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Fractal model equation for spontaneous imbibition
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Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CDMX, Ḿexico.
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A new analytic model of fractal imbibition in porous media is derived. The topological Hausdorff dimension is used as a fractal parameter
in the proposed model. The fractal formulation is based on the model introduced by Li and Zhao [Transp. Porous Media, 91 (2012) 363]
to predict the production rate by spontaneous imbibition. Cantor Tartans and Menger sponge fractals are used to simulate fractal porous
media with different ramifications. Results of illustrative examples are presented in the form of a set of curves, which reveal the features of
enhanced oil recovery of the model under consideration. The results are compared with the experimental behaviour found on core samples
of previous publications.
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Un nuevo modelo analı́tico de imbibicíon fractal en medios porosos es deducido. La dimensión topoĺogica de Hausdorff es usada como un
paŕametro fractal en el modelo propuesto. La formulación fractal se basa en el modelo presentado por Li y Zhao [Transp. Porous Media,
91 (2012) 363] para predecir la tasa de producción por imbibicíon espont́anea. Los fractales Asfalto de Cantor y la Esponja de Menger
son usados para simular medios porosos fractales con diferentes ramificaciones. Los resultados de los ejemplos ilustrativos se presentan en
forma de un conjunto de curvas, que revelan las caracterı́sticas de la recuperación mejorada de petróleo del modelo en consideración. Los
resultados se comparan con el comportamiento experimental encontrado en muestras de núcleos de publicaciones previas.

Descriptores: Dimensíon topoĺogica de Hausdorff; imbibición espont́anea; asfalto de Cantor; esponja de Menger.
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1. Introduction

Spontaneous imbibition is the main mechanism of enhanced
oil recovery in many subterranean reservoirs, particularly on
those where water injection technology is used. Since the
classical approach of Lucas-Washburn [1,2], who established
that the liquid travel distance (x) in a capillary tube is pro-
portional to the square root of time (

√
t); extensive theoreti-

cal and experimental studies have been performed to under-
stand the imbibition phenomena. Based on experimental data
of imbibition in paper [3,4], textile [5], glass beads [6], and
berea [7] it was shown that the wetting front rises as [5,8]

x = Ωtm, (1)

being0.25 ≤ m ≤ 0.5 the scaling exponent andΩ is a con-
stant that is linked to porous media and liquid properties and
interactions. The range ofm matches with the analytical ap-
proach of [9],x ∝ t1/2dτ , wheredτ is the fractal dimension
of flow tortuosity (see [10] for a quick review) in capillary
tubes with fractal path [11]. The exact value ofm can be
found using the fractal theory as an analysis tool. It depends
on the intrinsic topology of individual porous medium.

The scaling exponent of the relationship between recov-
ery by spontaneous imbibitionx and the production timet
by permeable materials possesses a fractal architecture and is
characterized as [12]

m = dH − 2, (2)

with the value of the Hausdorff dimension of the porous
medium satisfyingdt < dH < de, wheredt is the topological
dimension andde is the embedded dimension of the fractal
object. Notice that the scaling exponent given in Eq. (2) is
presumed to be applicable on imbibition processes. Hence, it
is employed to fit data of field measurements.

However, there is a set of dimension numbers that de-
scribe the scaling properties of a fractal domain, see for ex-
ample [13-16] and references therein. Accordingly, authors
of [17] have introduced a new dimension numberdtH termed
the topological Hausdorff dimension, in order to further char-
acterize the fractal geometry.

Besides, it is frequently supposed that the “Hausdorff di-
mension” is equal to the “topological Hausdorff dimension”
[12,18]. But, it has been proved that for path-connected frac-
tals,dH is generally larger thandtH except for Cantor Tartan
fractals, wheredtH(CT ) = dH(CT ). In this regard, the as-
sumption thatm = dH − 2 is unlikely to be strictly correct.
However, to our best knowledge, Eq. (2) and the assumption
dH = dtH have never been verified in physical applications
on deterministic fractals with known scaling properties.

Thereupon, this manuscript has as a main aim to theoreti-
cally verify Eq. (2) and the assumption thatdH = dtH for in-
finitely ramified fractals in imbibition studies. These imbibi-
tion studies were performed on samples of deterministic frac-
tals (Menger sponge and Cantor Tartans), which are exactly
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self-similar fractals. It was found that the liquid travel dis-
tance through the pre-fractal network is a topological Haus-
dorff dimension function rather than a Hausdorff dimension
function. This contradicts the assumption that the Hausdorff
dimension and the topological Hausdorff dimension always
have the same value. Consequently, we argue that the pen-
etration of the fluid on fractal porous media by spontaneous
imbibition is governed by the topological Hausdorff dimen-
sion. Analytic results are brought to comparison with pre-
vious experimental works in order to validate the proposed
imbibition model.

The structure of this paper is as follows. In Sec. 2 the
fractal theory and the basic tools required are reviewed. De-
tails of the material and methods used are described in Sec.
3. Section 4 is devoted to describe illustrative examples and
some physical implications are discussed. Section 5 finishes
the paper with conclusions.

2. Theoretical considerations

In what follows, some basic tools and properties of sponta-
neous imbibition in porous media with fractal porosity are
recalled (for review, see [10-12] and references therein).

2.1. Naturally fractured subterranean reservoirs

Many naturally fractured reservoirs exhibit fractal features.
The complex network of pores possesses scale invariance
over a lot of length scales. Suchlike a pore space can be sim-
ilar to pre-fractal,e.g., Cantor Tartan and Menger sponge.

2.2. Fractal model of spontaneous imbibition

The oil production rateq by spontaneous imbibition can be
expressed asdx/dt, from Eq. (1):

q =
dx

dt
= Ω mtm−1, (3)

considering the fractal model proposed in [19] for the pro-
duction rate

q ∝ tdH−3, (4)

and relating Eqs. (3) and (4), the Eq. (2) is obtained. So, Eq.
(1) can be written as a function of the Hausdorff dimension
of the porous medium and the Li-Zhao’s fractal-model to pre-
dict spontaneous imbibition in porous media is obtained [12]

x = ΩtdH−2, (5)

here,2 < dH < 3 describing the heterogeneity of porous
rock. It is a straightforward matter to understand that if
0.5 < dH < de, the behaviour of Eq. (5) may be incon-
sistent with the physical situation. In this regard, it is perti-
nent to mention that the scaling exponent from Eq. (5) was
questioned in [10,20].

2.3. Topological Hausdorff dimension

On the other hand, authors of [17] proposed a new dimen-
sion number, the well-celebrated topological Hausdorff di-
mensiondtH that provides a further insight into the geometry
of path-connected fractals.

The value of the topological Hausdorff dimension quan-
tifies the ramification of a fractal and its transport properties.
Such that, for totally disconnected fractalsdtH = 0; for path-
connected but finitely ramified fractalsdtH = dt = 1 and for
infinitely ramified fractalsdt < dtH ≤ dH (for details see
[16,21-23]).

Generally, the topological Hausdorff dimension is

1 < dtH ≤ dH. (6)

Regarding the imbibition rate in a fractally permeable
medium in [16] was established that it is controlled by its
fractal ramification, characterized bydtH, rather than the cor-
responding Hausdorff (mass fractal) dimensiondH > dtH.
So, Eq. (5) can be rewritten as

x = ΩtdtH−2, (7)

differentiating Eq. (7) with respect to timet, the recovery
rate for a porous medium with fractal porosity considering
its topological Hausforff dimension, results in

q = (dtH − 2)Ωt−(3−dtH). (8)

2.4. Topological connectivity dimension

It is known thatdH anddtH are defined with respect to the
Euclidean metricL in the embedding Euclidean space. Nev-
ertheless, there always exists the geodesic metric associated
with the fractal topology [24,25], characterized by the con-
nectivity dimensiond`, which is independent of the embed-
ding [25]. It allowed to introduce the topological connec-
tivity dimensiondt` to the authors of [15], in order to char-
acterize the fractal mass with respect to the geodesic metric
`min, wheredt ≤ dt` ≤ d` (for further details see [15]).
It is relevant to note that when the geodesic and Euclidean
metrics are equivalent̀min ∝ L, the Hausdorff and connec-
tivity dimensions are equaldH(F ) = d`(F ), implying that
dtH(F ) = dt`(F ). Resulting in the possibility of writing
Eq. (7) as:

x = Ω tdt`−2. (9)

2.5. Deterministic fractals with known scaling proper-
ties

The imbibition processes were performed on fractal objects
as a physical representation of core samples with exact fractal
parameters such as Menger sponge and Cantor Tartans.

The Menger spongeM is a three-dimensional general-
ization of the Cantor setC. It is constructed starting from a
unit cube[0, 1]3 which is divided inton×n×n sub cubes of
equal size, after that, the interior ofm3 sub cubes is deleted
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and so on. The Hausdorff dimension of the Menger sponge
is given by

dH(M) =
ln(n3 −m3)

ln(n)
, (10)

and its topological Hausdorff dimension is [17]

dtH(M) = 2dH(C) + 1 < dH(M). (11)

wheredH(C) is the Hausdorff dimension of the correspond-
ing Cantor setC. The Cantor TartanCT is a fractal re-
cently introduced by authors of [26,27]. It is established
in <3 as a union of three orthogonal Cartesian products
(C×C)×[0, 0, 1], (C×C)×[0, 1, 0], (C×C)×[1, 0, 0]. It con-
stitutes a special class of infinitely ramified fractals, where its
Hausdorff dimension is equal to its topological Hausdorff di-
mension:

dH(CT ) = dtH(CT ) = 2dH(C) + 1. (12)

In order to solve Eqs. (11) and (12) one must know the
Hausdorff dimension of the corresponding Cantor setC.

Note that the three-dimensional Cantor set generalization
is a fractal dust with totally path-disconnected [28], but the
Cantor Tartan is a path-connected fractal, as it is shown in
the following figures.

For the case of the Cantor middle sets its Hausdorff di-
mension is defined as:

dH =
ln(n−m)

ln(n)
. (13)

For another special cases of Cantor sets see [29].
With the aim of construct three-dimensional fractals with

dH similar to the core samples experimentally studied in [12]
and in order to validate the theoretical model proposed, we
use the Cantor set shown in Fig. 1(a), wheren = 9 and
m = 5 as the corresponding Cantor set of the Menger sponge,
this for the modeling of Geyser’s rock core sample.

For the modelling of the Glass bead core sample, the Can-
tor Tartan (CT 1) is constructed with the generator from the
corresponding Cantor set (n = 13 and m = 9) drawn in
Fig. 2(a) of [29].

FIGURE 1. Generation process of Menger sponge. (a) Cantor set.i = 0, 1, 2, (b) Sierpinksi carpet.i = 2, (c) Menger sponge.i = 2.

FIGURE 2. Generation process of Cantor TartanCT 1. (a) Cantor set,i = 0, 1, 2, (b) Two-dimensional Cantor Tartan,i = 2. (c) Three
dimensional Cantor tartan (CT 1), i = 2.
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TABLE I. Fractal parameters and scaling exponents for Menger sponge, Cantor Tartan, and core samples.

Fractal matrix
Dimension numbers

dt dH dtH de m dH(C) dt`

Cantor TartanCT1 [16,26] 1 2.08 2.08 3 0.08 0.54 2.08

Glass bead packa [12] 1 2.07 2.07 3 0.07 – 2.07

Cantor TartanCT2 [16,26] 1 2.15 2.15 3 0.15 0.57 2.34

Berea sandstonea [12] 1 2.16 2.16 3 0.16 – 2.16

Cantor TartanCT3 [16,26] 1 2.42 2.42 3 0.42 0.71 2.42

Chalka [12] 1 2.40 2.40 3 0.40 – 2.40

Menger spongeM [30,31] 1 2.60 2.26 3 0.26 0.63 2.26

The Geysers rockb [12] 1 2.60 – 3 0.60 – –
a Similar to the Cantor-Tartan geometry.
b Menger-sponge-like.

FIGURE 3. Generation process of Cantor TartanCT 2. (a) Cantor set,i = 0, 1, 2, (b) Two-dimensional Cantor Tartani = 2, (c) Three
dimensional Cantor tartanCT 2, i = 2.

FIGURE 4. Generation process of Cantor TartanCT 3. (a) Cantor seti = 0, 1, 2. (b) Two-dimensional Cantor Tartani = 2, (c) Three-
dimensional Cantor tartanCT 3 i = 2.
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Now for the modeling of the Berea sandstone core sam-
ple, the Cantor Tartan (CT 2) depicted in Fig. 3 is a gen-
eralization to the three-dimensional Euclidean space of the
Sierpinski carpet given in the Fig. 2(b) of [16].

Finally for the modeling of the Chalk core sample, the
Cantor Tartan (CT 3) (see Fig. 4), is constructed in a sim-
ilar way as (CT 2), where its correspondent Cantor set has
dH = ln 4/ ln 7 [29]. All the values of the dimension num-
bers of these fractals are given in Table I. Fractal data of core
samples are taken from [12,18].

3. Materials and methods

This section presents the physical models of naturally frac-
tured reservoirs where the previous equations are applied.

3.1. Materials

All of the theoretical parameters of the fractals defined in the
previous section are given in Table I. The process of sponta-
neous imbibition is carried out with gas-water displacement
in materials taken from [12,18].

3.2. Methods

The expressions given in Eqs. (7) and (8) have analytical so-
lutions. This implies that they can be solved when the bound-
ary conditions and the fractal parameters are given to be ap-
plied. The topological Hausdorff dimension is determined by
Eq. (11) and (12) for Menger sponge and Cantor Tartans, re-
spectively or it can be calculated by many estimation methods
of fractal dimension (see [32-34]).

4. Results and discussions

The objective of this section is to discuss some physical im-
plications of the phenomenon under study based in the results
found.

4.1. Analytic findings

Figure 5 shows the liquid travel distance on Cantor Tartan
fractals. The behaviour is in accordance with previous re-
sults published in literature and described with Eqs. (1) and
(5). The discrete data is from experimental results of tests
conducted on the core samples published in [12].

The results obtained for Cantor Tartans from Eq. (8) are
in agreement with the experimental data given in previous re-
ports as it is shown in Fig. 6. Representing the recovery rateq
by spontaneous water imbibition versus time production , the
linear curves enact the theoretical results of different versions
of the Cantor Tartan; depicted with green, cyan and blue lines
(see Table I). Meanwhile, the rest of the curves are experi-
mental test results given in [12,18]. The core samples hetero-
geneity is similar to path-connected fractals, whose topologi-
cal Hausdorff dimension is equal to its Hausdorff dimension.

FIGURE 5. Liquid travel distance versus imbibition time in Cantor
Tartan (dtH = dH) and core samples.

FIGURE 6. Comparison of theoretical water imbibition rate and
experimental test in Cantor Tartan and core samples, respectively,
wheredtH = dH.

The Fig. 7 presents the imbibition process behaviour on
Menger sponge fractal. It has two different curves; on one
hand, the curve depicted in topological Hausdorff dimension
function (dtH) is the olive one; on the other hand, the liquid
travel distance graph obtained with the Hausdorff dimension
function (dH) is the red one.

The recovery rate (q) by spontaneous water imbibition
shown in Fig. 8 (green and red lines), is a characterization
of the curves describing the Menger sponge behaviour with
both dimension numbersdtH anddH according to Eq. (8).
The recovery behaviour in Geyser rock core sample (squares)
from experimental tests is also shown, as well as the theoret-
ical approach (stars) using the dimension numberdtH rather
tandH for Geyser rock.

Rev. Mex. F́ıs. 66 (3) 283–290
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FIGURE 7. Liquid travel distance versus imbibition time in Menger
sponge (dtH < dH) and core samples.

FIGURE 8. Water imbibition rate from Menger sponge and from
Geyser rock, according to Eqs. (4) and (8).

4.2. Discussions

In the Fig. 5, the scaling exponent of the curves is in topo-
logical Hausdorff or Hausdorff dimension function, since
dtH = dH is true for all Cantor Tartans. Their upper and
lower cut-off being2 < dtH < 0.5. The slopes obtained with
Eq. (7) on Cantor Tartan fractals match with those obtained
on core samples [12].

The physical behaviour of spontaneous imbibition is
well-described when the time scale is a topological Hausdorff
dimension function (olive curve in Fig. 7). If the imbibition is
computed with the Hausdorff dimension a physical inconsis-
tency is obtained (red color data). The value ofm is greater
than the Washburn regime. The slope found with Eq. (7) on
the Menger sponge fractal is in accordance with the physi-
cal situation, and this is attributed to the introduction of the
topological Hausdorff dimension in Eq. (2).

The results found with Eq. (8) are in agreement with
experimental results given in a previous report as shown in
Fig. 6 on the Cantor Tartan. Also, the Fig. 8, presents a curve
in green color that is the real rate recoveryq on the Menger
sponge (obtained withdtH), while the curve in red color is a
non-consistent behaviour (obtained as adH function).

In this regard, we argue that the Geyser’s rock core has a
fractal structure very similar to the Menger sponge shown in
Fig. 7 with the topological Hausdorff dimension ofdtH ≈
2.26.

The time scaling exponent on Eq. (1) is in dtH function
rather tan indH function as is depicted in graph of previous
figures. The behaviour found in this paper is in agreement
with the reported results in [12]. These results validate the
model proposed in Eq. (7). Even the apparent physical in-
consistency plotted in Fig. 7 from [12] can be explained by
Eq. (8); in this regard, it is not difficult to see thatdtH < dH
becomes true for the Geyser’s sample, similar to the Menger
sponge; meanwhile the rest of the samples from [12] have
a behaviour as an infinitely ramified fractal network Cantor-
Tartan-like, wheredtH = dH.

We would like to point out that the proposed model in
[12] is a particular case of our model given in Eq. (7) that
can be applied when the porous media havedtH = dH.

Nonetheless, the time scaling exponentm can take an-
other forms, depending on the fractal structureF . Such that
whendH(F ) = d`(F ), i.e. Menger sponge and Cantor Tar-
tan, the liquid travel distance is computed by Eq. (9).

It is known thatdt` characterizes the fractal mass in re-
gard of the geodesic metric [15], consequently, only for Can-
tor Tartans,dH(F ) = d`(F ) = dtH(F ) = dt`(F ) holds,
and the liquid travel distance is obtained by Li-Zhao model,
given in Eq. (5).

Ultimately, if 1 ≤ dH(F ) < 2 for lineal determinis-
tic finitely ramified fractals,i.e. Koch curve, Mikonswki
sausage, and time series type functions see [9,11] and ref-
erences therein, Eq. (1) can be written as the Jianchao Cai
modelx = Ω t1/2dτ [9,35,36].

In this theoretical approach of spontaneous imbibition in
actual fluid-rock systems and simulated fractal structures, we
can establish the following:

• The generalized equation proposed to describe the im-
bibition processes given in Eq. (7) is modeled using
the fractal ramificationdtH [16,17], which quantifies
the interconnected pores and channels network in a
porous medium (fluid-rock system), rather than using
the Hausdorff dimensiondH (also simply called the
fractal dimensiondf ) that quantifies the fractal mass,
as the classic fractal model does.

• The fractality of Eqs. (5), (7) and (9) is bounded to a
range of time scales, where the lower cutoff is when
the initial contact between the water reservoir and the
porous medium occurs (t = 0), and the upper cutoff
is characterized by the instant in which the equilibrium

Rev. Mex. F́ıs. 66 (3) 283–290



FRACTAL MODEL EQUATION FOR SPONTANEOUS IMBIBITION 289

height on spontaneous imbibition is reached (t = teq)
[11].

5. Conclusions

In this work it has been put forward the analytic expression
x = ΩtdtH−2, which allows to calculate the liquid travel
distance of the imbibition processes for the infinitely rami-
fied fractals (e.g., Menger sponge and Cantor Tartan). The
assumption that the time scalem = dH − 2 in Eq. (1) is
only correct for Cantor-Tartan-like fractals because for them
dtH = dH.

The topological Hausdorff dimension allows further char-
acterization of the transport properties of flow on infinitely
ramified fractals. The time scalem = dtH − 2 is a general-
ized model that can be employed for modeling spontaneous
imbibition in naturally fractured reservoirs, even when the
real medium hasdtH 6= dH.

Illustrative examples of spontaneous imbibition in
Menger sponge and Cantor Tartan using the proposed model
were presented. Specifically, the Menger sponge and the
Geyser rock are well-described using the topological Haus-
dorff dimension given in (8), instead of using the Hausdorff
dimension, (4). Results obtained are in agreement with the
previously reported findings on fractal calculations by Li and
Zhao.

This results provide a more detailed description of the
physical phenomena of the spontaneous imbibition in fractal
matrix with complex porosity using another dimension num-
ber that characterize the fractal structure.
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Method and Noether’s Theorem in Fractal Calculus,Frac-
tal Fract. 3 (2019) 25, https://doi.org/10.3390/
fractalfract3020025 .

29. S. Islam Khan and S. Islam, An Exploration of the Gener-
alized Cantor Set,Int. J. Sci. Technol. Res.2 (2013) 1534,
http://www.ijstr.org .

30. P. S. Addison,Fractals and chaos(IOP Publishing Ltd., Lon-
don, 1997).

31. C. A. Dimarco, Topological conformal dimension,Conformal
Geom. Dyn.19 (2015) 19,https://doi.org/10.1090/
S1088-4173-2015-00274-X .

32. C. D. Cutler inDimension estimation and models, edited by
H. Tong (World Scientific, 1993), Vol. 1, pp. 1-107,https:
//doi.org/10.1142/1986 .

33. P. Hall and A. Wood, On the performance of box-counting
estimators of fractal dimension,Biometrika.80 (1993) 246,
https://doi.org/10.2307/2336774 .

34. L. Damían-Adameet al., An estimation method of fractal di-
mension of self-avoiding roughened interfaces,Rev. Mex. Fis.
63 (2017) 12,https://rmf.smf.mx/ojs .

35. L. You, J. Cai, Y. Kang, and L. Luo, A fractal approach
to spontaneous imbibition height in natural porous media,J.
Mod. Phys. C24 (2013) 1350063,https://doi.org/10.
1142/S0129183113500630 .

36. L. Luo, J. Cai, B. Yu, J. Cai, and X. Zeng, Numerical sim-
ulation of tortuosity for fluid flow in two-dimensional pore
fractal models of porous media,Fractals 22 (2014) 1450015,
https://doi.org/10.1142/S0218348X14500157 .

Rev. Mex. F́ıs. 66 (3) 283–290

https://doi.org/10.1007/s11242-017-0876-2�
https://doi.org/10.1007/s11242-017-0876-2�
https://doi.org/10.1016/j.physleta.2017.11.005�
https://doi.org/10.1016/j.physleta.2017.11.005�
https://doi.org/10.1016/j.physleta.2017.10.035�
https://doi.org/10.1016/j.physleta.2017.10.035�
https://doi.org/10.1016/j.physleta.2018.12.018�
https://doi.org/10.1016/j.physleta.2018.12.018�
https://doi.org/10.1103/PhysRevE.87.032802�
https://doi.org/10.1103/PhysRevE.87.032802�
https://doi.org/10.4171/PRIMS/129�
https://doi.org/10.4171/PRIMS/129�
https://doi.org/10.1016/j.physleta.2018.04.011�
https://doi.org/10.1016/j.physleta.2018.04.011�
https://doi.org/10.3390/fractalfract2040030�
https://doi.org/10.3390/fractalfract2040030�
https://doi.org/10.3390/fractalfract3020025�
https://doi.org/10.3390/fractalfract3020025�
http://www.ijstr.org�
https://doi.org/10.1090/S1088-4173-2015-00274-X�
https://doi.org/10.1090/S1088-4173-2015-00274-X�
https://doi.org/10.1142/1986�
https://doi.org/10.1142/1986�
https://doi.org/10.2307/2336774�
https://rmf.smf.mx/ojs�
https://doi.org/10.1142/S0129183113500630�
https://doi.org/10.1142/S0129183113500630�
https://doi.org/10.1142/S0218348X14500157�

