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Study of the critical probability of percolation in a 3D
system with pores of random radius for variable grids
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Received 4 December 2019; accepted 19 February 2020

We numerically study the percolation in 3D porous materials, populated by pores with random sizes on 3D grid of variable sizes. We identify
the clusters for each grid as well as the infinite cluster that is defined by the critical probability through the neighborhood hybrid structure
method. We also determine the characteristic size of each cluster in the material as well as the volume of the infinite cluster that allows
optimizing the percolation step at our simulation. In this work, several tests were performed changing the size of the grid. This allows us
to determine the optimal size and how it affects the percolation by the simulating grids. Our main results show that in systems with pores
having random radii the critical probability increases when size of gridL > 40 (that correspond to typical size system about 4000 nm) with
respect of the case with uniform pores.
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1. Introduction

Percolation theory is a general mathematical theory of trans-
port and connectivity in random complex systems. Percola-
tion is a random process developed from the observation of
connectivity between microscopic elements and their effects
on macroscopic properties [1]. Percolation looks for a trajec-
tory between the porosity of the medium in a random way,
in this mode the fluid crosses the medium from one end to
another. The fluid can be a liquid, steam, heat flow, electric
current [2], infection or any fluid or property that can move
through a porous medium. For example, water on the ground
under the action of gravity, sewage treatment plants. Cur-
rently, different resistant and low-cost materials are being de-
veloped where the material must be light enough, but with a
degree of porosity that does not allow liquids to seep through
it. Contrary to the manufacture of membranes or materials,
that filters fluids in order to eliminate impurities [3]. In this
work, we study the percolation in nano-structures [4–7] com-
posed of nano-particles (N − P ) such as carbon-gel glucose
(AG − CNT ) [8] which vary from a size of 1 nm to nano-
particles of SiO2 with a size of 100 nm [9]. In this work,
we apply a porosity level in a simulated material to know if
there is percolation in the material. In Fig. 1, the simula-
tion of a porous material is shown on a cubic grid of size
L = 10 [10, 11] with the value ofL × L × L = 1000, com-
prising a grid of the size of 100,000 nm3.

2. Probability and critical probability “ Pc”

For a 3D gridG, we use pores of various sizes [12]. To gen-
erate the radii of the pores we use a normal distribution, see
Eq. (1), with µr = 0.5 andσr = 0.2 in the simulated grid

FIGURE 1. (Color online) 3D simulation of a porous material, with
variable radii in its pores, wherePo is the hollow pore inside the
grid and S is the solid material.

wherer is normalized to the typical system size. HereP is
the probability of pores that were generated in the system.
The number of pores is determined by the level of porosity
called probabilityP in the system, the larger the probability
P in the system.

1√
2πσr

e−(r−µr/2σr)2 . (1)

The critical probability known asPc in a material is referred
to as the ProbabilityP necessary to achieve percolation in a
material.
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The critical probability in a material is referred to as the
probabilityP necessary to achieve percolation in a material.
We can assignP a value from 0 to 1. For each position of the
array, random values were assigned in a range of 0 to 1 [13],
where we associated this value with the level of porosity, the
conditions to generate a pore are as follows:

Po =
{

1, if G [i, j, k] > P

0, if G [i, j, k] ≤ P
, (2)

whereG is the grid of the porous material,i, j, andk are
the indexes where the porePo is found andP is considered
the level of porosity (PL) that is assigned to the material.
If the value of the position of the array is 1, there will be a
pore with an assigned radius, otherwise it will not exist. The
pore size is determined by its radiusr, which is generated
randomly with a value between1 ≥, andr ≤ 100 nm [8, 9],
where 100 nm is the maximum pore size for our case study.
We simulated pores of different sizes considering their radius
and volume, since these data will provide information on the
porosity of the material, in our investigation we determined
that materials with pores of different sizes generally exceed
the average volume compared to when fixed radii of 50 nm
are handled for our case study.

In Fig. 2, we can observe the typical morphology of a
pore which has a spherical geometry for our case study has
been used too many times by now [15]. To obtain the volume
V of the pore, we considered the formula of Eq. (3), and then
we made the summation of the volume of all the pores that
are in the 3D grid using Eq. (4) to obtain the level of porosity
PL.

V =
4
3
· π · r3, (3)

FIGURE 2. (Color online) Representation of the pore morphol-
ogy with 3D surface with its 6 nearby neighbors: Up, Down, Left,
Right, Back and Next [14,15].

FIGURE 3. (Color online) The blue line represents the level of
porosity assigned to the probabilityP with pores of radiusr =
50 nm, while the red line represents pores with variable radii that
range from 1-100 nm. The size of the grid isL = 80 in both cases.

wherer is the radius of the pore.

PL =

L−1∑

i=0

L−1∑

j=0

L−1∑

k=0

G(V )i,j,k

V (S)
, (4)

whereL is the length of the cubic gridG. The indicesi, j, k
are the indices of the grid andV (S) is the total volume of the
3D system.

Since the system generates the pores randomly, there is
no certainty of the filtration when there are other configura-
tions where the nearly 6 neighbors are not considered. In
this investigation only the pores that have contact with their
6 neighbors are analyzed.

In Fig. 3, we can see several levels of assigned poros-
ity ranging from 30% to 45%, that is to say with a 0.3≤
P ≤ 0.45 that the materials can have for a grid of size
L = 80, and we observed that the level of porosity in all
cases where random radii were assigned (r = 1 − 100 nm)
exceeds the level of porosity defined by the user when there
are pores of the same radius (r = 50 nm).

We observed in Fig. 3, that the blue line represents pores
of fixed radiusr = 50 nm with a uniform distribution to the
probability P , the red line represents the pores of random
radius. We can observe that the level of porosity is higher
when there are random radii (r = 1 − 100 nm), that is why
its porosity is altered, and the sameP distribution is not fol-
lowed; however, it is altered above the common probability
and this causes a greater porosity in the material. If the level
of porosity is altered its critical probabilityPc is also altered.

3. Cluster and percolation

When one or more pores are large enough to join with their
neighboring pores, it will form gaps or spaces that create a
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FIGURE 4. (Color online) Simulated percolation cluster in a three-
dimensional array of dimensionL = 80, with ProbabilityP =
0.45. The red arrow indicates the direction of the filtration cluster.

FIGURE 5. (Color online) Cluster of the same sizeL = 80 as in
Fig. 4 but with probabilityP = 0.271.

long cluster that crosses the material [16], called the percola-
tion cluster or infinite cluster [17]. This depends on the num-
ber of pores that exist in the system [18], if there are more
pores, infinite clusters are more likely, remembering that the
number of pores that can exist in the simulated grid is deter-
mined by the probabilityP .

In Figs. 4 and 5, we see examples of systems with differ-
ent assigned probabilities [19]. For the first case,P = 0.45
and the second withP = 0.271, both simulated in an array
of L = 80. In Fig. 4, we observe that there is percolation in
the material, reaching a height of 80, while in Fig. 5 only the
clusters that are formed reach a maximum height not greater
than 40.

A second important factor for the generation of clusters
and infinite clusters, apart from the probabilityP , is the ra-
dius of the pore, since if the radii of the pores are large
enough to reach the radius of the neighboring pore, there will
be contact between them to form an infinite cluster. The lit-
erature [20, 21] shows us that for uniform radii with half the
diameterd of the pore, the radiusr = d/2 is the necessary
value to be able to have contact between its close neighbors.
The critical probabilityPc for pores of uniform radius is ap-
proximately 0.311, but nevertheless for random radii with
different sizes this value may be altered.

The objective of our research is to study the behavior that
nanostructures present when their pores have uniform radius
or random radius, and how this property affects the critical
probabilityPc in the nanostructures. In this study, the infinite
cluster cannot exceed the height of the system since the pores
are only generated within the 3D model that contains them,
although there are other physical phenomena other than filtra-
tion that can exceed the system, but those are not addressed in
this work. The first step is to generate random radius pores,
where the sum of their radii must necessarily be greater than
or equal to 1 to have any contact.

In order to create an infinite cluster that, in passing to the
percolation, it is necessary to have several pores that have
contact with their neighboring pores; a pore in a 3D grid can
have 6 nearby neighbors [14], those that are located up, down,
to the left, to the right, back and in next of it (see Fig. 2).

To determine the contact between the pores we must val-
idate that the radiusr of the pore that is being evaluated with
any of its 6 nearest neighboring pores, in this, there may be
some contactC [22]. Taking into account that the pore evalu-
ated in positionG[i, j, k] contains the value of the radiusr of
the pore with the indexesi, j, k in arrayG, the neighboring
pores are:next[i, j, k + 1], back[i, j, k − 1], up[i, j + 1, k],
down[i, j − 1, k], right[i + 1, j, k] andleft[i− 1, j, k].

Equation (5) is used in our investigation in order to ob-
tain the sum of the radii of the evaluated poreG[i, j, k] and
its neighboring pore that is below itG[i, j − 1, k].

C =
L−1∑

i=0

L−1∑

j=0

L−1∑

k=0

G(i, j, k) + G(i, j − 1, k), (5)

wherei, j, k (i = rows of the array,j = columns, k =
layer) are the indexes of the array that contain the radius of
each pore andC is the distance of the sum of the radii that
will define the contact between two pores.

This same procedure will be carried out with the 5 re-
maining neighbors:next, back, up, right and left. If at
least for some of the 6 neighbors of the evaluated pore the
following condition is met:C ≥ 100 nm, then the evaluated
pore is considered to form the cluster in the 3D grid, oth-
erwise it is neglected and is not considered for creating the
cluster.
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FIGURE 6. (a) Contact between 2 pores with equal radii; (b) Two pores with random radii are shown, where there are no contact between
them, since the radius of the first pore is much smaller than the radius of the second pore and is not large enough to have contact with its
neighboring pore.

FIGURE 7. (Color online) We observe in images (a) and (b) two infinite clusters that can conduct the fluids in the material with a filtration
orientation from the bottom up. We can observe a greater porous granularity in the image (b) with pores of variable radius, while in the image
(a) we observe uniform pores.
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In Fig. 6(a), an ideal contact is shown when the radii are
uniform with a radius ofr = d/2 [23] but nevertheless in
real physics any porous material has a non-uniform pore dis-
tribution, more similar to Fig. 7(b), where neighboring pores
differ in pore size and radius. In Figs. 7(a) and 7(b), the
two important cases are considered when random radii are
applied, since the case of Fig. 7(a) is difficult to find in na-
ture.

In Figs. 6(a), (c), and (d), we find safe contacts between
neighboring pores and the contact conditionC is met [14],
but the case in Fig. 6(b) is excluded since there is no contact.

In the case of Fig. 6(b), we consider that the possibility of
forming clusters in the material decreases, since this condi-
tion did not previously exist and it was just enough to have a
neighboring pore with a uniform radiusr = d/2 as shown in
Fig. 6(a), with which the contact was safe. We made a com-
parison to obtain the differences between the critical prob-
abilities when there are uniform radii and random radii, in
Fig. 7(a) there can be seen pores with uniform radii of 50
nm equivalent tor = d/2, and in Fig. 7(b) pores with differ-
ent radii sizes ranging from 1 nm to 100 nm can be seen; the
grid size for these examples isL = 60 (6,000 nm) and with a
probability ofP = 0.45 (45% porosity) for both cases.

We simulated pores of different sizes considering their
radius and volume [24], since this data will provide informa-
tion on the porosity in the material. In our investigation, we
observed that materials with random radius pores generally
exceed the average volume compared to when fixed radii are
handled.

4. Results

We generated several tests in a probability rangeP = 0.3 to
P = 0.5 (30% to 50% porosity) for random pores to be able
to find the critical probability in a 3D system, considering a
grid size ofL = 100 (equivalent to 100,000,000 nm3), where

FIGURE 8. (Color online) Results for critical probability. 1000 cal-
culations were distributed in a probability range or porosity level of
0.3 to 0.5. Each bar represents the value of the cluster height of an
assigned probability in the range of 0.3 to 0.5, for this value of
L = 100 thePc is 0.4329.

FIGURE 9. (Color online) A porosity distribution of 30% to 50%
(P = 0.3 to 0.5) is shown, each point represents the number of
pores that were generated in the simulated 3D system.

we calculated the height of the infinite cluster. If the infinite
cluster reaches the maximum height of the gridL = 100,
then there will be percolation and the material can be con-
sidered as a porous material. In our tests, we considered
N = 1000 calculations distributed in a probability range
P = 0.3 to P = 0.5. In Fig. 8, we can observe the behav-
ior of these values and the point where the critical probability
form infinite clusters. In this graph, the heights for each level
of porosity or probabilityP are shown.

The critical probability in the case of Fig. 8, is obtained
when the bars that represent the maximum height of the clus-
ter for each probability reach the maximum height of the grid,
for this caseL = 100 is reached at the pointPc = 0.4329.

In Fig. 9, we observed the number of pores in the cluster
that are formed for each test performed, we can see that the
more likely the system is assigned, the more pores will be
generated in the material. If the probability is small, the ma-
terial will be poorly porous, but if the probability is large then
the material will increase its porosity level; this relationship
can be seen in Fig. 9, where each point represents the number
of pores by probabilityP , in a range of 0.3 to 0.5. We can
observe a distribution of small pore generation to the point
of probabilityP = 0.4, where the level of porosity increases
rapidly.

The approximate execution time to perform this test was
approximately 9 minutes and 4 seconds for the calculations
shown in Fig. 9.

In Fig. 10, we observed the time relationship for each test
calculated. The results of these calculations for our numerical
simulation were performed on a Dell computer with Intel (R)
Core (TM) i7-6700HQ 64-bit processor, at 2.60 GHZ with 8
GB of storage RAM.

In this work a range of grid sizes fromL = 5 (500 nm) to
L = 100 (10,000 nm) was studied, excluding the behavior
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FIGURE 10. (Color online) The time in milliseconds for each cal-
culation is shown in a probability distributionP = 0.3 to P = 0.5,
and a number of calculationsN = 1000, having an average time
for each of approximately 4.5 milliseconds.

FIGURE 11. (Color online) The behaviors for random radii with
radius1 ≤ r ≤ 100 nm and fixed radii with (r = 50 nm) are
shown.

of larger arrays to these measurements. We performed sev-
eral calculations for different grid sizes to obtain the critical
probability, starting from a small grid to a large grid, we can
observe this relationship in Fig. 11, where the critical proba-
bility values that are reached for sizesL = 5 are shown (500
nm) toL = 100 (10,000 nm).

From Fig. 11 we observed that the curve for fixed ra-
dius poresr = 50 nm, critical probabilitiesPc greater than
those of random radius pores are reached when the sizes of
the gridL are small, approximately whenL = 10 (1000 nm)
to L = 40 (4000 nm), but for larger grids containing pores
of random radius the critical probability exceeds the critical
probabilityPc of the pores with fixed radius.

From Fig. 12, we can see that there is greater dispersion
of porosity levels when the simulation grid is small (L = 10),
and when the pores radii are random, there are lower poros-
ity levels than the fixed radii. Contrary to the opposite case
of Fig. 3 with sizeL = 80, where the pores of random radius
are larger than those of fixed radius.

FIGURE 12. (Color online) The behavior of the porosity level for
fixed radii r = 50 nm and random radii1 nm ≤ r ≤ 100 nm is
shown; we can observe a large dispersion in the porosity levels for
random radii. The size of the grid isL = 10.

5. Conclusions and future works

The contribution of this work is the study of the percolation
of random radius materials in the pores present in nanostruc-
tures. For cases where there are small grids, the porosity lev-
els in the material with random radii may be lower and below
that of the fixed radii as shown in Fig. 12, which is why there
may be small changes in the critical probability, as shown in
Fig. 11, where we observe that when the grids have a small
dimension they exceed thePc of the random radii, but as the
array becomes larger the value of thePc for random radii
exceeds thePc of the fixed radii.

We can conclude that the parameterL, (grid size) can
affect the porosity and therefore the generation of infinite
clusters when random radii are studied, the dispersion of the
porosity with random radius varies above and below that of
the pores of fixed radii when the grids are small, but for large
grids it slightly exceeds the porosity of the fixed radii. Ran-
dom radius nanostructures are more porous and their critical
probability increases when the grid sizes exceed the measure-
ments ofL > 40. Small gridsL < 40 with pores of random
radius may be less or more porous than those of fixed radius
altering theirPc.

In this investigation, percolation is modeled considering
spherical pores, which provides an approximation to the phe-
nomena of percolation in porous materials, so that the mor-
phology and complexity of each material provide an infinite
range of porous formations, which opens the possibility of
future research.
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