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The performance of quantum computers today can be studied by analyzing the effect of errors in the result of simple quantum algorithms.
The modeling and characterization of these errors is relevant to correct them, for example, with quantum correcting codes. In this article,
we characterize the error of the five qubits quantum computer ibmqx4 (IBM Q), using a Deutsch algorithm and modeling the error by
Generalized Amplitude Damping (GAD) and a unitary misalignment operation.
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1. Introduction

The idea of using the quantum mechanics as a calculation tool
arose from the pioneering works of Feynman and Deutsch
[1,2] in the 80s. It is based on the use of properties as su-
perposition and entanglement for the realization of computa-
tional task. This requires a quantum computer that works at
the microscopic level. This way, a quantum computer could
solve certain known problems, more efficiently than can be
done with classical computers [3], enabling advances in cryp-
tography, drug research and development, faster data analy-
sis, and improve artificial intelligence [4].

Major companies such as Google, Intel, Microsoft and
IBM, among others, have embarked on the building of quan-
tum computers, being able to handle up to a several tens of
qubits today. In particular, the IBM Q machine used here, is a
scalable quantum computer, based on superconducting tech-
nology that has the advantage of being open access through
the internet [5].

Several algorithms based on quantum advantage have
been proposed; among the most important are the Grover al-
gorithm and the Shor factoring algorithm. The Grover al-
gorithm [6] is a search algorithm of an element in a dis-
ordered base. The known classical algorithms are of order
O(N), while the quantum algorithm allows to determine with
high probability the desired element with an orderO(

√
N).

The Shor factoring algorithm [7] reduces the calculation time
from a sub-exponential order in classical computing to a
polynomial order in quantum computers.

However, the fact that quantum systems cannot be com-
pletely isolated from the environment, together with system-
atic imperfections on gate applications, inexact state prepa-
rations, and inaccurate measurements, induces errors in any
quantum computational task [8,9]. While there is a fault-
tolerant methods based on the correction of errors below a
certain threshold [10], these methods are very expensive in
computational resources. In other hand, the development of
new tools in order to characterize and analyze the effect and
propagation of quantum errors is an important issue in order
to try correct them with the least possible complexity.

In this article, we analyze the error propagation in
the Deutsch algorithm (DA), a special case of the general
Deutsch-Jozsa algorithm [11], implemented in the quantum
computer ibmqx4 (IBM Q). Some authors have implemented
this algorithm in the IBM Q computer (for example to solve
a learning parity problem [12,13]) but only some work has
been done modeling the error of this technology [14]. The
mixed state resulting from the algorithm is determined, and
the error is characterized using an isotropic index [15], and is
then modeled by a standard Generalized Amplitude Damping
error (GAD) and a misalignment unitary error model(MA).

The public interested in research in the area of quantum
algorithms, must be aware of the need to identified and model
the errors, to ultimately correct and/or control them to obtain
a satisfactory result.

2. Quantum computing overview

2.1. States

The qubit, the unit of quantum computation, denoted by|ψ〉,
is analog to a bit in a standard computation, and it is repre-
sented by a unitary vector, called apure state. For example,
for one qubit state, the vector|ψ〉 = α|0〉 + β|1〉, is a linear
superposition of vectors|0〉 and|1〉, whereα andβ are com-
plex numbers that meet|α|2 + |β|2 = 1. The vectors|0〉 and
|1〉 are defined in the computational base as [16]

|0〉 =
[

1
0

]
, |1〉 =

[
0
1

]
. (1)

A pure state of several qubits, is expressed as the linear
combination on complex field of Kronecker product [17],
of states of one qubit, denoted here by⊗. For example
for two qubits, any pure state is represented by a vector
|ψ〉 = α|0〉 ⊗ |0〉 + β|0〉 ⊗ |1〉 + γ|1〉 ⊗ |0〉 + δ|1〉 ⊗ |1〉,
whereα, β, γ, δ are complex numbers and the vector has uni-
tary norm.



240 E. BUKSMAN, A. L. FONSECA DE OLIVEIRA AND C. ALLENDE

|ψ〉 =




α
β
γ
δ


 . (2)

2.2. Evolution of states

The evolution of a quantum closed system is a reversible pro-
cess, and can be represented by a unitary transformationU ,
on the state|ψ〉, U |ψ〉 = eiH∆t|ψ〉 whereH is the Hamilto-
nian of the physical system and∆t the time duration of the
process [16]. This representation is especially useful, since
you can see the unitary transformations as quantum gates,
similar to the role of classic gates in classical computation.
Some transformations commonly used in quantum circuits
are shown in the Table I.

The entanglement of a composed state (more than one
qubit), is a unique feature of quantum states, that has no anal-
ogy on classical computing. For example, the two qubit state
GHZ [16] is a state of maximum entanglement which can be
generated by the application of aCnot gate I to two indepen-
dent qubits|ψ〉

Cnot|ψ〉 = Cnot

[
1√
2

(|0〉+ |1〉)⊗ |0〉
]

=
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) (3)

as illustrated in Fig. 1.

FIGURE 1. Cnot gate aplied to state|ψ〉.

TABLE I. Common Unitary matrices.

Gate name Matrix representation

Hadamard gate H = 1√
2

[
1 1

1 −1

]

PauliX gate X = σX =

[
0 1

1 0

]

PauliY gate Y = σY =

[
0 −i

i 0

]

PauliZ gate Z = σZ =

[
1 0

0 −1

]

Cnot gate Cnot =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




2.3. Open systems

When we have partial information of the state,i.e., we only
have information of a subsystem of the total system, the state
must be represented by a positive definite hermitic matrix of
unitary trace, called the density matrix of a mixed state. Any
pure state can be also described by a density matrix, but the
inverse is not true. For the pure state|ψ〉 = α|0〉+ β|1〉, the
density matrix denoted by|ψ〉〈ψ| is

ρ = |ψ〉〈ψ| =
[

αα∗ αβ∗

α∗β ββ∗

]
. (4)

In the rest of the article we will refer to the state of the system
as the representation via the density matrix.

The decoherence can be thought of as an unwanted inter-
action with the environment [18]. When a quantum system is
open, the interaction between the systemS and the environ-
mentE can be represented as a unitary matrix of the whole
system. If we only have information about the systemS, it
can no longer be described as a unitary vector, but can be de-
scribed by a density matrix, which is the statistical average of
an assembly of pure states.

The quantum evolution of a closed system can still be rep-
resented by a unitary matrix. When the state is represented
by a density matrixρ, the evolution of the state is given by
ρ′ = UρU† [16].

2.4. Measurements

Unlike the reversible evolution of a closed process, quan-
tum measurement is an irreversible process that collapses the
quantum state. For example, for the one qubit state|ψ〉,
the state collapses to|0〉 or |1〉, with probabilities|α|2 and
|β|2 respectively. In general, the measurements can be rep-
resented by operators. If we restrict ourselves to projective
measurements, a physical observableM , called in this con-
text the measurement base, can be described by the projectors
Pi, generated by the eigenvectors ofM ,

M =
∑

i

λiPi =
∑

i

λiu
†
iui (5)

whereλi andui are the eigenvalues and eigenvectors respec-
tively of M . Then, the probability after projective measure-
ment of the stateρ is [16]

P (i) = Tr (Piρ) , (6)

and the state after measurement becomesρ′

ρ′ =
∑

i

PiρP †i . (7)
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3. Modeling quantum errors

Every computational system is unavoidably affected by er-
rors. In particular, the implementation of gates, the prepa-
ration of states and the measurement, can have systematic
errors [19], as well as errors due to the interaction with the
environment, called decoherence errors [18]. Systematic er-
rors could be modeled as random unitary matrices, but usu-
ally they have a preferential error direction. Both type of
errors can modeled byOperator Sum Representation([20])
and characterized using the isotropic index [15].

The decoherence can be modeled by a sum of operators
(Operator Sum Representation[20]) applied to the state of
the system, determined to better adjust the noise for each type
of technology.

A quantum operation over a stateρ denotedε(ρ) can be
expressed as a function of Kraus operators (Ek) as shown

ε (ρ) =
∑

k

EkρE†
k (8)

whereEk satisfy
∑

k EkE†
k = I, whereI is the identity ma-

trix, of the same dimension asEk.

3.1. Generalized amplitude damping error (GAD)

One of the standard models commonly used in the literature
is a Generalized Amplitude Damping error (GAD), that could
be interpreted as the interaction between a system and a ther-
mal bath at fixed temperature. The model depends on two
parameters: one related to the contact time with the thermal
bath, represented as a probability of errorγ ∈ [0, 1], and the
second related to the temperature of the thermal bath, repre-
sented by a parameterp ∈ (1/2, 1]. For GAD error the Kraus
operators are [16],

E0 =
√

p

[
1 0
0

√
1− γ

]
, E1 =

√
p

[
0 0
0

√
γ

]
,

E2 =
√

1− p

[ √
1− γ 0
0 1

]
,

E3 =
√

1− p

[
0 0√
γ 0

]
(9)

3.2. Systematic errors

In addition to a decoherence error, quantum computers suffer
from systematic errors like classical machines. The error can
be expressed by a rotationG, which could have a preferen-
tial direction in space. For example, a deviationε by rota-
tion in X direction, can be represented by the unitary matrix
G = eiεX where the resulting state due to errorρ is

ε(ρ) = GρG† (10)

3.3. Isotropic error state

An isotropic error state is a mixed state that results of
isotropic errors,i.e., errors that depends only of the distance
from the original state, or reference state (r.s.) [15].

In the case of an qubits reference state|0〉n = |0 . . . 0〉
the mixed density matrixρiso representing an isotropic error
state has the form

ρiso =




λ0 0 0 0
0 λ1 0 0
...

...
. ..

...
0 0 · · · λ1


 . (11)

In the general case, let|φ〉 be a reference state (r.s.) and
M a basis change matrix so that|0〉 = M |φ〉. A mixed stateρ
is an isotropic error state (r.s.|φ〉) if the the statēρ = MρM†

can be expressed as

ρ̄ =





(2nλ1) I
2n + (λ0 − λ1) ρ0, λ0 ≥ λ1

(2nλ0) I
2n

+(2n − 1) (λ1 − λ0) ρN0, λ0 < λ1

, (12)

whereρ0 = |0〉n〈0|n and

ρN0 =
(I − ρ0)
(2n − 1)

=
1

(2n − 1)




0 0 0 0
0 1 0 0
...

...
. . .

...
0 0 · · · 1


 , (13)

the orthogonal isotropic mixed state relative to the reference
state|0〉n.

Applying the inverse transform, the orthogonal isotropic
mixed state ofρφ = |φ〉〈φ| is

ρNφ = M†ρN0M =
I − ρφ

2n − 1
(14)

3.4. Isotropic index

To identify and characterize the errors, the isotropic double
index defined in [15] is used. This index separates the part
that cannot be corrected due to the total loss of information,
called weightw, and the alignmentA with respect to the ex-
pected reference state that, theoretically could be corrected.

Considering the pure reference state ofn qubits,ρφ =
|φ〉〈φ|, and the decomposition of a stateρ after a noisy pro-
cess acting onρφ, ρ = p(I/2n)+(1−p)ρ̂. The double index
is defined as:

• The Isotropic AlignmentA,

A = Fid(ρ̂, ρφ)− Fid(ρ̂, ρNφ) (15)

whereFid is the fidelity between quantum states.

• The isotropic weight is

w = 2nλ, (16)

with λ being the smallest eigenvalue ofρ.
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The alignmentA takes values in the interval[−1, 1].
When it is completely aligned with the pure reference state
|φ〉, A = 1, and when it is completely misaligned,A = −1.
The weight take values in the interval[0, 1]. When the state
ρ is purew = 0 (the inverse is true only for one qubit state)
and for a state without any information,w = 1 (for one qubit
state is the state maximum mixedness).

As an example, if we consider the one qubit reference
state|0〉 and the mixed state after some noisy processρ

ρ =
[

0.5 0.4
0.4 0.5

]
= 0.2

I

2
+ 0.8|+〉〈+|, (17)

where|+〉 = (1/
√

2) (|0〉+ |1〉). The weight isw = 0.2 and
the alignment isA = 0, which means that it is aligned with
the|+〉 state, and not with the reference state|0〉. By making
a rotationG of theρ state

G =
1√
2

[
1 −1
1 1

]
(18)

it could be realigned to the reference state

G†ρG =
1√
2

[
0.9 0
0 0.1

]
= 0.2

I

2
+ 0.8|0〉〈0|. (19)

4. Error analysis on Deutsch algorithm

4.1. Deutsch algorithm

The Deutsch quantum algorithm, one of the first proposed,
solves in the framework of quantum computing a problem
that cannot be solved in a unique step of calculation using
classical computation. Although the algorithm proposed by
David Deutsch is not of immediate application, it is the ba-
sis of important algorithms based on oracles such as Grover’s
search of known advantage over standard computation.

The idea is defined as follows; given a black box, known
as the oracle, which consists of an unknown binary function
of one bitf (x) : {0, 1} → {0, 1}, the goal is to decide in a
deterministic way if the function is balanced or constant us-
ing the oracle onlyone time. The classical algorithms need
two instances of application of the oracle to solve the prob-
lem in a deterministic way, while quantum Deutsch algorithm
uses the oracle a single instance, as long as there are no er-
rors in the calculation process. The Deutsch algorithm can be
summarized in the following scheme shown in the Fig. 2.

FIGURE 2. The Deutsch Algorithm.

Beginning with the two-qubit initial state|0〉 ⊗ |0〉, a X
gate is applied in the second qubit getting|0〉 ⊗ |1〉. After
applying a Hadamard transform to each qubit, the result is
(1/2) (|0〉+ |1〉)⊗(|0〉 − |1〉). Applying the oracle (with one
of four possible binary functions) to the current state, and ig-
noring the second qubit (because at this stage the qubits are
independent), we get

1√
2

[
|0〉+ (−1)f(0)⊕f(1) |1〉

]
(20)

Finally, applying a Hadamard transform to this state we have

1
2

[ (
1 + (−1)f(0)⊕f(1)

)
|0〉

+
(
1− (−1)f(0)⊕f(1))

)
|1〉

]
. (21)

Then it is concluded immediately that, the result is0 for con-
stant functions, and1 for balanced ones.

4.2. Deutsch algorithm (DA) implementation on IBM Q

In order to analyze the performance of the algorithm in the
IBM Q machine, the four possible functions of the oracle
have to be implemented,i.e, f0 constant zero, f1constant
one, fId identity andfNOT inverse function. Each of these
functions are implemented with the previous quantum gates
Table I, and are shown in Figs. 3, 4, 5, and 6.

To study the effect of the error on the resolution of the
problem, the measurement of the third qubit is made (q[3]).
The result in an ideal case without error, should be 0 if the
function is constant and 1 if the binary function is balanced.
However, the actual result is affected due to several sources
of error, which distort it with respect to the ideal case. To an-
alyze this distortion, statistical experiments were carried out,
that allow us to determine in an approximate way the repre-
sentative assemble of the final state,i.e., the final mixed state
denoted byρ.

FIGURE 3. DA IBM Q implementation, with constant zero func-
tion f0.
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FIGURE 4. DA IBM Q implementation, with identity functionfId.

FIGURE 5. DA IBM Q implementation, with inverse function
fNOT .

FIGURE 6. DA IBM Q implementation, with constant one func-
tion f1.

4.3. Quantum state tomography (QST)

To find experimentally the density matrix of a state, a method
called quantum state tomography is used [16]. Measurements
must be made in the three bases (axes) of the space,X, Y and
Z, to recover the density matrix state. The stateρ is given
by [16]

ρ =
1
2
(
Id + Tr(ρX)X + Tr(ρY )Y + Tr(ρZ)Z

)
, (22)

where Tr(ρX), Tr(ρY ), Tr(ρZ), are obtained, approaching
the expected value by the statistical average. For example,
by spectral decompositionZ = (+1)P0 + (−1)P1, then,
Tr(ρZ) = Tr(ρP0) − Tr(ρP1), that by Eq. (6), Tr(ρZ) =
P (0) − P (1), whereP (0) andP (1) are the probabilities of
measuring0 and 1 respectively. Similar calculations were
done forX andY operators.

The IBM Q computer, can measure only in the canoni-
cal base (Z). Then, to measure on another base, the last two
identities in Figs. 3, 4, 5, and 6, must be replaced. For exam-
ple, to measure in the baseX, a rotation of aq[3] qubit must
be made, using in place ofId ⊗ Id, the matrixH ⊗ Id, and
to measure in theY basis, the identities must be replaced by
S† ⊗H, where

S† =
[

1 0
0 −i

]
,

as shown in Fig. 7.
For each of the four possible binary functions, the experi-

ments were performed8192 times (in IBM Q computer), and
the resulting density matrices and probabilities of success are
obtained and shown in Table II.

FIGURE 7. DA IBM Q implementation, forfId in Y basis.

TABLE II. Probability of success for each binary function.

Binary function Resulting matrix Ideal result Probability

f0

[
0.9491 0.0462− 0.0664i

0.0462 + 0.0664i 0.0509

]
0 0.9491

fI

[
0.1497 0.0270− 0.0160i

0.0270 + 0.0160i 0.8503

]
1 0.8503

fNOT

[
0.1748 0.1079− 0.0576i

0.1079 + 0.0576i 0.8252

]
1 0.8252

f1

[
0.9495 0.0510− 0.0645i

0.0510 + 0.0645i 0.0505

]
0 0.9495
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TABLE III. Double Isotropic Index (Weight and Misalignment as defined in Eqs. (15) and (16)) and Fidelity between the IBM Q experimental
result and the simulated error model.

Binary function Ideal result Weight (w) Misalignment (A) Fidelity

f0 0 0.0873 0.9070 0.9999

fId 1 0.2965 0.9544 0.9976

fNOT 1 0.3051 0.8049 0.9996

f1 0 0.0862 0.9056 0.9999

4.4. Modeling GAD error in IBM Q

After a statistical analysis of experimental data, it was deter-
mined that the model that best suited this algorithm and quan-
tum machine (IBM Q) is a Generalized Amplitude Damping
(GAD) error model [15]. Running a numerical simulation of
this error and comparing with experimental data, the param-
eters that best adjust to the Eq. (9) for the four functions at
the same time are:

γ = 0.1947, p = 0.7761. (23)

4.5. The misalignment error model (MA)

The resulting experimental states (IBM Q) show some mis-
alignment with respect to the expected states (for each of the
4 functions) that cannot be modeled with a GAD error (see
Table III).

The GAD error model can generate a certain weight (w)
in the pure states resulting from the algorithm, but it cannot
generate a misalignment with respect to these. We propose
a method that consists of a unitary transformation (rotation)
applied to three qubits (two qubits of the algorithm and one
auxiliary one) that quantifies the misalignment of the state.

In order to determine the appropiate rotation that has to
be applied to each function, knowing the theoretical result (0
for f0, f1 and1 for fI , fNot) we generate a rotation from
that state to the experimental one (Gf0 , Gf1 for 0 , andGfI

,
GfNot

for 1), in the same manner as 18. Finally, an approxi-
mation to the geometric mean is applied to both cases given
by

G0 = e
log Gf0

+log Gf1
2 , G1 = e

log GfI
+log GfNot

2 (24)

resulting in

G0 =
[

0.996 0.053 + 0.069i
0.090 −0.594 + 0.799i

]
,

G1 =
[

0.994 −0.097 + 0.055i
−0.111 −0.863 + 0.493i

]
(25)

Since the result of the algorithm is a priori unknown, the
proposed model applies a conditional operator depending on
the result as shown in Fig. 8.

The result of the model, quantified using the fidelity be-
tween the IBM Q experimental result and the simulated one,
is shown in the Table III.

FIGURE 8. The Misalignment error model (MA).

5. Results and conclusions

In this work we have modeled the propagation of errors in a
real quantum machine, such as IBM Q (ibmqx4). The result-
ing mixed states of a quantum Deutsch algorithm, are found
by means of a QST method. Through the characterization us-
ing an isotropic index, the error has been modeled, in which
the loss of information is given by a GAD error model, and
the misaligned part by means of unitary conditional matrix
(MA error model). As shown in Table III, the largest source
of error in this case is the decoherence, given by the weight
(w) and modeled by GAD error model. Furthermore, the
Misalignment error improves the error model bringing fideli-
ties close to one.

The proposed error model fits very well with the experi-
mental results, and can be the first step for the future correc-
tion of systematic errors in quantum systems.
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