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The Wigner-Dunkl-Newton mechanics with time-reversal symmetry
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In this paper, we use the Dunkl derivative concerning to time to construct the Wigner-Dunkl-Newton mechanics with time-reversal symmetry.
We define the Wigner-Dunkl-Newton velocity and Wigner-Dunkl-Newton acceleration and construct the Wigner-Dunkl-Newton equation of
motion. We also discuss the Hamiltonian formalism in the Wigner-Dunkl-Newton mechanics. We discuss some deformed elementary
functions such as theν-deformed exponential functions,ν-deformed hyperbolic functions andν-deformed trigonometric functions. Using
these, we solve some problems in one dimensional Wigner-Dunkl-Newton mechanics.
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1. Introduction

There are several ways to replace the Newtonian mechan-
ics with a deformed version, which is performed by adopt-
ing a deformed derivative instead of the Newton derivative in
defining the velocity. For example, q-derivative [1-2] gives
the q-deformed mechanics [3-4], fractional derivative [5-10]
gives the fractional mechanics [11-14].

Let us consider the deformation

d

dt
→ DA

t , (1)

whereDA
t is the deformed time derivative depending on the

deformation parameterA. Then the definition of the velocity
is deformed as

vA = DA
t x. (2)

Here the deformed velocity reduces to the ordinary Newton
velocity when the special value ofA is taken (q = 1 in the q-
deformed mechanics andα = 1 in the fractional mechanics).
This deformed mechanics deserves study as a kind of effec-
tive theory when we deal with the dynamics of complicated
dynamical models.

As another example of the deformed derivative, we can
consider Dunkl derivative which has been widely used in
many works in various field of physics including quantum
system [15-31]. Recently, the authors of Ref. 29 used the
Dunkl derivative to discuss the one-dimensional quantum
mechanical model, which is called a Wigner-Dunkl quantum
mechanics. Here, the momentum operator is expressed in
terms of the Dunkl derivative instead of the ordinary deriva-
tive;

p̂ =
1
i
Dν

x, x̂ = x, (3)

where we set~ = 1, and the Dunkl derivative is defined as

Dν
x = ∂x +

ν

x
(1−R) , R = (−1)x∂x . (4)

Here,R is the spatial parity (or reflection) operator obeying
R : x → −x. Then the Heisenberg relation is deformed as

[x̂, x̂] = i(1 + 2νR), (5)

which is called a Wigner algebra, and the Wigner parameter
ν is assumed to be real. In Ref. [29] the time derivative was
not replaced by the Dunkl derivative.

If we consider the undeformed quantum theory in 1 + 1
dimension, time and Hamiltonian can be regarded as the
quantum operators obeying

[t̂, Ĥ] = −i. (6)

The relation (6) can be deformed through Dunkl derivative
concerning as follows:

[t̂, Ĥ] = −i(1 + 2νT ), ν ∈ R, (7)

whereT is the temporal parity (or time-reversal) operator
obeyingT : t → −t, i.e.,

T F (t) = F (−t). (8)

Then, the time realization is given by

t̂ = t, Ĥ = iDν
t , (9)

where the Dunkl time-derivative is defined as

Dν
t =

d

dt
+

ν

t
(1− T ). (10)
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Dunkl time derivative arises in the time-dependent
Schr̈odinger equation for Wigner Dunkl quantum mechan-
ics in the form

iDν
t ψ(x, t) =

[
p̂2

2m
+ V (x̂)

]
ψ(x, t)

=
[
− 1

2m
(Dµ

x)2 + V

]
ψ(x, t). (11)

Another example of Dunkl time derivative is the application
of it to the Dunkl electrodynamics [30]. Here the authors in-
troduced the Dunkl field strength tensor of the form

F
(ν)
ab = Dν

aAb −Dν
b Aa, (a = 0, 1, 2, 3), (12)

where0 means time-component andAa means the Dunkl-
deformed electromagnetic 4-potential. Using the Dunkl field
strength tensor, they discussed Dunkl-Maxwell theory.

The introduction of the Dunkl derivative concerning time
in the quantum theory is related to the Dunkl derivative with
respect to time in the classical theory. In this paper, we will
introduce the Dunkl derivative with respect to time in the
classical Newton mechanics when we define the velocity or
acceleration. This gives a new deformed mechanics called
a Wigner-Dunkl-Newton (WDN) mechanics. This paper is
organized as follows. In Sec. 2, we discuss WDN equation
of motion. In Sec. 3, we discuss Hamiltonian formalism in
WDN mechanics. In Sec. 4, we discuss theν-deformed func-
tions. In Sec. 5, we discuss some mechanical examples.

2. WDN equation of motion

In this section, we will introduce the Dunkl time derivative
so that it may deform the ordinary Newton mechanics. Now
let us introduce the WDN velocity with the help of Dunkl
derivative with respect to time as

vν(t) = Dν
t x(t) =

d

dt
x(t) +

ν

t
(x(t)− x(−t)). (13)

The WDN velocity is the same as the ordinary velocity when
x(t) is even. But, for oddx(t), we havevν(t) = (d/dt)x(t)+
(2ν/t)x(t). The WDN acceleration is also obtained by act-
ing the Dunkl derivative with respect to time on the WDN
velocity,

aν(t) = Dν
t v(t) = (Dν

t )2x(t). (14)

This can also be written as

aν(t) =
d

dt
v(t) +

ν

t
(v(t)− v(−t)) (15)

or

aν(t) = (Dν
t )2x(t) =

(
d

dt

)2

x(t)

+
2ν

t

d

dt
x(t)− ν

t2
(x(t)− x(−t)), (16)

where we used

T Dν
t = −Dν

t . (17)

The WDN velocity and WDN acceleration depend on the
temporal parity ofx(t). With WDN velocity and WDN ac-
celeration, the WDN equation of motion reads

F = maν(t) = mDν
t vν(t) = m(Dν

t )2x(t), (18)

whereF is a force.
When a moving observer(x′, t′) moves with the uniform

WDN velocity uν relative to a fixed observer(x, t), the ac-
celeration and velocity for a moving observer,a′ν andv′ν are
related to those for a fixed observer,aν andvν as follows:

a′ν = aν (19)

v′ν = vν − uν (20)

x′ = x− uν

1 + 2ν
t, t′ = t, (21)

The last equation gives the Wigner-Dunkl-Galilei (WDG)
transformation.

For the time -reversal (temporal parity), any function can
be decomposed into the function with even temporal parity
and the function with odd temporal parity,i.e., any function
F is given by

F = Fe + Fo, (22)

where

T Fe = Fe, T Fo = −Fo. (23)

Thus, the WDN equation of motion for odd and even part
reads

Fe = m

(
ẍe +

2ν

t
ẋe

)
(24)

Fo = m

(
ẍo +

2ν

t
ẋo − 2ν

t2
xo

)
. (25)

3. Hamiltonian formalism in WDN mechanics

In the WDN mechanics, the work is not well defined be-
cause we have no information for the inverse of the Dunkl
derivative (Dunkl integral). Nevertheless, we can obtain the
conserved Hamiltonian by introducing the deformed Poisson
bracket.

From the time-dependent Schrödinger equation for
Wigner Dunkl quantum mechanics, we know the Hamilto-
nian for classical variablesx, p is given by

H =
p2

2m
+ V (x) = E = const. (26)
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From the deformed commutator relation (5), we can define
the deformed Poisson bracket (DPB) as

{f(x, p), g(x, p)}DPB = Dν
xf∂pg −Dν

xg∂pf. (27)

Indeed, the Eq. (27) gives the relation

{x, p}DPB = 1 + 2ν. (28)

From the time-dependent Schrödinger equation for Wigner
Dunkl quantum mechanics, the time evolution of some clas-
sical quantityA(x, p) is defined as

Dν
t A = {A,H}DPB , (29)

which gives the Dunkl-Wigner-Hamilton equation

Dν
t p = −Dν

xV (30)

Dν
t x = (1 + 2µ)

p

m
. (31)

Thus, WDN equation of motion reads

m(Dν
t )2x = −(1 + 2µ)Dν

xV. (32)

The evolution of the Hamiltonian is

Dν
t H = {H,H}DPB = 0, (33)

which implies that the Hamiltonian is constant,i.e., a con-
served quantity. From now on we define the force corre-
sponding to the conserved Hamiltonian as

F = −(1 + 2ν)Dν
xV, (34)

where we callV a WDN potential energy in the WDN me-
chanics. Like the ordinary Newton mechanics, if there does
not exist potential energy obeying the Eq. (34), we have the
WDN equation of motion,

F = m(Dν
t )2x. (35)

4. Theν-deformed functions

In this section, we discuss theν-exponential function,ν-
deformed hyperbolic functions, andν-deformed trigonomet-
ric functions. First, consider the followingν-deformed dif-
ferential equation

Dν
t y(t) = ay(t), y(0) = 1. (36)

We will denote the solution of the above equation by

y(t) = eν(at), (37)

which we callν-exponential function.
Considering parity, we can set the solution of the Eq. (36)

as

y(t) = ye(t) + yo(t), (38)

whereye(t) is the even function obeyingT ye(t) = ye(t),
while yo(t) is the odd function obeyingT yo(t) = −yo(t).
Inserting the Eq. (38) into the Eq. (36) and splitting the
Eq. (36) into the even part and odd part we get

dye(t)
dt

= ayo(t)

dyo(t)
dt

+
2ν

t
yo(t) = aye(t). (39)

From the parity ofye(t) andyo(t), we can set

ye(t) =
∞∑

n=0

ant2n

yo(t) =
∞∑

n=0

bnt2n+1. (40)

Inserting the Eq. (40) into the Eq. (39), we get the following
recurrence relations

2(n + 1)an+1 = abn (41)

(2n + 1 + 2ν)bn = aan (42)

Inserting the Eq. (42) into the Eq. (41), we have

an+1 =
a2

2(n + 1)(2n + 1 + 2ν)
an, (43)

which gives

an =
1

n!
(
ν + 1

2

)
n

(a

2

)2n

(44)

bn =
1

n!
(
ν + 1

2

)
n+1

(a

2

)2n+1

. (45)

Thus, we have the following solution of the Eq. (36):

y(t) = eν(at) = coshν(at) + sinhν(at), (46)

whereν-deformed hyperbolic functions are defined as

coshν(at) =
∞∑

n=0

1
n!

(
ν + 1

2

)
n

(
at

2

)2n

= 0F1

(
; ν +

1
2
;
a2t2

4

)
(47)

sinhν(at) =
∞∑

n=0

1
n!

(
ν + 1

2

)
n+1

(
at

2

)2n+1

=
at

2ν + 1 0F1

(
; ν +

3
2
;
a2t2

4

)
, (48)

and

0F1(; a; t) =
∞∑

n=0

1
n!(a)n

tn, (49)
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and

(a)0 = 1, (a)n = a(a + 1)(a + 2) · · · (a + n− 1). (50)

Here, the parity relation for theν-deformed hyperbolic func-
tions are as follows:

T coshν(at) = coshν(at) (51)

T sinhν(at) = − sinhν(at). (52)

It can be easily checked that theν-deformed hyperbolic func-
tions reduce tocosh(at) and sinh(at) in the limit ν → 0.
Acting theν-derivative on theν-exponential function and the
ν-deformed hyperbolic functions, we have

Dν
t eν(at) = aeν(at) (53)

Dν
t coshν(at) = a sinhν(at) (54)

Dν
t sinhν(at) = a coshν(at). (55)

If we replacet → it in the Eq. (46), we have theν-deformed
Euler relation

eν(iat) = cosν(at) + i sinν(at), (56)

where

cosν(at) =
∞∑

n=0

(−1)n

n!
(
ν + 1

2

)
n

(
at

2

)2n

= 0F1

(
; ν +

1
2
;−a2t2

4

)
(57)

sinν(at) =
∞∑

n=0

(−1)n

n!
(
ν + 1

2

)
n+1

(
at

2

)2n+1

=
at

2ν + 1 0F1

(
; ν +

3
2
;−a2t2

4

)
. (58)

One can also express theν-deformed trigonometric functions
as

cosν(at) = 2ν−1/2Γ
(

ν +
1
2

)
(at)1/2−νJν−1/2(at) (59)

sinν(at) =
1

2ν + 1
2ν+1/2Γ

(
ν +

3
2

)

× (at)1/2−νJν+1/2(at). (60)

Figure 1 shows the plot ofy = cosν(t) for ν = 0 (Gray),
ν = 0.2 (Brown), and forν = −0.2 (Pink). Figure 2 shows
the plot ofy = sinν(t) for ν = 0 (Gray),ν = 0.2 (Brown),
and forν = −0.2 (Pink).

Acting theν-derivative on theν-deformed trigonometric
functions, we get the following relations

Dν
t cosν(at) = −a sinν(at),

Dν
t sinν(at) = a cosν(at). (61)

FIGURE 1. Plot of y = cosν(x) for ν = 0 (Gray), ν = 0.2

(Brown), andν = −0.2 (Pink).

FIGURE 2. Plot of y = sinν(x) for ν = 0 (Gray), ν = 0.2

(Brown), andν = −0.2 (Pink).

5. Some examples

Let us discuss some examples for the WDN mechanics in one
dimension.

5.1. Particle at rest

Let us consider that a particle is at rest, and its position is
x(0). In ordinary Newton mechanics, we havev(t) = 0
which givesx(t) = x(0). In WDN mechanics, this case is
replaced with

vν(t) = 0, (62)

or

dx(t)
dt

+
ν

t
(1− T )x(t) = 0. (63)

Let us set

x(t) = xe(t) + xo(t). (64)
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Inserting the Eq. (64) into the Eq. (63) and splitting into the
even part and the odd part we get

dxe(t)
dt

= 0, (65)

dxo(t)
dt

+
2ν

t
xo(t) = 0. (66)

Solving these with the initial positionx(0) we get

xe(t) = x(0), xo(t) = 0, (67)

which gives the same result as the ordinary Newton mechan-
ics,

x(t) = x(0). (68)

5.2. Uniform WDN velocity

Let us consider that a particle moves with the uniform WDN
velocity,uν = const, and its initial position isx(0). In WDN
mechanics, we have

vν(t) = uν , (69)

or

dx(t)
dt

+
ν

t
(1− T )x(t) = uν . (70)

Solving this equation, we have

dxe(t)
dt

= 0, (71)

dxo(t)
dt

+
2ν

t
xo(t) = uν . (72)

From the Eq. (71), we get

xe(t) = xe(0). (73)

In the Eq. (72), we set

xo(t) =
∞∑

n=0

cnt2n+1. (74)

Inserting the Eq. (74) into the Eq. (72) we get

c0 =
uν

1 + 2ν
, c1 = c2 = · · · = 0. (75)

Thus, we have

x(t) = x(0) +
uν

1 + 2ν
t. (76)

Becauseuν is even, we have(1−T )uν = 0. Thus, the WDN
acceleration becomes zero.

5.3. Uniform WDN acceleration

Let us consider that a particle moves with the uniform WDN
acceleration,aν = const, and its initial position isx(0), and
its initial velocityv(0). In WDN mechanics, we have

aν(t) = aν (77)

or
dvν(t)

dt
+

ν

t
(1− T )vν(t) = aν (78)

Solving this equation, we have

vν(t) = v(0) +
aν

1 + 2ν
t (79)

or
dx(t)

dt
+

ν

t
(1− T )x(t) = v(0) +

aν

1 + 2ν
t, (80)

which gives

dxe(t)
dt

=
aν

1 + 2ν
t (81)

dxo(t)
dt

+
2ν

t
xo(t) = v(0). (82)

Thus, we have

x(t) = x(0) +
v(0)

1 + 2ν
t +

aν

2(1 + 2ν)
t2. (83)

5.4. Resisted motion with linear damping

Let us consider that a particle moves in the viscous medium
with the resistance proportional to the WDN velocity, and its
initial position isx(0), and its initial WDN velocityv(0). In
WDN mechanics, we have

maν(t) = −mγvν(t) (84)

or

Dν
t vν(t) =

dvν(t)
dt

+
ν

t
(1− T )vν(t) = −γvν(t). (85)

Solving this equation, we have

vν(t) = v(0)eν(−γt). (86)

5.5. Harmonic oscillator

In WDN mechanics, the WDN equation for the harmonic os-
cillator is given by

maν(t) = −kx (87)

or

m(Dν
t )2x = −kx. (88)

Solving the above equation with initial conditionx(0) =
A, vν(0), we have

x(t) = A cosν

(√
k

m
t

)
. (89)

Thus, the motion becomes non-periodic unlessν = 0.
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6. Conclusion

From the introduction of the Dunkl derivative concerning
time in the quantum theory [15], we proposed a new de-
formed mechanics called WDN mechanics, where the WDN
velocity and WDN acceleration are defined by the Dunkl
derivative for time. We discussed Hamiltonian formalism in
WDN mechanics. For the Dunkl time derivative, we found
some deformed elementary functions such as theν-deformed
exponential functions,ν-deformed hyperbolic functions, and
ν-deformed trigonometric functions. Using these functions,

we solved some problems in one-dimensional WDN mechan-
ics. Some problems remain unsolved for WDN mechanics.
For example, the work is not well defined for WDN mechan-
ics. For this reason, we obtained the conserved Hamiltonian
from the deformed Poisson bracket. We think that these prob-
lems and their related topics will become clear soon.

Acknowledgement

The authors thank the referee for a thorough reading of our
manuscript and the constructive suggestion.

1. F. H. Jackson, A Basic-sine and cosine with symbolical
solutions of certain differential equations,Proc. Edinburgh
Math. Soc. 22 (1903) 28,https://doi.org/10.1017/
S0013091500001930 .

2. F. H. Jackson, Onq-Functions and a certain Difference Op-
erator, Trans. Roy. Soc. Edinburgh46 (1909) 253,https:
//doi.org/10.1017/S0080456800002751 .

3. A. Lavagno, A. M. Scarfone, and P. Narayana Swamy, Classi-
cal and quantumq-deformed physical systems,Eur. Phys. J.
C 47 (2006) 253,https://doi.org/10.1140/epjc/
s2006-02557-y .

4. P. Caban, A. Dobrosielski, A. Krajewska, and Z. Walczak, On
q-deformed Hamiltonian mechanics,Phys. Lett. B327 (1994)
287, https://doi.org/10.1016/0370-2693(94)
90730-7 .

5. S. G. Samko, A. A. Kilbas, and O. I. Marichev,Fractional Inte-
grals and Derivatives(Gordon and Breach Science Publishers,
Philadelphia, 1993).

6. K. S. Miller and B. Ross,An Introduction to the Fractional Cal-
culus and Fractional Differential Equations(John Wiley and
Sons, New York, 1993).

7. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo,Theory and
Applications of Fractional Differential Equations(Elsevier Sci-
ence, Amsterdam, 2006).

8. I. Podlubny, Fractional Differential Equations(Academic
Press, San Diego, 1999).

9. K. Oldham and J. Spanier,The Fractional Calculus(Academic
Press, New York, 1974).

10. R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A
new definition of fractional derivative,J. Comput. Appl. Math.
264 (2014) 65, https://doi.org/10.1016/j.cam.
2014.01.002 .

11. M. Klimek, Lagrangian fractional mechanics -a noncommuta-
tive approach,Czechoslov. J. Phys.55 (2005) 1447,https:
//doi.org/10.1007/s10582-006-0024-7 .

12. F. Riewe, Mechanics with fractional derivatives,Phys.
Rev. E 55 (1997) 3581,https://doi.org/10.1103/
PhysRevE.55.3581 .

13. W. S. Chung, Fractional Newton mechanics with conformable
fractional derivative,J. Comput. Appl. Math.290 (2015) 150,
https://doi.org/10.1016/j.cam.2015.04.049 .

14. W. S. Chung and H. Hassanabadi, Dynamics of a Particle
in a Viscoelastic Medium with Conformable Derivative,Int.
J. Theor. Phys. 56 (2017) 851,https://doi.org/10.
1007/s10773-016-3228-z .

15. C. F. Dunkl, Differential-difference operators asso-
ciated to reflection groups, Trans. Am. Math. Soc.
311 (1989) 167, https://doi.org/10.1090/
S0002-9947-1989-0951883-8 .

16. C. F. Dunkl, Orthogonal Polynomials of Several Variables
(Cambridge University Press, Cambridge, 2001),https://
doi.org/10.1017/CBO9781107786134 .

17. L. M. Yang, A Note on the Quantum Rule of the Harmonic Os-
cillator, Phys. Rev.84 (1951) 788,https://doi.org/10.
1103/PhysRev.84.788 .

18. I. Cherednik, A unification of Knizhnik-Zamolodchikov
and Dunkl operators via affine Hecke algebras,Invent.
Math. 106 (1991) 411, https://doi.org/10.1007/
BF01243918 .

19. E. M. Opdam, Harmonic analysis for certain representations of
graded Hecke algebras,Acta Math.175 (1995) 75,https:
//doi.org/10.1007/BF02392487 .

20. K. Hikami, Dunkl Operator Formalism for Quantum Many-
Body Problems Associated with Classical Root Systems,J.
Phys. Soc. Jpn. b(1996) 394, https://doi.org/10.
1143/JPSJ.65.394 .

21. S. Kakei, Common algebraic structure for the Calogero-
Sutherland models,J. Phys. A29 (1996) L619,https://
doi.org/10.1088/0305-4470/29/24/002 .

22. L. Lapointe and L. Vinet, Exact operator solution of the
Calogero-Sutherland model,Commun. Math. Phys.178(1996)
425,https://doi.org/10.1007/BF02099456 .

23. V. X. Genest, L. Vinet, and A. Zhedanov, The singular
and the 2:1 anisotropic Dunkl oscillators in the plane,J.
Phys. A46(2013) 325201,https://doi.org/10.1088/
1751-8113/46/32/325201 .

24. V. X. Genest, M. E. H. Ismail, L. Vinet, and A. Zhedanov,
The Dunkl Oscillator in the Plane II: Representations of the
Symmetry Algebra,Commun. Math. Phys. 329 (2014) 999,
https://doi.org/10.1007/s00220-014-1915-2 .

Rev. Mex. F́ıs. 66 (3) 308–314

https://doi.org/10.1017/S0013091500001930�
https://doi.org/10.1017/S0013091500001930�
https://doi.org/10.1017/S0080456800002751�
https://doi.org/10.1017/S0080456800002751�
https://doi.org/10.1140/epjc/s2006-02557-y�
https://doi.org/10.1140/epjc/s2006-02557-y�
https://doi.org/10.1016/0370-2693(94)90730-7�
https://doi.org/10.1016/0370-2693(94)90730-7�
https://doi.org/10.1016/j.cam.2014.01.002�
https://doi.org/10.1016/j.cam.2014.01.002�
https://doi.org/10.1007/s10582-006-0024-7�
https://doi.org/10.1007/s10582-006-0024-7�
https://doi.org/10.1103/PhysRevE.55.3581�
https://doi.org/10.1103/PhysRevE.55.3581�
https://doi.org/10.1016/j.cam.2015.04.049�
https://doi.org/10.1007/s10773-016-3228-z�
https://doi.org/10.1007/s10773-016-3228-z�
https://doi.org/10.1090/S0002-9947-1989-0951883-8�
https://doi.org/10.1090/S0002-9947-1989-0951883-8�
https://doi.org/10.1017/CBO9781107786134�
https://doi.org/10.1017/CBO9781107786134�
https://doi.org/10.1103/PhysRev.84.788�
https://doi.org/10.1103/PhysRev.84.788�
https://doi.org/10.1007/BF01243918�
https://doi.org/10.1007/BF01243918�
https://doi.org/10.1007/BF02392487�
https://doi.org/10.1007/BF02392487�
https://doi.org/10.1143/JPSJ.65.394�
https://doi.org/10.1143/JPSJ.65.394�
https://doi.org/10.1088/0305-4470/29/24/002�
https://doi.org/10.1088/0305-4470/29/24/002�
https://doi.org/10.1007/BF02099456�
https://doi.org/10.1088/1751-8113/46/32/325201�
https://doi.org/10.1088/1751-8113/46/32/325201�
https://doi.org/10.1007/s00220-014-1915-2�


314 W. SANG CHUNG AND H. HASSANABADI

25. V. X. Genest, L. Vinet, and A. Zhedanov, The Dunkl oscillator
in three dimensions,J. Phys. Conf. Ser.512 (2013) 012010,
https://doi.org/10.1088/1742-6596/512/1/
012010 .

26. V. X. Genest, A. Lapointe, and L. Vinet, The Dunkl-Coulomb
problem in the plane,Phys. Lett. A379 (2015) 923,https:
//doi.org/10.1016/j.physleta.2015.01.023 .
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