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Conformable derivative applied to experimental Newton’s law of cooling
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It has been proved that the integer order differential equation does not represent the real behaviour of nature for Newton’s law of cooling.
Then, we solve Newton’s cooling law using the conformable derivative; as a result, we obtain the Kohlrausch stretched exponential function.
Due to the free parameter0 < γ ≤ 1, we can fit this function with the graph of the experimental data set. It is shown that the experimental
data coincide with those theoretical whenγ = 0.77269 andk = 0.018765.
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1. Introduction

A derivative of a function at some point characterizes the rate
of change of the function at this point, that is, the ordinary
derivative is local. Any process that changes over time or
with space can be described by an ordinary differential equa-
tion, in partial derivatives or by a system of equations, ordi-
nary or partial. For example, Newton’s law of cooling states
that the rate of change of temperature of the body is propor-
tional to the difference between the temperature of the body
and that of the surrounding medium [1]. Then, solving the
given differential equation, we can predict the behaviour of
the temperature of the system. However, the real description
of the propagation of the temperature can be quite complex
depending on the heat source and of the internal structure
of the material, see Fig. 1, and this is where the ordinary
calculation stops working and gives rise to the other possi-
ble derivatives, such as fractional or conformable derivatives.
Fractional calculus (FC), involving derivatives and integrals
of non-integer order, is the natural generalization of classical
calculus; during recent decades has become a powerful and
widely used method for better modeling and control of pro-
cesses in many areas of science [2-6], engineering [7-10], and
financial economics [11]. The fractional derivatives are non-
local operators, because they are defined through integrals.
Fractional derivatives satisfy the property of linearity; how-
ever, properties (such as the product rule, quotient rule, chain
rule, Rolle’s theorem, mean value theorem and composition
rule, etcetera) are lacking in almost all fractional derivatives.
To avoid these difficulties, in [12], it was proposed an in-
teresting idea that extends the ordinary limit definitions of
the derivatives of a function, called conformable fractional
derivative, from now on, we will only call it a conformable
derivative (CD) because is a local operator. This CD has at-
tracted the interest of researchers, as it seems to satisfy all
the requirements of the standard derivative. Also, computing
using this new derivative is much easier than the fractional
derivative. As expected, there are many works related to this
derivative, for example [13-20], to name a few.

Recently in [21], the conformable derivative was ap-
plied to Newton’s law of cooling, having as a solution the
Kohlraush stretched exponential function. In that case, a
closed expression for the convection coefficientk, depending
on the fractional order derivative0 < γ ≤ 1, was obtained.

In this work, we performed an experimental setup to ver-
ify the effectiveness of the conformable derivative applied
to fractional Newton’s law of cooling. It is shown that the
theoretical solution given in [21] coincide with the experi-
mental data when the fractional order isγ = 0.77269 and
k = 0.018765.

2. Conformable Newton law of cooling

Let f : [0,∞) → R be a function. Then theγ-th order con-
formable derivative off is defined by [12] as

Tγ(f)(t) =
dγf(t)

dtγ

= fγ(t) = lim
ε→0

f(t + εt1−γ)− f(t)
ε

, (1)

for all t > 0 and0 < γ ≤ 1. This expression is not the only
possible [22,23].

Whenγ = 1 from (1), we obtain

f ′ = lim
ε→0

f(t + ε)− f(t)
ε

.

The CD is easily computed, but it is not conformable at
γ = 0. The differentiation properties of this conformable
derivative are analogous to the properties of the ordinary
derivative, and the relation

Tγ(f)(t) =
dγf

dtγ
= t1−γf ′(t), (2)

is fulfilled [12]. On the other hand, Newton’s law of cool-
ing says that under certain circumstances the rate of change
of temperature of a body is proportional to the difference be-
tween the temperature of the body and that of the surrounding
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environment [1], as long as the temperature difference is not
very large. The above is described by the equation

dT

dt
= −k(T − Tm), T (0) = T0, (3)

whereT (0) = T0 is the initial temperature of the body,Tm

is the temperature of the medium considered constant, andk
is the convection coefficient. The coefficientk is measured
in inverse unity of time,s−1. The Eq. (3) has an analytical
solution in the form

T (t) = Tm + (T0 − Tm)e−kt. (4)

In the previous work [21], to maintain the homogeneity
of the fractional differential equation for Newton’s law of
cooling, the ordinary derivative operator was changed by a
fractional one, in the following way,

d

dt
= k1−γ dγ

dtγ
, 0 < γ ≤ 1, (5)

substituting in (3), we have the corresponding fractional dif-
ferential equation of orderγ,

dγT

dtγ
= −kγ(T − Tm), T (0) = T0, 0 < γ ≤ 1. (6)

Solutions of this fractional equation using other fractional
derivatives have been reported in [24].

However, with these fractional derivatives, it is not easy
to calculate the convective coefficientk. Due to this, in [21]
was applied the conformable derivative [12]. For this, we
take into account the expression (2), we have

d

dt
= k1−γ dγ

dtγ
= k1−γt1−γ d

dt
. (7)

Substituting thistime-fractional conformable transform
in (6), we obtain an ordinary differential equation

dT

dt
= −kγtγ−1(T−Tm), T (0) = T0, 0 < γ ≤ 1. (8)

This equation has the particular solution [21],

T (t; γ) = Tm +(T0−Tm)e−(kγ/γ)tγ

, 0 < γ ≤ 1. (9)

So, in the case of CD the Newton’s law of cooling has the
stretched exponential function (or Kohlrausch function) of
order 0 < γ ≤ 1 as a solution. This function has many
applications in science: it fits many relaxation processes in
disordered and molecular systems [25-27], this is due to the
free parameterγ in the exponential function. For a given time
τ and temperatureT1 we can compute, in a closed form, the
conformable convective coefficient

k(γ) =
[

γ

τγ
ln

(
T0 − Tm

T1 − Tm

)](1/γ)

, 0 < γ ≤ 1, (10)

unlike the results obtained in [24] using the Riemann-
Liouville and Caputo fractional derivatives, where does not
possible to obtain.

3. Data acquisition

Cooling experiments were performed using 300 ml of hot wa-
ter in an isolated ceramic cup. The temperature was measured
using a data acquisition system based on two DS18B20 tem-
perature digital sensors attached to the Arduino board (AB),
model UNO-R3. One of the sensors was kept fully sub-
merged in the center of hot water volume. The other one
was placed outside to monitor the ambient temperature.

The waterproof sensor DS18B20 provides data in digital
form, with an accuracy of±0.5◦C and a maximum resolution
of 6.25× 10−2 ◦C without the need for any analog-to-digital
conversion or calibration. The ensor comes with three wires:
the red one is connected to 5 V, the black one is connected
to ground, and the yellow one is connected to a digital input
pin of the AB (pin 10 in our case). For these sensors, a pull-
up resistorR = 4.7 kΩ is needed between the digital input
pin and the 5 V source. The connection diagram for the AB
(created with Fritzing) is shown as an inset in Fig. 1.

The communication between the sensors and the AB is
implemented in three steps:

1. Send the initialization commandreset() .

2. Call to all theOneWire devices to identify themselves
in the AB; in our case, we have two temperature sen-
sors.

3. Read from or write to aOneWire device.

The Arduino-script we used has two parts, the setup
subroutine and the loop subroutine using theOneWire li-
brary into the Arduino Integrated Development Environment
(IDE).

FIGURE 1. Experimental data fitted by integer order model Eq. (4),
with the best value ofk = 0.02438 1/min.
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FIGURE 2. (a) Fitting by conformable fractional-order model. (b) Best result is forγ = 0.77269 and correspondingk = 0.018765 1/min.

4. Data Processing and Results

The temperatures are registered with an average time step
∆t = 28.45 ms for almost 3.5 hours. The measured aver-
age ambient temperature isTm = 20.9147◦C. Then these
data have been fitted by both integer (4) and conformable
(9) models. Theχ2-criterion has been applied when fitting
experimental data. Results in Fig. 2(a) shows a drastic di-
vergence of integer model from experimental data. However,
the conformable model provides an ideal fitting, as we can
see from the quantitative analysis of residuals in Fig. 2(b).
The conformal model provides results within experimental
accuracy in the whole range of measurements, and thus, they
are indistinguishable from the measured data.

5. Conclusions

The main aim of this work was to compare the theoretical re-
sults obtained in [21] with the real data obtained experimen-
tally. We conclude that even in a very simple case, as is New-
ton’s law of cooling, the integer order differential equation
can not correctly predict the behavior of the system. In this

work, it was shown that the solution (9) of the conformable
differential equation (8) fits very well with the experimental
data whenγ = 0.77269 andk = 0.018765. Unlike other
fractional formalisms [24], the conformable derivative has an
analytical solution very similar to the ordinary case, and fits
very well with the experimental data; this is due to the free
parameter0 < γ ≤ 1. This is interesting since the con-
formable derivative contains the same differentiation rules as
the ordinary derivative, which does not contain the fractional
derivatives known until today.

We hope that the way of analyzing the fractional differen-
tial equations using the conformable fractional transform (7)
will be helpful in solving fractional equations that represent
more complex systems.
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