Quantum Cosmology is proposed for the unperturbed
evolution of the universe.
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Loop Quantum Cosmology is based on the canonical
quantum gravitational formalism. The Loop Quantum Grav-
ity does not require renormalization; this makes LQG stand
special over other quantization approaches. From canonical
quantization, one can expect non zero discrete values for ge-
ometric quantities as quantum observables. Hence, the Loop
quantization approach provides non zero values for area and
volume. Area and volume in LQG are formulated as opera-
tors.

A → Â, (15)

V → V̂ . (16)

The constraints reduce the possibilities of quantization.
Setting constraints asc = 0, then the solution of the quantum
evolution will be

ĉ1ψ = 0. (17)

In general, every cosmological scenario faces singulari-
ties during the initial stages of evolution. The initial condi-
tions of the universe possess strong singularity. The initial
Big Bang singularity bears high curvatures and energy den-
sity divergences. To resolve this singularity conditions, LQC
is equipped with the application of LQG theory. LQG at-
tempts to derive non-perturbative and background indepen-
dent quantization of general relativity. In LQC there is a
straightforward link between full theory and the cosmolog-
ical models, which is in contrast to other cosmological ap-
proaches. The full theory of quantum gravity is required to
be constructed. The LQC is based on symmetrical reduc-
tion. But this methodology faces mathematical problems in
full theory. So, current research is happening on symmetrical,
non-symmetrical models and their relationships.

In Robertson-Walker metric for a flat(k = 0) homoge-
neous isotropic universe in Loop Quantum Gravity (LQC) is

ds2 = −dt2 − a2(t)(dr2 + r2(dθ2 + sin2 θdφ2), (18)

with a(t) scale factor and t is the proper time. The effective
Hamiltonian in LQC

Heff =
−3

8πγ2G

sin2(λβ)
λ2

V. (19)

The details of quantum dynamics are provided by the ef-
fective Hamiltonian, andHmatt provides the matter Hamilto-
nian. Some new quantum variables,β andV , can be intro-
duced in the quantum regime. The conjugate variablesβ and
V satisfy the commutation relation,

{β, V } = 4πGγ. (20)

WhereV = a3 andγ = 0.2375 is the Barbaro-Immirizi
parameter [37]. The phase space variable from classical dy-
namics is

β = γ
ȧ

a
. (21)

The parameterλ determines the minimum eigenvalue pa-
rameter of LQG and the discreteness of quantum geometry
[38]. The parameter is denoted as

λ = 2(
√

3πγ)
1
2 lpl. (22)

If the Hamiltonian constraint is vanishedHeff = 0, it
leads to

sin2(λβ)
λ2

=
8πγ2G

3
ρ, (23)

with

ρ =
Heff

V
, (24)

the energy density. From the Hamiltonian equation,

V̇ = V,

Heff = −4πGγ
∂

∂β
Heff =

3
γ

sin(λβ)
λ

cos(λβ)V. (25)

This equation can call the modified Friedmann equation
as

H2 =
V̇ 2

9V 2
=

8πG

3
ρ

(
1− ρ

ρcrit

)
, (26)

where the critical density is inferred as

ρcrit =
3

8πGγ2λ2
∼ 0.41ρpl. (27)

Similarly, the Raychaudhuri equation is also modified
with the help ofβ̇ = β,Heff

ä

a
=
−4πG

3
ρ

(
1− ρ

ρcrit

)
− 4πρG

(
1− 2

ρ

ρcrit

)
, (28)

which holds the conservation law

ρ̇ = 3H(ρ + p), (29)

where the pressure is

p =
−∂Hmatt

∂V
. (30)

Hubble parameter in gravitational Hamiltonian is re-
placed by the holonomies. They are non linear functions of
a and ȧ. The spacetime behaves with discreteness, near the
Planckian scale. Quantum replacement for classical sizea3v0

is written asnv [39].

n(t)v(t) = a(t)3V0, (31)

wherev is the mean size units in 3D space andn the num-
ber of sections in the region. Implementation of discreteness
of quantum geometry results in the dynamics. It depends on
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the patch size and independent of the number of patchesn.
Holonomies are represented as

C̃ = γȧ. (32)

These modified equations express the Ricci flow on FRW
background. We may discuss about the curvatures. Invariant
form of Ricci curvature will be

R = 6
(

H2 +
ä

a

)

= 8πGρ

(
1− 3ω + 2

ρ

ρcrit
(1 + 3ω)

)
. (33)

From the Eq. (33), it can be observed that the curvature
scalar approaches negative values for the chosen parameters
such asρ = ρcrit andω < −1. Hence Anti-Desitter kind of
future universe may appear. Also, the conformal Aeon will
face regulated future singularity as AdS like singularity.

Similarly, the Ricci components can be written in terms
of lapse functionN and scale factor as defined in [40],

R = 6

(
ä

N2 a
+

ȧ

N2 a2
+

k

a2
− ȧ

a

Ṅ

N3

)
. (34)

The Friedmann equation can be obtained in terms of
Ashtekar variables as

H = − 3
8πG

(γ2(c− Γ)2 + Γ2)
√
|p|

+ Hmatter(p) = 0, (35)

where

Γ = V
1
3

0 Γ̃, (36)

Γ̃ = c̃− γ ˙̃a, (37)

and

c = V
1
3

0 c̃. (38)

In general, the AdS universe expands eternally. But there
exists a maximum cut-off by loop quantum cosmological so-
lutions. Those solutions predict that when the energy density
reachesρcrit then the universe will nucleate future Aeon.

With

ω =
p

ρ
, (39)

asλ → 0 which results inG~ → 0, then the equations will
behave classicaly as

H2 =
8πG

3
ρ, (40)

ä

a
=
−4πG

3
(ρ + 3p), (41)

R = 8πG(ρ + 3p), (42)

[41,42].
In LQC, the scalar field is considered as an internal clock.

The Hubble distance is defined as

H−1 =
a

ȧ
. (43)

In LQG formalism, the canonical part satisfies

{H, v0a
3} = 4πG. (44)

The scale factor is quantized with Ashtekar variables [14]
as follows,

Ai
a = cV

− 1
3

0 ω̊i
a. (45)

Its conjugate momenta is represented as

Ea
i = pV

− 2
3

0

√
q̊e̊a

i , (46)

with

|p| = V
2
3

0 a2, (47)

c = γV
1
3

0

ȧ

N
, (48)

which satisfies

{c, p} =
8πGγ

3V0
. (49)

Here,ω̊i
a ande̊a

i are fiducial triads andqab is fiducial metric.
These equations reveal the relationships between triads and
scale factors.

b =
c

|p| 12 , (50)

v = sgn(p)
|p| 32
2πG

. (51)

The holonomye(ı(l0c/V
(1/3)
0 ) becomes shift operator in

p. The quantization is confirmed by promoting the Poisson
bracket into a commutator. The Poisson bracket of the vol-
ume with connection components can be represented as

{Ai
a,

√
|det E|d3x} = 2πGεijkεabc

EB
j Ec

k√
|det E| . (52)

The metric of an isotropic slice is

qij = a2 δIJ = ei
I ei

J . (53)

Hereei
I is a co-triad. The geometry of spatial slice

∑
is

encoded in the structural metricqab. The canonical momenta
Kab is driven by extrinsic curvature. Diffeomorphisms con-
straints produce deformations of a spatial slice. This may be
connected to the decoherence of quantized space in the sin-
gularity. In LQG the geometrical formalism is defined by the
triad formalismea

i , not by the spatial metric. Summations
over the indices connect the triads vector fields. The advan-
tage of choosing the triad over metric is that the triad vectors
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can be rotated without changing the metric. This entails ad-
ditional gauge freedom with groupSO(3) acting oni.

To understand the space of metrics or structure tensors,
Ashtekar variables are introduced.

Triads can be written as denstized form. That the densi-
tized triads conjugate extrinsic curvature coefficient.

ka
i = Kabe

b
i , (54)

{ki
a(x), Eb

j (y)} = 8πGδb
aδi

jδ(x, y). (55)

The curvature is replaced with Ashteaker connections.

Ai
a = Γi

a + γki
a. (56)

Ashteaker connections conjugate to triads will be

{Ai
a(x), Eb

j (y)} = 8πGδb
aδi

jδ(x, y). (57)

Hence, the spin connection will be

Γi
a = εijkeb

j

(
∂[aek

e ] +
1
2
ec
kei

a∂[ce
i
b]

)
. (58)

The spatial geometry is obtained from densitized triads.

Ea
i Eb

i = qabdet q. (59)

An expression for the inverse scale factor is

MIJ =
qIJ√
det q

(60)

=
ei
I ei

J

(det e)
(61)

=
1
a

δIJ . (62)

The inverse scale factorMIJ can be quantized to volume
operator [43]. The bounded operator will be

MIJ,j =
16

γ2 l2p

(
4
√

Vj − 1
2

√
Vj+ 1

2
− 1

2

√
Vj− 1

2

)2

+ δIJ

(√
Vj+ 1

2
−

√
Vj− 1

2

)2

. (63)

Quantization of the inverse scale factor does not diverge
at the singularity. Even though the volume operator diverges
approaches to zero, the corresponding inverse scale factor
doesn’t approach zero.

There are eigenstates of volume operatorV̂ with eigen-
values [44],

Vj = (γl2p)
3
2

√
1
27

j

(
j +

1
2

)
(j + 1). (64)

Those results for eigenspectrum and scale factor values
are plotted in Fig. 2.

The full Hamiltonian depends upon the patch volume but
not the number of patches or the total volume.

5. Wheeler-Dewitt solution for initial scale fac-
tor

Wheeler-DeWitt equations attempted to quantize the initial
singularity. Like Einstein’s field equation Wheeler-DeWitt
equation is also a field equation. The Wheeler-Dewitt ap-
proach attempts to quantize gravity by connecting General
Relativity and Quantum Mechanics. The Wheeler-Dewitt
equation resolves the Hamiltonian constraint using metric
variables.

Mini super-space models can be implemented to explain
the emergence of the universe [45-47]. Action of mini super-
space is defined as

S =
1

16πG

∫
R
√−gd4x. (65)

Metric of the mini super-space is defined by

ds2 = σ2[N2(t)dt2 − a2(t)dΩ2
3]. (66)

The mini super-space is considered to be homogeneous and
isotropic.dΩ2

3 is metric on3 sphere,N2(t) is the lapse func-
tion. σ2 is normalization parameter. From Eqs. (65) and (66),
the Lagrangian is derived as

L =
N

2
a

(
k − ȧ2

N2

)
, (67)

and the momentum is

pa =
−aȧ

N
. (68)

The canonical form of the Lagrangian can be written as

L = paȧ−NH, (69)

where

H =
−1
2

(
p2

a

a
+ ka

)
. (70)

The Wheeler-Dewitt theory determines the evolution of the
universe. The Hamiltonian is in the form

Hψ = 0, (71)

and

p2
a = −a−p ∂

∂a

(
ap ∂

∂a

)
. (72)

Then the WDWE is changed as [48,49]
(

1
ap

∂

∂a
ap ∂

∂a
− ka2

)
ψ(a) = 0. (73)

Here, K = 0, +1, and -1 for flat, closed, and open bub-
bles, respectively. The quantum trajectories can be obtained,
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from quantum field theory and non-relativistic perspectives
[45,50]. It is represented as

∂L

∂ȧ
= aȧ =

∂S

∂a
, (74)

ȧ =
−1
a

∂S

∂a
. (75)

The inflation occurs for the selected values ofp = −2 or
4. The quantum vacuum experiences exponential expansion
which is triggered by quantum potential [9]. The expansion
is analyzed for a flat,i.e. k = 0 bubble. The analytic solution
for Eq. (73) is,

ψ(a) = ib1
a1−p

1− p
− b2, (76)

whereb1 andb2 are arbitrary constants.
The scale factor can be determined as

a(t) =





(
b1
b2

(3− |1− p|)

×(t + t0))
1

(3−|1−p|) , |1− p| 6= 0, 3

eb1
(t+t0)

b2 , |1− p| = 3.

(77)

As discussed earlier forp = −2 or 4, then(b1/b2) > 0.
Quantum potential corresponding to the small scale factor is

Q(a → 0) = −b1

b2

1
a3
− (78)

Hence, the classical potentialV (a) cancels out. The effect of
quantum potential on vacuum bubbles resembles to the scalar
filed potential [51] or cosmological constant [52]. The effec-
tive cosmological constant for ak = 0 bubble is in the order
of

Λ ∼ 3
(

b1

b2

)
. (79)

The universe will expand rapidly for a scale factora ¿ 1
and it will stop its expansion fora À 1. Quantum potential
plays the role of cosmological constant, which consequences
for the exponential expansion.

5.1. Comparison of results to supersymmetric classical
cosmology

Results obtained for the functionψ are compared to the
Eq. (76) and solution from Ref. [53]. is expected to have
the form of a WKB solution,

ψ = e(Sϕ+Sa). (80)

Comparing Eqs. (76) and (80) leads to the solution of
the scale factor. For supersymmetric cosmology the solutios
obtained is

ϕ̇(t) = ϕ̇0

(a0

a

)3

, (81)

a3(t) = a3
0 + 3

(
κ2 ˙ϕ2

0a
2
0

6
+

κ4

32

) 1
2

(t− t0). (82)

Here,κ2 = 8πG

From Eq. (77), and keepingp = −2, and(b1/b2) > 0
Hence,

a(t) = eb1
(t+t0)

b2 . (83)

Scale factors from Wheeler-Dewitt and supersymmetric
cosmology can be compared. Comparing Eqs. (82) and (83),

a(t)=eb1
(t+t0)

b2 =a0

+


3




√
κ2 ˙ϕ2

0a
2
0

6
+

κ4

32


 (t− t0)




1
3

. (84)

Scale factor of the bubble universe is compared with the clas-
sical super symmetric solutions. Att = t0,

a(t0) = eb1
(2t0)

b2 , (85)

if (b1/b2) = 1 then

a0 = e2t0 . (86)

Hence, the Eq. (82) becomes

a(t)=e2t0+


3




√
κ2 ˙ϕ2

0e
4t0

6
+

κ4

32


 (t−t0)




1
3

. (87)

This equation provides a modified scale factor for the dis-
cussed solutions above.

6. Non interacting solutions

The conformal cyclic cosmology (CCC) has different solu-
tions for the evolution of the universe. The model predicts
that the universe evolves as conformal cycles. Hence, the
initial singularity can be modified. As from the conformal
model, the initial singularity is smooth and has finite surface.
Similarly, the final singularity is also smooth with finite sur-
face. To obtain such finiteness, the initial singularity must
be subject to expansion and the final singularity must cope
with contraction. Instead of future Big Crunch, one may be
curious about the conformal mapping between phantom dom-
inated at final stages of the universe and initial stages of the
universe. The phantom dominance final stages of the universe
are characterized below.

The scale factor by phantom dominated final stages with
ω < −1 can be obtained from the relation

a(t) = a(tm)
(
−ω(1 + ω)

(
t

tm

)) 2
3(1+ω)

. (88)
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The scale factor will blown up with time

t =
ωtm

(1 + ω)
. (89)

Friedmann equation in terms of matter fluidρm and phan-
tom fieldφ can be written as

H2 =
8πG

3
(ρx + ρm). (90)

Energy density and pressure of the phantom field is ob-
tained by the following equations.

ρx = −1
2
φ̇2 + V (φ), (91)

Px = −1
2
φ̇2 − V (φ), (92)

hereV (φ) indicates phantom field potential.
The interaction between dark matter and dark energy can

be explained with interaction termΓ,

Γx = ρ̇x + 3Hεxρx, (93)

Γm = ˙ρm + 3Hεmρm, (94)

with

εx = 1 + ωx = −ρx + Px

ρx
, (95)

εm = 1 + ωm =
ρm + Pm

ρm
, (96)

whereρx in the energy density of dark energy andρm the
energy density of dark matter.

The termε has values asεx ≤ 0 and1 ≤ εm ≤ 2. The
energy density ratio between dark matter and the phantom
energy field gives additional freedom for the interactionγ,

r =
ρm

ρx
. (97)

The interaction term is redefined here based on the phan-
tom energy considerations. The interaction can be explained
as

Γ = 3HC2(ρx + ρm), (98)

whereC is the coupling constant [54]. When the coupling
constant is positive, the energy will be transferred from dark
energy to dark matter. When the coupling constant is nega-
tive, the dark energy will be transferred from dark matter to
dark energy.

A similar kind of interaction can be found in [19].

γ = 3H(εm − εx)
rρx

1 + r
, (99)

with

εm = 1 + ωm (100)

εx = 1 + ωx. (101)

While crossing the phantom divide line the interaction pa-
rameter to be discussed for phantom and dark matter.

The universe will avoid phantom dominated Big Rip due
to the interaction between dark matter and the phantom en-
ergy. The energy conversion makes the conversion between
phantom energy to the dark matter. Then the universe is sug-
gested to face an accelerated expansion phase.

For the universe to continue its evolution by adding up
the phantom energy, the interaction between dark matter and
phantom energy must be nullified; the interaction between the
dark matter and the phantom energy depends on the coupling
constant.

C = r
1− εx

(1 + r)2
, (102)

which determines the type of interaction. If the coupling con-
stant is positive transformation of energy between phantom
energy to dark matter happens. The positivity of the coupling
constant is confirmed byεx < 1. Hence, the future incre-
ment of phantom energy density will be deduced. But the
CCC and LQC requires the final state of the universe must be
equivalent to the initial density by the topological structure,
so the eternal increment of the phantom energy is necessarily
required.

Hence, the coupling constant term can be modified with

NC = Nr
1− εx

(1 + r)2
, (103)

NC =
Nr −Nrεx

(1 + r)2
. (104)

Setting LHS to zero

0 = Nr −Nrεx. (105)

Rearranging,

0 = Nr −Nr(1 + ωx), (106)

0 = Nr −Nr + Nrωx. (107)

Then

0 = Nrωx. (108)

Settingω 6= 0 andN 6= 0, Hence

r = 0, (109)

or

C = 0. (110)

For the caser = 0,

ρm

ρx
= 0. (111)
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Hence,ρx has to attain maximum values as compared
with ρm. So the interaction between phantom and cold dark
matter stops. Yielding the existence of eternally increasing
phantom energy theoretically predicted from the Eq. (111).

The phantom dominated scale factor can be written as

a(t) = a(tm)
(

1− σ + σ
t

tm

) 2
3σ

, (112)

with

σ =
εxr

1 + r
. (113)

For ω < −1, the scale factor approaches its maximum
values with non interacting solutions (r = 0, C = 0). Hence,

a(t) → amax. (114)

The dark energy interaction can be discussed within a
LQG model. Here,ωx > −1 is quintessence mode and
ωx < −1 is phantom mode.

Density perturbations in the universe can also be domi-
nated by the Chaplygin gas, which has negative pressure [55].
In addition to non-interacting solutions of quintessence and
phantom, Chaplying gases can fulfill such requirements. The
Chaplygin gas can be a possible candidate for dark energy
[56]. The Chaplygin gas has an equation of state

P = −A

ρ
, (115)

with A is a positive constant.

7. Final stages of the universe

In the classical case, values for the scale factor can be ob-
tained from [57]

a = a0 exp
(

1
6

(2A + Bρ1−α)ρ1−α

AB(1− α)

)
. (116)

Depending upon the choice of parameters, future singu-
larities will appear. The maximum value for the scale factor
can be obtained from Eq. (116). In this case, no strong sin-
gularities will appear for the values of(1/2) < α < (3/4).
For the valuesα = 0.8, A = 1 andB = 1, the scale factor
will face extreme values.

Usually the Type I singularity faces the dominance from
phantom energy. The density of phantom energy increases
over time.

Equation (116) can be rewritten as

a = a0 exp
(

1
6

× (2A + B(ρm + ρp)1−α)(ρm + ρp)1−α

AB(1− α)

)
. (117)

At the very final stages, the standard model predicts that
the future universe will have a very low matter density. But

FIGURE 1. Increment of phantom energy over time is shown in the
figure. As time increases the phantom energy keep on increases.
Referred from [58].

the phantom energy density will increase over time. This can
be understood with the help of Fig. 1. Therefore, the energy
density will approach to maximum values.

When the phantom energy density reaches values greater
than the matter-energy densityρp À ρm, the future universe
will approach the Big Rip. For the spatially FRW universe,
the Friedmann equation can be written as

H2 =
8πG

3
(ρp + ρm), (118)

whereρm is the density of matter field andρp is the density of
the phantom field. If the increasing phantom energy density
approaches the valuesρp ∼ ρcrit, (whereρcrit ∼ 0.41ρpl)
then the universe should bounce back as it does in Type 0 or
Big Bang singularity. As suggested from [19], the Big Rip
singularity can be avoided. But the implementation of loop
quantum modification of classical analysis is required to ex-
plain such a phenomenon.

The LQC has modified Friedmann equations [59] such as

H2 =
8πG

3
ρ

(
1− ρ

ρcrit

)
. (119)

From the modified Friedmann equations, one can understand
that the universe will bounce back, once if the critical den-
sity is attained. The increasing phantom energy density may
come close to Planck density values. This scenario is ob-
tained by the non-interacting phantom energy model. Then,
instead of blow off, the universe will bounce back at the later
times of the evolution.

Smooth mapping between the Eqs. (77) , (117), (45),
(112) and (133) is required for the conformal evolution of the
universe. At the initial stages, the universe has the scale fac-
tor as obtained from Eqs. (77) and (117) and at later stages,
it has been modified with Eqs. (45) and (112).
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8. Phantom dominated possible state of uni-
verse

At vanishing or diverging scale factors, the universe under-
goes a Big Bang or Big Rip singularity, accordingly. The
loop quantum universe behaves as the de Sitter universe in
such regimes [12]. The universe itself appears to be a de
Sitter space instead of the universe tunnelling into de Sitter
space [60]. The dynamic and geodesic equations do not have
cut offs in LQC as the energy density and Hubble rate are
bonded together. In general, LQC invokes all singularities
and that holds only weak singularities and curvature singu-
larities. Previous attempts to resolve the Big Bang singular-
ity, such as the Wheeler-Dewitt theory which didn’t resolve
the nature of singularity. The classical trajectory of Wheeler-
Dewitt solution leads to a Big Bang singularity, that requires
a different theory rather than Wheele-Dewitt’s work to solve
the Big Bang singularity. The LQC satisfies such require-
ments. It resolves all the classical singularities and elaborates
the possibility of extension of space beyond the classical sin-
gularity.

From Eq. (27), it has been shown that the critical den-
sity will be in the order of∼ 0.41ρpl . The time dependent
curvature scalar will be in the order of

R = 8πG(ρ + 3p). (120)

In the classical Big Bang singularity, the scale factor, en-
ergy density, and the curvature invariants vanish. In a Type 0
singularity the null energy condition(ρ + p) > 0 is satisfied.
But in a Type I singularity, the null energy conditions are
violated. Despite the divergence in the existence of energy
density and pressure, the Type III singularity has finiteness
in the scale factor. Hence, Type I singularity is resolved as
Type III singularity and the universe will have the upper limit
for the scale factor. As the universe approaches the upper
limit of the scale factor, the energy density also approaches
the maximum limit derived from LQC. Instead of completely
ripping off, the universe will bounce back from the Big Rip,
while the energy density approachesρpl → 0.41ρpl. Hence,
the Big Rip singularity is resolved. Here, in a similar way,
the Hubble rate divergence may also be resolved. In classical
Big Rip solutions, the Hubble rate diverges. Meanwhile, in
LQC, the Hubble rate has its maximum numerical value as

|Hmax| = 1
2γλ

, (121)

with

ρmax =
3

8πGγ2λ2
, (122)

and

λ2 = ∆l2pl, (123)

∆ = 4
√

3πγ. (124)

As per the classical evolution at the Big Rip, the universe
will get a continuous increment of the scale factor, energy
density, and pressure. The LQC has the maximum value for
the energy density and Hubble rate. When the energy density
approaches value close to the critical density, the dynamical
effects will be lead by the quantum effects. The acceleration
parameter̈a approaches to a negative value and the Hubble
rate approaches zero. Instead of universe ripping apart by fi-
nite time, it will re-collapse and evolution will continue for
future cycles of the universe. Curvature Independence Ricci
scalar will be

R = 6
(

H2 +
ä

a
+

k

a2

)
. (125)

Hence,

R = 6
(

4πG

3
(ρ + 3p) +

k

a2

+
8πG

3

(
ρ

ρcrit
+ kχ

)
(ρ + 3p)

+
kχ

γ2∆
− 2ξk

γ2∆

(
ρ

ρcrit
+ kχ− 1

ρ

))
. (126)

As ∆ → 0, Ricci scalar approaches zero. Here,K is the cur-
vature index.χ is different values forK = −1 andK = +1
[61],

χ =

{
sin2 µ(1 + γ2)µ−2, for K = −1
−γ2µ2, for K = +1

(127)

[62,63].
Here,

∆ → µ2p = 4
√

3πγl2p, (128)

this is the minimum eigenvalue of the area operator. Then,

fop = sin2 µ− µ̄ sin(µ̄) cos(µ̄), (129)

revealing that , it is possible that the Big Rip singularity can
be resolved.

9. Relating quantum potentialΛ with N

The quantization is confirmed by promoting Poisson bracket
into commutator relations. In LQC, the inverse volume quan-
tization provides discrete values. The differentiation equation
converts and difference equation.

d|p| 3r
2

dp
→ (|p + ∆p| 3r

2 − |p−∆p| 3r
2 )

2∆p
. (130)

The LQC model with FRW solutions has many salient
mathematical advantages. The LQC replaces the Big Bang
with a Big Bounce. There are many similarities and dif-
ferences between Wheeler-Dewitt theory and LQC. In gen-
eral, the classical relativity works very well, either until the
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scalar curvature reaches∼ (0.15π/l2pl) or the matter den-
sity reaches0.01ρpl. The classical evolution breaks down
at the singularity. But the loop quantum evolution analyses
such scenario, as an extension of previous cycles of the uni-
verse. The LQC introduces symmetry reduction formalism.
The Wheele-Dewitt theory agrees with LQC with finite ac-
curacy. The LQC, provides non-zero eigenvalues for the area
gap∆, and it introduces the elementary cellV. The dynamics
of LQC is analyzed with the implementation of fiducial triads
e̊a
i and cotriads̊ωi

a that defines a flat metric̊qab.
In LQC, p anda are related to the scale factor as

c = γȧ, (131)

p = σa2, (132)

whereσ = ±1 is the orientation factor. The LQC is an ex-
actly solvable model. Hence, the scalar field is deployed as
internal time [64]. As per the LQC formalism, it has been
proposed that the quantum bounce is generic. There is an
upper bound for the matter density. There is a fundamen-
tal discreteness of space-time, which is derived from its loop
quantum nature. Loop quantum cosmological analysis can be
introduced by Wheeler-Dewitt solutions, for the universe to
emerge from vacuum also. The scale factor has the values for
k = 0 model as from the Eq. (77). For the universe to be cre-
ated out of vacuum, the singularity can be treated with LQC.
The matter bouncing scale factor from LQC is given by

amb =
(

3
4
ρct

2 + 1
) 1

3

. (133)

Matter bouncing scale factor is proportional to the critical
density, which is not included the Wheeler-Dewitt solutions.
The Hubble rate for the matter bouncing scenario is

Hmb(t) =
1
2ρct

3
4ρct2 + 1

. (134)

The matter density at the bouncing scenario is also de-
rived from LQC formalisms.

ρmb(t) =
ρc

3
4 t2 + 1

. (135)

Universe bounces back with the values of energy density,
obtained from Eq. (135). The cosmological constant is dis-
cussed as a quantum potential in WDW at Eq. (78). The
quantum potential is the cause for the accelerated expansion
of the quantum vacuum bubbles. Though the cosmological
constant is quantized with LQC calculations, it requires mod-
ifications to make it constant throughout the evolution.

The Eq. (135) can be modified via the following way.

ρmb(t) =
1

3
4 t2 + 1

+ ρc. (136)

This makes the energy density of the universe in initial
and later times as equal. Botht → 0 and t → ∞ provide

equal values in energy density. Hence, the Big Rip induced
initial stages is also possible.

The quantum potential from the WDW Eq. (78) can be
treated with detailed mathematical analysis. The Eq. (78)
can be modified with the help of Eq. (108).

Λ ∼ −b1

b2

N(t)
a3

, (137)

hereN(t) is a time-varying parameter that keeps the phantom
energy to be invariant throughout the evolution. The effective
Hamiltonian is

Hlqc = −3V
sin2 λβ

γ2λ2
+ V ρ. (138)

The Wheeler-Dewitt equation has the Hamiltonian as ex-
plained from Eq. (70). The loop quantum version of the
Hamiltonian is Eq. (138). The LQC renormalizes the cosmo-
logical constant quantum mechanically.

Λ′ = Λ
(

1− Λ
8πGρcrit

)
. (139)

This solution modifies the FRW equations as

H2 =
Λ′

3
. (140)

The resolution is free from the classical potentialV (a).
The phantom energy, which is the function of critical density,
is scrutinized with LQC formulations. Earlier works suggest
that the quantum potential should be proportional toa4. This
introduces more errors in obtaining meaningful values of the
cosmological constant. Hence, we have modified theΛ pa-
rameter with Eq. (137).

9.1. Eddington-inspired Born-Infeld theory of gravity
solutions

The late tome universe will face the Big Rip at a finite time.
Such a scenario is referred to as cosmic doomsday. It can
be analysed via the modified theory of classical and quantum
gravity [65]. Eddington-inspired Born-Infeld singularity so-
lutions also can play a vital role in analyzing cosmological
singularities. EiBI model confirms the availability of auxil-
iary finite scale factor in Big Rip like singular stages.

The EiBI action is defined as [66]

SEiBI=
2
k

∫
d4x

[√
|gµν+Rµν(Γ)|λ√g

]
+Sm(g), (141)

wherek is a constant which is assumed to be positive. The
Big Bang singularity is removed by the EiBI model. Simi-
larly, the late time Big Rip (little Rip, Little Sibling Big Rip)
can also be avoided in this formalism.

The future Big Rip is avoided for a scale factor of the
auxiliary metric as suggested from Eq. (42) of [65].

If there is a minimum length (and maximum density) at
early times on homogeneous and isotropic space-times, then
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such predictions will lead to an alternative theory of the Big
Bang [66].

A modified Friedman equation is obtained for the EiBi
model as

3H2 =
1
k

[
kρ− 1 +

1
3
√

3

√
(kρ + 1)(3− kρ)3

]

×
[
(kρ + 1)(3− kρ)3

(3− k2ρ2)2

]
, (142)

The minimum value for the scale factor is obtained as

ab ∼ 10−32(k)
1
4 a0. (143)

and the minimum length is predicted to be

ab =
(

ρ0

ρb

)−4

. (144)

Replacingρb with ρcrit obtained from LQG, then at en-
ergy densitiesρb = 0.41ρpl, the universe will bounce back.
Similarly, the minimum scale factor obtained from the EiBI
calculationsab provides the same values as the minimal scale
factor values predicted from the LQC. Both theories confirm
the non-singular initial stages and singularity-free gravita-
tional collapse.

A tensor instability in the Eddington inspired Born-Infeld
Theory of Gravity is reported in [67]. The modified scale fac-
tor is obtained as

a = ab[1 + tan2 Υη], (145)

whereη is conformal time and

Υ = ab

√
2

3|k| . (146)

Relating the Eqs. (133) and (145) leads the scale factor
as

a=
(

3
4
ρct

2+1
) 1

3
[
1+ tan2

((
3
4
ρct

2+1
) 1

3
)

η

]
. (147)

Equation (147) is the modified scale factor obtained from
loop quantum and EiBi solutions. The modified scale factor
with the effect of EiBI solutions is obtained.

10. Discussion

From the solutions of Eq.(136) is has been understood that
the final stages of the universe will have the possibility to
attain the critical energy density with values near to Planck
density. Further increment of energy density is forbidden.
Hence, the universe will bounce back to the formation of a
new Aeon. This solution predicts the avoidance of a Big Rip.

In this work LQC-based work, modified solutions are
implemented for the Wheeler-Dewitt solutions. Earlier, in
Wheeler-Dewitt solution, the critical density parameter was

not included. From Eqs. (77) and (133) the scale factors for
k = 0 model have been equated. The solution for scale factor
depends upon the selection of cosmological variables.

From the WDW model stanspoint, there is the possibil-
ities, for the scale factor to vanish as per the chosen values
of the parameters. But LQC avoid such a scenario. Even
at the singularity, LQC processes the non zero scale factor.
Such results are the consequences of discreteness of quan-
tized spacetime.

Hence, the Hubble parameter is modified with loop quan-
tum cosmology from Eq. (134). Compared to the Eq.
(75), the universe bounces back at singularity with matter
bouncing energy densities, that which is calculated from Eq.
(135). The numerical predictions represents the value for
the matter density at the bounce back, which isρcric ∼
0.41ρpl. The Wheeler-Dewitt quantum potential resolves
time-varying scale factors. After the time-varying parame-
ter N(t) is included in the quantum potential Eq. (78) and it
becomes Eq. (137), obtained results of scale factors are com-
pared with EiBI theory and classical supersymmetric cosmol-
ogy. By comparing, it has been understood that the scale fac-
tor acts as a function of the trigonometric tangent function.
EiBI-inspired modified scale factor is reported in Eq. (147).
The minimum scale factor values are predicted from LQG
and are consistent with the minimum scale factor, which is
predicted from EiBI theory.

The time-varying parameterN(t) confirms the consis-
tent value for the cosmological constant over the cosmo-
logical evolution. The cosmological constant which is pro-
posed for the accelerated expansion of the universe behaves
like a quantum potential. Hence, future bounce is available
with increasing phantom field. The FRW equations modified
with the cosmological constant and their quantized results are
obtained from the LQC Eqs. (139) and (140) respectively.
The regular cosmological constant is renormalized within the
LQC framework. This behaves as a function of the critical
density.

11. Conclusion

Although the WDW analysis attempted to quantize the sin-
gularity solutions, it also encountered a divergence problem.
Loop quantum cosmological analysis confirms the existence
of a non zero scale factor at the initial stages of the universe
by transforming the scale factor as an operator.

The author in [19] discussed that the interaction between
the phantom energy and dark matter lead to reduced den-
sity to a certain critical level. Consequently, the Big Rip is
avoided in the future universe. But we express an alternative
to such conclusion; the universe will evolve even after the Big
Rip, which means that the universe will continue its evolution
in some other way. Interaction between the phantom
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FIGURE 2. Nonzero scale facor is predicted by LQG, as a funtion
of Planck length.

energy and dark matter will be nonexisent while the coupling
constant approaches zero. Then, the energy density of the
phantom energy will continue to increase eternally. At later
stages, the phantom energy density will be equal to the crit-
ical density. Subsequently there is a possibility to bounce
back for the future evolution. The role ofN(t) in Eq. (137)
on cosmological evolution is to conserve the phantom energy.
Hence the phantom energy remains unperturbed throughout
the evolution. Also, the non-interacting solutions of phantom
energy and dark matter hold the eternal nature of phantom
energy (Eq. (110)). As the evolution continues even after
the final singularity is approached, the viability of CCC, is

confirmed. The mapping between the scale factors of various
models and various stages of the universe can be understood
by the procedure of quantization.

From the Eq. (33), if the values of cosmological param-
eters have specified values, such asρ = ρcrit andω < −1,
the universe will have negative curvature instead of zero cur-
vature. Hence, AdS kind of future universe might have ap-
peared.

Non zero values for the scale factor for the set of eigen-
values can be understood from the Fig. 2. The quantized
scale factor never approaches zero at the initial stages of the
universe, in spite of classical scale factor facing zero at an
initial singularity. This could be the initial adjustment for the
conformal mapping of initial singularity in conformal cyclic
cosmology.

Similarly, the Hamiltonian matter bounce is compared
with the critical density parameter. The universe bounces
back with the densitiesρcri ∼ 0.41ρpl. The cosmological
constant is quantized and renormalized within LQC formal-
ism. Hence, inspired by the CCC model, the late time avoid-
ance of Big Rip and continuing evolution can be held.

Loop Quantum Cosmology provides some modifications
on scale factor regularization, quantum potential, and Hamil-
tonian formulation. Additionally, included cosmological pa-
rameter on phantom energy, gives a consistent value for phan-
tom energy throughout the evolution of the universe. Also,
one can understand that the modified scale factor from EiBI
theory can act as a function of the critical density.

An explanatory theory for the quantum emergence of the
universe via conformal cyclic evolution is attempted and en-
visaged.
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mol. Astropart. Phys.2010(2010) 011.

54. W. Zimdahl, D. Pav́on, and L. P. Chimento,Nucl. Phys. B521
(2001) 133.

55. J.C. Fabris, S. V. B. Gonçalves, and P. E. de Souza,Gen. Rela-
tiv. Gravit. 34 (2002) 53.

56. V. Gorini, A. Kamenshchik, and U. Moschella,Phys. Rev. D67
(2003) 063509.

57. P. Singh, and F. Vidotto,Phys. Rev. D83 (2011) 064027.

58. A. K. Yadav,Astrophys. Space Sci.361(2016) 276 .

59. P. Singh,Class. Quantum Grav.29 (2012) 244002.

60. D. Perlov, and A. Vilenkin, Cosmology for the Curious
(Springer, 2017), pp. 333-341.

61. B. Ratra, and P. J. Peebles,Phys. Rev. D37 (1988) 3406.

62. H.P. Nilles,Phys. Rep.110(1984) 1.

63. M. Pollock,Phys. Lett. B215(1988) 635.

64. A. Ashtekar, A. Corichi, P. Singh,Phys. Rev. D77 (2008)
024046.

65. I. Albarran, M. Bouhmadi-Ĺopez, C.-Y. Chen, and P. Chen,
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