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This paper studies highly dispersive optical solitons, having Kerr law of refractive index, numerically. The adopted scheme is Laplace-
Adomian decomposition method. Bright soliton solutions are displayed along with their respective error analysis.
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1. Introduction

The concept of highly dispersive optical solitons emerged
during 2019 as an extension and/or generalization to cubic-
quartic solitons. Analytical results are abundant and stem
from this concept, and these have been recovered after imple-
menting of algorithms. These include extended trial function
method,F -expansion scheme, Jacobi’s elliptic function ex-
pansion, exp-expansion and others [1–5]. The conservation
laws for such solitons have also been reported [3]. Therefore,
it is now time to turn the page and explore this topic from
a numerical perspective. This paper, therefore. addressed
highly dispersive optical solitons, having Kerr law of refrac-
tive index, by the aid of the Laplace-Adomian decomposition
scheme. The focus on this paper will be on bright optical
solitons. The scheme is first explicitly elaborated and sub-
sequently implemented into the model equation successfully.
The details are sketched in the rest of the paper.

2. Governing equation

The dimensionless form of NLSE with Kerr law nonlinearity
in presence of dispersion terms of all orders is [6]:

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx

+ ia5qxxxxx + a6qxxxxxx + b|q|2q = 0, (1)

whereq = q(x, t) is a complex-valued function ofx (space)
andt (time) andi =

√−1. The first term represents linear
temporal evolution. The next six terms are dispersion terms
that make the solitons highly dispersive. These are given by
the coefficients ofak for 1 ≤ k ≤ 6, which are intermodal
dispersion (IMD), group velocity dispersion (GVD), third-

order dispersion (3OD), fourth-order dispersion (4OD), fifth-
order dispersion (5OD) and sixth-order dispersion (6OD) re-
spectively. Finally,b indicates the coefficient of self-phase
modulation based on cubic or Kerr nonlinearity.

2.1. Bright solitons

The bright1-soliton solution to (1) was recently found by the
authors in [6, 7] using the semi-variational principle and is
given by

q(x, t) = A
(

sech[B(x− νt)]

+ sech3[B(x− νt)]
)
ei[−κx+ωt+θ0]. (2)

In Eq. (2), ν is the soliton velocity,ω is the angular velocity,
κ is the soliton frequency, andθ0 is the phase center.

In [7], the amplitudeA of the 1-soliton was calculated as:

A=

[
−182.946a6B

6−16.874P3B
4+11.847P2B

2

26.118b

] 1
2

, (3)

where:

P1 = −ω + a1κ− a2κ
2 − a3κ

3

+ a4κ
4 + a5κ

5 − a6κ
6 (4)

P2 = a2 + 3a3κ− 6a4κ
2 − 10a5κ

3 + 15a6κ
4 (5)

P3 = a4 + 5a5κ− 15a6κ
2. (6)

Besides, the inverse widthB of the 1-soliton is a real root of
the equation:
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670.813a6B
6 − 59.059P3B

4

+ 35.541P2B
2 − 9933P1 = 0. (7)

The velocityν is given by

ν = a1 − 2a2κ− 3a3κ
2 + 5a5κ

4 − 6a6κ
5. (8)

Finally, there are the following two relationships between the
soliton frequencyκ and some of the coefficients of Eq. (1),
these are given by [8]

a3 − 4a4κ− 10a5κ
2 + 20a6κ

3 = 0 and a5 − 6a6κ = 0.

3. Method applied

In this section, we will describe the basic theory and al-
gorithm of the Laplace-Adomian decomposition method
(LADM), used to solve nonlinear partial differential equa-
tions, and that was first proposed in [9,10].

Let us look for soliton solutions of Eq. (1) in the form
q(x, t) = u(x, t) + iv(x, t). Then we can decompose the Eq.
(1) in its real and imaginary parts, respectively as

ut = −a1ux − a2vxx − a3uxxx − a4vxxxx − a5uxxxxx

− a6vxxxxxx − bv(u2 + v2) (9)

vt = −a1vx + a2uxx − a3vxxx + a4uxxxx − a5vxxxxx

+ a6uxxxxxx + bu(u2 + v2) (10)

To give analytical approximate solutions for Eq. (1) using
LADM, we first rewrite the Eqs. (9) and (10) in the follow-
ing operator form

Dtu = −a1D
1
xu− a2D

2
xv − a3D

3
xu− a4D

4
xv − a5D

5
xu

− a6D
6
xv + N1(u, v) (11)

Dtv = −a1D
1
xv + a2D

2
xu− a3D

3
xv + a4D

4
xu

− a5D
5
xv + a6D

6
xu + N2(u, v) (12)

with initial conditionsu(x, 0) = <e(q(x, 0)) andv(x, 0) =
=m(q(x, 0)).

In the equations system (11)-(12), the operatorDt de-
notes derivative with respect tot, whereas thatDj

x is thej−th
order linear differential operator∂j/∂xj , andNk represents
nonlinear differential operators fork = 1, 2.

The method consists of first applying the Laplace trans-
form L to both sides of equations in system (11)-(12) and
then, by using initial conditions, we have

u(x, s) =
u(x, 0)

s
+

1
s
L{−a1D

1
xu− a2D

2
xv − a3D

3
xu

− a4D
4
xv − a5D

5
xu− a6D

6
xv + N1(u, v)} (13)

v(x, s) =
v(x, 0)

s
+

1
s
L{−a1D

1
xv + a2D

2
xu− a3D

3
xv

+ a4D
4
xu− a5D

5
xv + a6D

6
xu + N2(u, v)} (14)

Thus, by applying the inverse Laplace transformL−1, we ob-
tain

u(x, t) = u(x, 0) + L−1
[1
s
L{−a1D

1
xu− a2D

2
xv − a3D

3
xu

− a4D
4
xv − a5D

5
xu− a6D

6
xv + N1(u, v)}

]
(15)

v(x, t) = v(x, 0) + L−1
[1
s
L{−a1D

1
xv + a2D

2
xu− a3D

3
xv

+ a4D
4
xu− a5D

5
xv + a6D

6
xu + N2(u, v)}

]
(16)

According to the standard Adomian decomposition method,
the solutionsu andv can be expressed in an infinite series as
follows

u(x, t) =
∞∑

n=0

un(x, t), v(x, t) =
∞∑

n=0

vn(x, t) (17)

Also, the nonlinear terms can be written as

N1(u, v) = −b(vu2 + v3)

= −b

∞∑
n=0

An(u0, u1, . . . , un; v0, v1, . . . , vn) (18)

and

N2(u, v) = b(uv2 + u3)

= b

∞∑
n=0

Bn(u0, u1, . . . , un; v0, v1, . . . , vn) (19)

whereAn andBn are the Adomian?s polynomials [11, 12],
which are defined by

An(u0, . . . , un; v0, . . . , vn) =
1
n!

dn

dλn

×
[
N1

( ∞∑

i=1

λiui;
∞∑

i=1

λivi

)]
λ=0

,

n = 0, 1, 2, . . . (20)

Bn(u0, . . . , un; v0, . . . , vn) =
1
n!

dn

dλn

×
[
N2

( ∞∑

i=1

λiui;
∞∑

i=1

λivi

)]
λ=0

,

n = 0, 1, 2, . . . (21)

On making the substitution of Eqs. (17) and (18) into
Eqs. (15) and (16), we can arrive at
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∞∑
n=0

un = u(x, 0) + L−1

[
1
s
L{−(a1D

1
x + a3D

3
x + a3D

5
x)

∞∑
n=0

un − (a2D
2
x + a4D

4
x + a6D

6
x)

∞∑
n=0

vn − b

∞∑
n=0

An}
]

(22)

∞∑
n=0

vn = v(x, 0) + L−1

[
1
s
L{−(a1D

1
x + a3D

3
x + a3D

5
x)

∞∑
n=0

vn + (a2D
2
x + a4D

4
x + a6D

6
x)

∞∑
n=0

un + b

∞∑
n=0

Bn}
]

(23)

Now, according to LADM, The following recursive schemes can be constructed




u0(x, t) = <e(q(x, 0)),

un+1(x, t) = L−1
[

1
sL{−(a1D

1
x + a3D

3
x + a3D

5
x)un − (a2D

2
x + a4D

4
x + a6D

6
x)vn − bAn}

]
, n ≥ 0,

(24)





v0(x, t) = =m(q(x, 0)),

un+1(x, t) = L−1
[

1
sL{−(a1D

1
x + a3D

3
x + a3D

5
x)vn + (a2D

2
x + a4D

4
x + a6D

6
x)un + bBn}

]
, n ≥ 0.

(25)

BeingN1(u, v) = vu2 + v3 andN2(u, v) = uv2 + u3, using
the formulas (20) and (21) some terms of Adomian’s polyno-
mialsAn andBn are given by

A0 = u2
0v0 + v3

0 ,

A1 = 2u0u1v0 + u2
0v1 + 3v2

0v1,

A2 = 2u0u2v0 + u2
1v0 + 2u0u1v1 + u2

0v2

+ 3v2
0v2 + 3v0v

2
1 ,

A3 = 2u0u3v0 + 2u1u2v0 + 2u0u2v1 + u2
1v1

+ 2u0u1v2 + u2
0v3 + 3v2

0v3 + 6v0v1v2 + v3
1 ,

A4 = v0u
2
2 + 2u0v0u4 + 2v0u1u3 + 2u0v1u3

+ 2u1v1u2 + 2u0v2u2 + u2
1v2 + 2u0v1u3 + u2

0v4

+ 3v2
0v4 + 6v0v1v3 + 3v0v

2
2 + 3v2

1v2, (26)

and

B0 = v2
0u0 + u3

0,

B1 = 2v0v1u0 + v2
0u1 + 3u2

0u1,

B2 = 2v0v2u0 + v2
1u0 + 2v0v1u1 + v2

0u2

+ 3u2
0u2 + 3u0u

2
1,

B3 = 2v0v3u0 + 2v1v2u0 + 2v0v2u1 + v2
1u1 + 2v0v1u2

+ v2
0u3 + 3u2

0u3 + 6u0u1u2 + u3
1,

B4 = u0v
2
2 + 2v0u0v4 + 2u0v1v3 + 2v0u1v3 + 2v1u1v2

+ 2v0u2v2 + v2
1u2 + 2v0u1v3 + v2

0u4 + 3u2
0u4

+ 6u0u1u3 + 3u0u
2
2 + 3u2

1u2. (27)

FIGURE 1. Case 1: Numerically computed profile (left) and absolute error (right).
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294 O. GONZÁLEZ-GAXIOLA, ANJAN BISWAS, AND ALI SALEH ALSHOMRANI

FIGURE 2. Case 2: Numerically computed profile (left) and absolute error (right).

FIGURE 3. Case 3: Numerically computed profile (left) and absolute error (right).

FIGURE 4. Case 4: Numerically computed profile (left) and absolute error (right).
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TABLE I. Coefficients of Eq. (1) for bright solitons.

Cases a1 a2 a3 a4 a5 a6 b κ ω θ0 ν N |Max Error|

1 1.2 0.01 0.024 0.50 4.20 0.33 −1.20 0.01 0.3 1.2 1.19 15 8.0× 10−10

2 1.5 0.07 0.058 0.25 3.20 0.16 −1.10 0.03 0.1 1.4 1.49 15 3.0× 10−9

3 1.0 0.09 0.013 0.12 1.00 0.08 −1.00 −0.02 0.7 1.6 1.00 12 8.0× 10−8

4 1.6 0.04 −0.030 0.80 1.20 0.10 −1.30 −0.01 0.3 1.3 1.60 12 3.0× 10−8

Finally, in conjunction with Eq. (24) and Eq. (25), all compo-
nents ofu(x, t) in Eq. (17) will be easily determined; there-
fore, the complete solutionu(x, t) in Eq. (17) can be for-
mally established. LADM provides a reliable technique that
requires less work if compared with traditional techniques.

4. Numerical simulations

To illustrate the ability, reliability, and accuracy of the pro-
posed method to find solutions of Eq. (1) in the case of bright
solitons, some examples are provided. The results reveal that
the method is very effective and simple. We now consider the
initial condition att = 0 from Eq. (2)

q(x, 0) = A
(

sech[B(x)] + sech3[B(x)]
)
ei[−κx+θ0]. (28)

We now perform the simulation of the four cases listed in Ta-
ble I, and the results and the respective absolute errors are
shown in Figs. 1, 2, 3, and 4.

5. Conclusions

This paper addressed highly dispersive optical solitons, with
Kerr law nonlinearity, by the aid of the Laplace-Adomian de-
composition scheme. The focus was on bright solitons. The
numerical results supplemented the analytical results, there
were reported earlier, and the agreement is to a T. The error
analysis was also profoundly impressive, as well. This shows
extreme promise of the numerical algorithm that has been im-
plemented in this paper. Thus, the results of this paper will
be extended to additional laws of the nonlinear refractive in-
dex. These are cubic-quartic law, polynomial law, nonlocal
nonlinearity, and others. Additionally, the results will be ex-
tended to birefringent fibers. The results of such research
activities are on the horizon and are soon going to be made
visible.
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