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1. Introduction order dispersion (30D), fourth-order dispersion (40D), fifth-
order dispersion (50D) and sixth-order dispersion (60D) re-

The concept of highly dispersive optical solitons emergedspectively. Finally,b indicates the coefficient of self-phase
during 2019 as an extension and/or generalization to cubignodulation based on cubic or Kerr nonlinearity.

quartic solitons. Analytical results are abundant and stem

from this concept, and these have been recovered after imple-

menting of algorithms. These include extended trial functionﬁ'l' Bright solitons

method, F’-expansion scheme, Jacobi's elliptic function ex-he prighti-soliton solution to') was recently found by the
pansion, exp-expansion and others [1-5]. The conservatiofihors in [6, 7] using the semi-variational principle and is
laws for such solitons have also been reported [3]. Therefor%iven by

it is now time to turn the page and explore this topic from

a numerical perspective. This paper, therefore. addressed _ .

highly dispersive optical solitons, having Kerr law of refrac- alw,t) = A(beCh[B(x — vl

tive index, by the aid of the Laplace-Adomian decomposition
scheme. The focus on this paper will be on bright optical
solitons. The scheme is first explicitly elaborated and sub-

sequently implemented into the model equation successfully”” Ed- @): v is the soliton velocity, is the angular velocity,

The details are sketched in the rest of the paper. .is the soliton frequency, arid is the phase center.
In [7], the amplitudeA of the 1-soliton was calculated as:

+ sech®[B(z — Vt)]>ei[”“+“’t+9°]. @)

1
2

2. Governing equation | 1829160080 16874P B L8072
The dimensionless form of NLSE with Kerr law nonlinearity 26.118b
in presence of dispersion terms of all orders is [6]:
where:
iQt + iGIQz + a2qzx + Za3q:EQJZE + G4qzzza 2 3
) P = —w+ a1k — aak” — ask
+ iaSqwmwmw + 06Qrzzras + b q1 q = 07 (l)
! + agk* + ask® — agk® 4)

whereq = ¢(x, t) is a complex-valued function af (space)
andt (time) andi = /—1. The first term represents linear
temporal evolution. The next six terms are dispersion terms P3 = a4 + 5ask — 15a6k°. (6)
that make the solitons highly dispersive. These are given by

the coefficients ofi;, for 1 < k£ < 6, which are intermodal Besides, the inverse width of the 1-soliton is a real root of
dispersion (IMD), group velocity dispersion (GVD), third- the equation:

Py = as + 3ask — 6agk> — 10ask> + 15a6x*  (5)
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Thus, by applying the inverse Laplace transfatm', we ob-
670.813aB% — 59.059 P3 B* tain

+35.541P, B* — 9933P; = 0.
The velocityv is given by
v =a; — 2ask — 3ask> + Sask? — 6agk®. (8) — a4Dyv — asDyu — agDgv + N (u, U)}} (15)

1
(7) u(z,t) = u(z,0) + L1 {;ﬁ{—alDiu —ayD2v — azD3u

Finally, there are the following two relationships between the
soliton frequency: and some of the coefficients of Edl)(
these are given by [8]

1
v(x,t) = v(z,0) + L! [fﬁ{—alD;v + agD2u — azD3v
s

+ ayDiu — asD3v + agDSu + Ny (u, v)}} (16)
asz — 4aqk — 10ask® + 20agk> =0 and as — 6agk = 0.

. According to the standard Adomian decomposition method,
3. Method applied the solutions: andv can be expressed in an infinite series as

In this section, we will describe the basic theory and aI-fOHOWS

gorithm of the Laplace-Adomian decomposition method o oo
(LADM), used to solve nonlinear partial differential equa- ;. ) = S, (2, 1), vz, t) =Y oz, t) (17)
tions, and that was first proposed in [9, 10]. (1) nz_o (1) (=) ;O (=)

Let us look for soliton solutions of Eq/1) in the form

q(z,t) = u(z,t) +iv(z,t). Then we can decompose the Eq. Also, the nonlinear terms can be written as
(2) in its real and imaginary parts, respectively as

Ut = —A1Ug — A2Vgy — A3Uggr — A4Vzrrr — A5Uzzrax N1 (u, ’U) = —b(vu2 + ”US)
— QgVgzzzae — bU(UQ + UQ) (9) e
:—bZAn(U(],'LLl,...7Un;’U()7’Ul,...7’Un) (18)
Vg = —A1VUg + A2Ugy — A3V + ApUgrrr — A5Vzzzzx n=0
+ A6Ugrrrrs + bu(u2 + UQ) (10)

and
To give analytical approximate solutions for Ecd) (using
LADM, we first rewrite the Egs./9) and (LC) in the follow-

_ 2 3
ing operator form Na(u,v) = b(uv” +u”)

_ 1 2 3 4 5 e
Dtu o _alDIu_a2Dwv_a3DwU_a4Dwv_a5DIu = bZBn(anulv"'7un;v07vlv"'7”71) (19)
—agDSv + Ny (u,v) (11) n=0
Dy = —a1D}v + agDu — azD3v + ayDju where A,, and B,, are the Adomian?s polynomials [11, 12],
— 45 D% + agDu + Na(u, v) (12) which are defined by
with initial conditionsu(z, 0) = Re(g(z,0)) andv(z,0) = 1 d»
Sm(q(x,0)). Ap(ug, .oy Un; V0, .oy Uy) = i
In the equations systeri)-(12), the operatorD; de- o o
notes derivative with respect tpwhereas thab? is thej—th % [ N ( Z A Z A\ vi)}
order linear differential operatd¥ /927, and N, represents P ' ] A=0

nonlinear differential operators fér= 1, 2.

The method consists of first applying the Laplace trans- n=0,1,2,... (20)
form £ to both sides of equations in systeil)-(12) and 1 d»
then, by using initial conditions, we have By (ug, - - i 0o, - -, 0n) = nl d\
- ’U,(ZL’7 0) 1 1 2 3 [e'e) ) o) .
ula,8) = ==+ SL{=aDyu = e Div — a3 Dyu < [N N Y ww)]
—a4D3v — asD2u — agDSv + Ny(u,v)}  (13) =1 =1
©0) 1 n=0,1,2,... (21)
v(x,s) = A% 4 —L{—ayD}v + ayD*u — a3 D3v
S S

4 5 G On making the substitution of Egqsld) and (L8) into
+asDyu—asDyv + agDyu+ Na(u,v)} - (14) Egs. (5) and (L6), we can arrive at
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oo 1 oo oo oo
Z Up = u(z,0) + L7 =L{—(a1 D} + a3D3 + a3D?) Z Up — (agD? 4 ay D 4 ag DY) Z Vp — bz Al (22)
n=0 s n=0 n=0 n=0
o0 1 o0 o0 o0
> vn =v(x,0) + L7 | <L{~(a1D} + asD3 + azD3) > vn + (a2D3 + asD} + agDS) > un +b>_ Bu}| (23)
n=0 5 n=0 n=0 n=0
Now, according to LADM, The following recursive schemes can be constructed
U'O(xv t) = %B(Q(Iv 0))7
L (24)
Upi1(z,t) = L1 {;E{—(alD; +azD32 + a3 D3)u, — (aaD? + ay D + agDS)v,, — bAn}}, n >0,
’Uo(l', t) = gm(q(:p, 0))7
(25)
Upt1(z,t) = L1 [%E{—(alD}C +a3zD3 + a3D3)v, + (a2 D? + a4y D + agDS)u,, + an}} , n>0.
Being Ny (u, v) = vu? +v3 and Ny (u, v) = uv? + u?, using
the formulas[20) and 21) some terms of Adomian’s polyno- 'and
mials A4,, andB,, are given by
By = viug +ud,
Ag = udvo + v, By = 2ugviug + vgur + 3udus,
A1 = 2uguqvg + ugvl + 31)81)1, By = 2ugvaug + vfuo + 2vgviug + v%ug
As = 2ugugvg + u%vo + 2upuivy + u3v2 + 3u%uQ + 3u0u%,
+ 31)(2)1)2 + 31)01)%, B3 = 2vugvsug + 2v1v2ug + 2vgvuy + v%ul + 2vgv1Ug
Az = 2uquavg + 2uiusvg + 2uguavy + ufvl + ’U(Q)U3 + 3u§U3 + 6uguius + u‘;’,
+ 2uguivg + ugvg + 3113113 + 6vgvivy + vi’, By, = uovg + 2v9ugvs + 2ugu1v3 + 2v9u1v3 + 201UV
Ay = vgug + 2uguotg + 2vguiuz + 2ugviug + 2vgugvy + 'U%UQ + 2uguqv3 + ’1)(2]11,4 + 3u(2)u4
+ 2uqviug + 2uguatsg + u%vg + 2uguiusz + ugv4 + 6uouiuz + 3u0u§ + 3u%u2. (27)
+ 3v3vg + 6vgv1v3 + 3vvs + 3vivg, (26)
Error

FIGURE 1. Case 1: Numerically computed profile (left) and absolute error (right).
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Error

FIGURE 2. Case 2: Numerically computed profile (left) and absolute error (right).

FIGURE 3. Case 3: Numerically computed profile (left) and absolute error (right).

FIGURE 4. Case 4: Numerically computed profile (left) and absolute error (right).
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TaBLE |. Coefficients of Eq./1) for bright solitons.

Cases ay as as a4 as ae b K w 0o v N |Max Error
1 1.2 0.01 0.024 0.50 4.20 0.33 —1.20 0.01 0.3 1.2 1.19 15 8.0 x 10710
2 1.5 0.07 0.058 0.25 3.20 0.16 —1.10 0.03 0.1 1.4 1.49 15 3.0x107°
3 1.0 0.09 0.013 0.12 1.00 0.08 —1.00 —0.02 0.7 1.6 1.00 12 8.0x 1078
4 1.6 0.04 —0.030 0.80 1.20 0.10 —1.30 —0.01 0.3 1.3 1.60 12 3.0x 1078

Finally, in conjunction with Eq.Z4) and Eq. 25), allcompo- 5.  Conclusions

nents ofu(x,t) in Eq. (L7) will be easily determined; there- . ) . ) ) . )
fore, the complete solution(z, t) in Eq. (17) can be for- This paper ac.idres'sed highly Q|sper3|ve optical sollto'ns, with
mally established. LADM provides a reliable technique thaterr law nonlinearity, by the aid of the Laplace-Adomian de-

requires less work if compared with traditional techniques. COmposition scheme. The focus was on bright solitons. The
numerical results supplemented the analytical results, there

were reported earlier, and the agreement is to a T. The error
analysis was also profoundly impressive, as well. This shows
extreme promise of the numerical algorithm that has been im-
plemented in this paper. Thus, the results of this paper will
be extended to additional laws of the nonlinear refractive in-
To illustrate the ability, reliability, and accuracy of the pro- dex. These are cubic-quartic law, polynomial law, nonlocal
posed method to find solutions of Ed) (n the case of bright  nonlinearity, and others. Additionally, the results will be ex-
solitons, some examples are provided. The results reveal thggnded to birefringent fibers. The results of such research

the method is very effective and simple. We now consider thectivities are on the horizon and are soon going to be made
initial condition att = 0 from Eq. @) visible.

4. Numerical simulations
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