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The Wigner-Dunkl-Newton mechanics with time-reversal symmetry
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In this paper, we use the Dunkl derivative concerning to time to construct the Wigner-Dunkl-Newton mechanics with time-reversal symmetry.
We define the Wigner-Dunkl-Newton velocity and Wigner-Dunkl-Newton acceleration and construct the Wigner-Dunkl-Newton equation of
motion. We also discuss the Hamiltonian formalism in the Wigner-Dunkl-Newton mechanics. We discuss some deformed elementary
functions such as the-deformed exponential functions;deformed hyperbolic functions anddeformed trigonometric functions. Using

these, we solve some problems in one dimensional Wigner-Dunkl-Newton mechanics.
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1. Introduction where we set. = 1, and the Dunkl derivative is defined as
. 1%

_There_ are several ways to repla_lce _the Newtonian mechan- DY =8, +~(1-R), R=(—1), )

ics with a deformed version, which is performed by adopt- z

ing a deformed derivative instead of the Newton derivative i”Here,R is the spatial parity (or reflection) operator obeying

defining the velocity. For example, g-derivative [1-2] gives . .. _, _ .. Then the Heisenberg relation is deformed as
the g-deformed mechanics [3-4], fractional derivative [5-10]

gives the fractional mechanics [11-14]. [#,4] = i(1 + 2vR), (5)
Let us consider the deformation
d N which is called a Wigner algebra, and the Wigner parameter
o P (1)  vis assumed to be real. In Ref. [29] the time derivative was

not replaced by the Dunkl derivative.
where D! is the deformed time derivative depending on the  If we consider the undeformed quantum theory in 1 + 1
deformation parametet. Then the definition of the velocity dimension, time and Hamiltonian can be regarded as the
is deformed as quantum operators obeying

va = Di'z. (2) i, H] = —i. (6)
Here the deformed velocity reduces to the ordinary Newtorrhe relation (6) can be deformed through Dunkl derivative

velocity when the special value dfis taken ¢ = 1inthe o-  concerning as follows:
deformed mechanics ard= 1 in the fractional mechanics).

This deformed mechanics deserves study as a kind of effec- £, ﬁ[] = —i(1+2v7), vER, )
tive theory when we deal with the dynamics of complicated
dynamical models. where T is the temporal parity (or time-reversal) operator

As another example of the deformed derivative, we carobeying7 : t — —t, i.e.,
consider Dunkl derivative which has been widely used in
many works in various field of physics including quantum TFE(t) = F(-t). (8)
system [15-31]. Recently, the authors of Ref. 29 used the
Dunkl derivative to discuss the one-dimensional quantunThen, the time realization is given by
mechanical model, which is called a Wigner-Dunkl quantum

mechanics. Here, the momentum operator is expressed in t=t, H=iDY, 9)
terms of the Dunkl derivative instead of the ordinary deriva-
tive; where the Dunkl time-derivative is defined as
1 d v
A:—DU A: 3 DU:f 71—7. 10
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Dunkl time derivative arises in the time-dependentwhere we used
Schibdinger equation for Wigner Dunkl quantum mechan-

ics in the form TD; =-D;}. a7)
52
iDYY(z,t) = [5 + V(j;)] P(z,t) The WDN velocity and WDN acceleration depend on the
m temporal parity ofz(¢). With WDN velocity and WDN ac-

1 ) celeration, the WDN equation of motion reads
— g @+ v]wwn. ay

F =ma,(t) = mD}v,(t) = m(D})?z(t), (18)
Another example of Dunkl time derivative is the application

of it to the Dunkl electrodynamics [30]. Here the authors in-whereF is a force.

troduced the Dunkl field strength tensor of the form When a moving observét:’, ') moves with the uniform
WDN velocity u, relative to a fixed observet, ¢), the ac-
celeration and velocity for a moving observef, andv,, are
related to those for a fixed observey, andv, as follows:

FY) = DYA, — Dy A,, (a=0,1,2,3), (12)

where(0 means time-component amtl, means the Dunkl-
deformed electromagnetic 4-potential. Using the Dunkl field

/
strength tensor, they discussed Dunkl-Maxwell theory. t = v (19)
The introduction of the Dunkl derivative concerning time v, =0, —u, (20)
in the quantum theory is related to the Dunkl derivative with u
respect to time in the classical theory. In this paper, we will ' =x— 1 +V2Vt, t'=t, (21)

introduce the Dunkl derivative with respect to time in the
classical Newton mechanics when we define the velocity olThe last equation gives the Wigner-Dunkl-Galilei (WDG)
acceleration. This gives a new deformed mechanics callettansformation.

a Wigner-Dunkl-Newton (WDN) mechanics. This paper is  For the time -reversal (temporal parity), any function can
organized as follows. In Sec. 2, we discuss WDN equatiorhe decomposed into the function with even temporal parity

of motion. In Sec. 3, we discuss Hamiltonian formalism in and the function with odd temporal parifye., any function
WDN mechanics. In Sec. 4, we discuss théeformed func-  F is given by

tions. In Sec. 5, we discuss some mechanical examples.

F= Fe + Fo, (22)
2. WDN equation of motion
where
In this section, we will introduce the Dunkl time derivative
so that it may deform the ordinary Newton mechanics. Now TF.=F., TF,=-F,. (23)
let us introduce the WDN velocity with the help of Dunkl ) )
derivative with respect to time as Thus, the WDN equation of motion for odd and even part
J reads
14
oy (t) = Dya(t) = %x(t) + ;(fﬂ(ﬁ) —z(-t)). (13) o
Fe=m (are + xe> (24)
The WDN velocity is the same as the ordinary velocity when
x(t) is even. But, for odd:(¢), we havev, (t) = (d/dt)x(t)+ _ Lo, v, v
(2v/t)z(t). The WDN acceleration is also obtained by act- Fo=m| %o+ g e T @) (25)
ing the Dunkl derivative with respect to time on the WDN
velocity, . . . . .
Y 3. Hamiltonian formalism in WDN mechanics
a,(t) = DYu(t) = (DY)2x(t). 14
2 voi) = (Di)e () a4 In the WDN mechanics, the work is not well defined be-
This can also be written as cause we have no information for the inverse of the Dunkl
d y derivative (Dunkl integral). Nevertheless, we can obtain the
a,(t) = @”(t) + ;(v(t) —v(=t)) (15)  conserved Hamiltonian by introducing the deformed Poisson
bracket.
or From the time-dependent Séiinger equation for
d\?2 Wigner Dunkl quantum mechanics, we know the Hamilto-
a,(t) = (Dy)*x(t) = (dt) x(t) nian for classical variables, p is given by
2v d v P2
+ T%f(t) - t—z(x(t) —z(—t)), (16) H= am + V(z) = E = const. (26)

Rev. Mex. 5. 66 (3) 308-314



310 W. SANG CHUNG AND H. HASSANABADI

From the deformed commutator relation (5), we can definavherey.(t) is the even function obeyin@y.(t) = y.(t),
the deformed Poisson bracket (DPB) as while y,(t) is the odd function obeyin@ y,(t) = —y,(t).
Inserting the Eg. (38) into the Eq. (36) and splitting the
{f(@,p),9(z,p)}pPB = DifOpg — Dig0pf.  (27)  Eq. (36) into the even part and odd part we get

Indeed, the Eq. (27) gives the relation dy.(t)
dt

yo(t) = aye(t)~ (39)

= ay,(t)

=1+ 2v. 28
{z,p}pPB + 2v (28) dyo(£) 21

From the time-dependent Séidinger equation for Wigner dt t
Dunkl guantum mechanics, the time evolution of some cIasi:
sical quantityA(z, p) is defined as

rom the parity ofy.(¢) andy,(¢), we can set

DYA={A,H}ppp, (29) Ye(t) =Y ant™
n=0
which gives the Dunkl-Wigner-Hamilton equation oo
v v o t) = bnt2n+1. 40
Dip— DYV (30) Yo(t) ZO (40)
D{z =1+ Qu)%. (31)  Inserting the Eq. (40) into the Eq. (39), we get the following
recurrence relations
Thus, WDN equation of motion reads
2(n+ Dap41 = aby, (41)
m(DY)*x = —(1 + 2u)DYV. (32)
(2n+ 1+ 2v)b, = aay, (42)
The evolution of the Hamiltonian is
Inserting the Eq. (42) into the Eq. (41), we have
DyH ={H,H}ppp =0, (33) )
a
which implies that the Hamiltonian is constang., a con- T D@+ 1+ 20) "™ “43)
served quantity. From now on we define the force corre- .
sponding to the conserved Hamiltonian as which gives
F=—(1+20)DV, (34) 4= — (E)M (44)
- SICICEHRS
where we calll” a WDN potential energy in the WDN me- 1 an 2n+1
chanics. Like the ordinary Newton mechanics, if there does bn = W 5) . (45)
not exist potential energy obeying the Eq. (34), we have the ’ 2/n+1
WDN equation of motion, Thus, we have the following solution of the Eq. (36):
v\2
F=m(D{)". (35) y(t) = e, (at) = cosh, (at) + sinh, (at), (46)
4. Thev-deformed functions wherev-deformed hyperbolic functions are defined as
00 2
In this section, we discuss the-exponential functiony- cosh, (at) = Z 1 (at) n
deformed hyperbolic functions, anddeformed trigonomet- = n! (u + %)n 2
ric functions. First, consider the following-deformed dif- e
ferential equation =oF <; v+ 3 a4t> (47)
D;jy(t) = ay(t)a y(O) = 1 (36) [e%e] 1 ¢ 2n+1
| | | ot = 35— L (%)
We will denote the solution of the above equation by = n! (v+ §)n+1 2
y(t) = ey (at), (37) __at N s
2V+10F1 ’1/—‘,— 27 4 ) (48)
which we callv-exponential function.
Considering parity, we can set the solution of the Eq. (36)2nd
as =1
oFi(sa5t) = t" (49)
y(t) = ye(t) + yo(t), (38) nz::o nl(a)n
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and y

(@o=1, (a)p=ala+1)(a+2)---(atn—1). (50)  af

Here, the parity relation for the-deformed hyperbolic func-

tions are as follows: AN j,,«f“‘"«»‘% ya\
7 cosh, (at) = cosh, (at) (51) FON - n"/\\ . f/\&\ ’
S oA I\ /RN N
T sinh, (at) = — sinh, (at). (52) | A N ./ \
-1k S’ N’

It can be easily checked that thedeformed hyperbolic func-
tions reduce taosh(at) andsinh(at) in the limit v — 0. 2f
Acting thev-derivative on the-exponential function and the
v-deformed hyperbolic functions, we have

FIGURE 1. Plot of y = cos,(z) for v = 0 (Gray),v = 0.2

DVe,(at) = ae, (at) (53) (Brown), andv = —0.2 (Pink).
Dy cosh, (at) = asinh, (at) (54) d
Dy sinh,, (at) = acosh, (at). (55) of
If we replacet — it in the Eq. (46), we have thedeformed
Euler relation T Jr» y a\ 7\

e (iat) = cosy (at) + isiny (at), (56) A \ N

where 1 \_ \__/
cos, (at) = — | =
T;) n! (1/ + %)n 2 -2f
1 a?t?
=oF1 v+ 3T (57)  FiGURE 2. Plot of y = sin,(z) for v = 0 (Gray),v = 0.2
(Brown), andv = —0.2 (Pink).
sin, (at) = —— | =
"0 n! (1/+ §)n+1 2
at 3. a’t? 5. Some examples
- (v 2220, 58 :
2y+10 1<ay+2a 4 > ( )

Let us discuss some examples for the WDN mechanics in one

One can also express thedeformed trigonometric functions . .
dimension.

as

v— 1 —v
cos, (at) = 27 1/°T (V + 2) (at)'*7J,_1/2(at) (59) 5.1. Particle at rest

. 1 vt1/2 3 Let us consider that a particle is at rest, and its position is
sin, (at) = ——2 v+ - ) ;
2v+1 x(0). In ordinary Newton mechanics, we havé) = 0
_ which givesz(t) = x(0). In WDN mechanics, this case is
X (at)' 2 0 at). 60)  replaced with
Figure 1 shows the plot of = cos, (t) for v = 0 (Gray),
v = 0.2 (Brown), and forv = —0.2 (Pink). Figure 2 shows v, (t) =0, (62)
the plot ofy = sin, (¢) for v = 0 (Gray),» = 0.2 (Brown),
and forv = —0.2 (Pink). or
Acting thev-derivative on the-deformed trigonometric da(t
functions, we get the following relations Zg ) + %(1 ~T)z(t) = 0. (63)
Dy cos, (at) = —asin,(at), Let Us set
Dy sin, (at) = acos,(at). (61)
x(t) = e (t) + 2o (t). (64)
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Inserting the Eq. (64) into the Eq. (63) and splitting into the5.3.

even part and the odd part we get

dwe(t)
dz,(t) 2v
7 + Tx"(t) =0. (66)
Solving these with the initial position(0) we get
xe(t) = z(0), xo(t) =0, (67)

which gives the same result as the ordinary Newton mechan-

ICS,

(68)

5.2.  Uniform WDN velocity

Let us consider that a particle moves with the uniform WDN
velocity,u,, = const, and its initial position ig:(0). In WDN
mechanics, we have

v, () = u,, (69)
or
dz(t) v B
o + 2(1 T)x(t) = u, (70)
Solving this equation, we have
dz.(t)
= 71
=0, (71)
dz,(t)  2v B
dt + TIo(t) = Uy. (72)
From the Eq. (71), we get
ze(t) = 2.(0). (73)
In the Eq. (72), we set
Zo(t) = Z cpt? T, (74)
n=0
Inserting the Eq. (74) into the Eq. (72) we get
u’/ —_— = e e e —
CO:1—|—2U7 Cl = Cy = 0. (75)
Thus, we have
(t) = 2(0) + —2 ¢ (76)
=TT

Becausey, is even, we havél — 7 )u,, = 0. Thus, the WDN
acceleration becomes zero.

W. SANG CHUNG AND H. HASSANABADI

Uniform WDN acceleration

Let us consider that a particle moves with the uniform WDN
accelerationg, = const, and its initial position is¢(0), and
its initial velocity v(0). In WDN mechanics, we have

a,(t) = a, (77)
or
dv,(t) v B
dt + ?(1 =T, (t) =ay (78)
Solving this equation, we have
ay
or
dx(t) v B ay
7 +z(1—T)x(t) =v(0) + 1+2,/t’ (80)
which gives
dz.(t) a,
dt 1+4+2v (81)
dx,(t)  2v B
dt 7 o(t) - U(O) (82)
Thus, we have
N v(0) ay 2
x(t)—x(0)+1+2yt+2(l+2y)t . (83)

5.4. Resisted motion with linear damping

Let us consider that a particle moves in the viscous medium
with the resistance proportional to the WDN velocity, and its
initial position isz(0), and its initial WDN velocityv(0). In
WDN mechanics, we have

may(t) = —myvy(t) (84)
or
Div(t) = P Ty, ) = ). (@)
Solving this equation, we have
o, (1) = v(0)en(—t). (86)

5.5. Harmonic oscillator

In WDN mechanics, the WDN equation for the harmonic os-
cillator is given by
ma,(t) = —kx (87)
or
m(DY )z = —kz. (88)

Solving the above equation with initial conditior0)
A,v,(0), we have

- aom ({21

Thus, the motion becomes non-periodic unkess 0.

(89)
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we solved some problems in one-dimensional WDN mechan-

ics. Some problems remain unsolved for WDN mechanics.
From the introduction of the Dunkl derivative concerning FOr €xample, the work is not well defined for WDN mechan-
time in the quantum theory [15], we proposed a new deiCS. For this reason, we obtained the conserved Hamiltonian

formed mechanics called WDN mechanics, where the WDNTom the deformed Poisson bracket. We think that these prob-
velocity and WDN acceleration are defined by the Dunkilems and their related topics will become clear soon.
derivative for time. We discussed Hamiltonian formalism in
WDN mechanics. For the Dunkl time derivative, we found Acknowledgement
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