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A 1D kinetic model for cosmic microwave background comptonization
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This work presents a novel derivation of the expressions that describe the distortions of the cosmic microwave background curve due to the
interactions between photons and the electrons present in dilute ionized systems. In this approach, a simplified one-dimensional evolution
equation for the photon number occupation is applied to describe the mentioned interaction. This methodology emphasizes the physical
features of the Sunyaev-Zeldovich effect and suggests the existence of links between basic statistical physics and complex applications
involving radiative processes.
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1. Introduction

One of the most relevant physical phenomena in modern cos-
mology is the Sunyaev-Zeldovich effect (SZE). Cosmic mi-
crowave background (CMB) photons get Comptonized when
they interact with electrons in systems such as the hot gas
present between clusters of galaxies. The frequency shift
associated with the Compton effect cause distortions to the
Planck CMB curve (T ' 2.725K). These distortions were
first quantified using the Kompaneets equation, which corre-
sponds to a photon diffusion approach to the problem [1].

Two basic phenomena have been identified in the SZE in
terms of the motion of the electrons. The first one is related
to the bulk motion of the cluster (kinematic SZE), while the
second one corresponds to the random motion of the particles
present in the intracluster gas (thermal SZE). Both effects
are important in order to determine cosmological parameters
such as the Hubble constant, as well as primary anisotropies
in the CMB spectrum [2,3].

The photon diffusion approach was questioned by
Rephaeli nearly 25 years ago, due to the low density of the
gas. This author also noticed that mild-relativistic effects be-
come relevant to determine cluster velocities in several astro-
physical scenarios [4]. The approach taken by Rephaeli to de-
scribe the thermal SZE was based on photon scattering tech-
niques that involved convolution integrals that were evaluated
numerically. After that work, there have been lots of contri-
butions regarding alternative derivations of the SZE and the
inclusion of other possible causes of additional CMB distor-
tions such as magnetic fields, double Compton scattering or
very large wavelength acoustic waves [5]. More recent work
suggests a relation between the SZE and the characterization
of dark matter particles related to high energy reactions [6].

The present paper aims is to present a derivation of the
SZE based on a simple kinetic1D model of the electron gas
in order to show statistical properties that link the photon
scattering approach to other branches of statistical physics.
The formalism reproduces both the kinematic and thermal ef-

fects in the non-relativistic regime and suggests extensions of
the SZE formalism to interdisciplinary areas corresponding
to low-density limits of diffusive-type processes.

To accomplish this task, the paper has been divided as
follows: In section two, the basic thermodynamic properties
of black body radiation are reviewed. Section three is ded-
icated to the derivation of the kinematic SZE, while section
four is devoted to the analysis of the thermal SZE in which
the present approach is compared with the original formalism
based on the Kompaneets equation. Section five includes fi-
nal remarks and a brief description of future work regarding
this active area of research.

2. CMB Basics

The starting point of the formalism is the occupation number
for a Planck distribution:

n(0)(ν) =
1

e
hν
kT − 1

, (1)

whereh = 6.626 × 10−34 J·s is the Planck constant,k =
1.38× 10−23 J/K is Boltzmann’s constant andT = 2.725 K
is the CMB temperature. The internal energy density corre-
sponding to the occupation number is given by

u(v) =
8πhν3

c3
n(0)(ν). (2)

The intensity associated with the internal energy density
reads:

I(ν) =
c

4π
u(v). (3)

In CMB physics it is customary to define de dimensionless
frequencyx as:

x =
hν

kT
, (4)

Eq. (3) can then be rewritten as:

I(x) =
2(kT )3

(hc)2
x3

ex − 1
. (5)
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The maximum intensity value corresponding to Eq. (5) is
x ' 2.821 which corresponds to the microwave frequency
ν ' 1.601× 1011 Hz at the current CMB temperature.

3. Kinematic SZE

In the simplest model, all the electrons present in the dilute
gas move with velocityuk along thex direction. The dimen-
sionless parameterβk is given by:

βk =
uk

c
. (6)

The frequency shift̂ν for CMB photons reads:

ν̂ = ν(1± βk). (7)

Now, if τ represents the fraction of photons scattered by the
electrons, the perturbed occupation numbern(p)(ν) is given
by:

n(p)(ν) = n(0)(ν)− τn(0)(ν) + τn(0)(ν̂). (8)

The last term in the right-hand side of Eq. (8) corresponds
to the number of photons with frequencyν̂ after the photon-
electron interactions. This term can be approximated using a
Taylor series expansion as:

n(0)(ν̂) ' n(0)(ν)± βkν
∂n(0)

∂ν
, (9)

so that Eq. (8) now reads:

n(p)(ν)− n(0)(ν) = ∆n = ±βkτ
∂n(0)

∂ν
ν. (10)

To compute the change in the intensity spectrum∆I =
I(p) − I(0) due to the kinematic SZE one can apply the re-
lation:

∆I

I(0)
=

∆n

n(0)
, (11)

FIGURE 1. Kinematic SZE. The intracluster gas is assumed to
move homogeneously with scaled speed−β producing an inten-
sity distortion.∆I is expressed as a function ofx = (hν/kT ) and
in units of(2(kT )3/(hc)2).

∆I/I(0) can now be established using Eqs. (1), (4) and (11),
thus obtaining

∆I(x) = ∓2(kT )3

(hc)2
x4ex

(ex − 1)2
βkτ (12)

Eq. (12) is the well-known expression of the kinematic SZE
[4]. Its shape, scaled in terms of the factorβτ is shown in
Fig. 1.

4. Thermal SZE

We now consider the case in which the electron velocities sat-
isfy a given1D distribution functionP = P (v). Photons of
different frequencies contribute to the perturbed occupation
numbern(p)(ν) in the SZE. Historically,n(p)(ν) was first es-
tablished using the Kompaneets equation approximation:

np − n0

τz
=

∆n(ν)
τz

= 4x
∂n(0)

∂x
+ x2 ∂2n(0)

∂x2
, (13)

wherez = (kTel/mc2) is the relativistic parameter for a free
electron gas at temperatureTel. Equation (13) can be es-
tablished using a kinetic theory formalism in which the drift
term, usually present in the relativistic Boltzmann equation,
is neglected. In that case, the photon occupation number is
modified due to the Compton interactions included in the cor-
responding collision kernel [7].

In the present formalism, the varying electron velocities
are expressed as

β̄Th =
v

c
. (14)

The thermal SZE corresponds to a slight variation of Eq. (8)
that reads:

n(p)(ν) = n(0)(ν)− τn(0)(ν) + τn(d)(ν), (15)

wheren(d)(ν) is the occupation number of the photons that
contribute to a fixed perturbed frequency band, which is given
by:

n(d)(ν) =

∞∫

−∞
P (β̄Th)n(ν + β̄Thν)dβ̄Th. (16)

The Taylor expansion ofn(ν + β̄Thν) up to second order in
∆ν = β̄Thν leads to the expression:

nd(ν) '
∞∫

−∞
P (β̄Th)(n(0) + νβ̄th

∂n(0)

∂ν

+
ν2β̄2

th

2
∂2n(0)

∂ν2
)dβ̄Th, (17)
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or, using Eq. (4):

nd(x) ' n(0)

∞∫

−∞
P (β̄Th)dβ̄Th + x

∂n(0)

∂x

×
∞∫

−∞
β̄ThP (β̄Th)dβ̄Th +

x2

2
∂2n(0)

∂x2

×
∞∫

−∞
β̄2

ThP (β̄Th)dβ̄Th. (18)

In Eq. (18)P (β̄Th) is assumed to be normalized, so that

∞∫

−∞
P (β̄Th)dβ̄Th = 1. (19)

The first two moments of the distribution function lead to
the Kompaneets equation structure. The coefficients corre-
sponding to the right-hand side of Eq. (13) are:

∞∫

−∞
β̄ThP (β̄Th)dβ̄Th = 4z, (20)

∞∫

−∞
β̄2

ThP (β̄Th)dβ̄Th = 2z. (21)

The distribution function in the1D model is then given by:

P (β̄Th) =
1

2
√

πz
e−

β̄2
T h
4z +

β√
πz

e−
β̄2

T h
4z , (22)

Eqs. (18) and (22) lead us to the perturbed occupation num-
ber, scaled in terms of the factory = τz:

∆n

y
=

xex(4 + x + ex(x− 4))
(ex − 1)3

. (23)

Figure 2 shows the perturbed occupation number, Eq. (23)
for several temperatures.

At this point, Eqs. (18) and (22) can be applied in various
interesting situations. In cosmology, for example, it is known

FIGURE 2. Non-relativistic change in the occupation number
∆n/y (Eq. 23). The red curve corresponds toT = 2.525 K, the
green curve toT = 2.725 K and the blue curve toT = 2.925 K.

FIGURE 3. Normalized non-relativistic perturbed occupation num-
ber (∆n/∆n(µ = 0)) (Eq. 23). The red curve corresponds to
µ = 9 × 10−5, the green line toµ = 0, and the blue curve to
µ = −9× 10−5.

that the unperturbed occupation number (1) may be slightly
modified by the presence of a non-vanishing chemical poten-
tial µ, where−9 × 10−5 ≤ µ ≤ 9 × 10−5 [9]. In this case,
the change in the occupation numbernµ reads:

∆nµ = y
xex+µ(4 + x + ex+µ(x− 4))

(ex+µ − 1)3
. (24)

Figure 3 shows the effect of this variable forT = 2.725
K to the change of the occupation number atµ = 0.

Another application of the present formalism is related to
the study of other sources of distortions of the CMB curve,
such as the DC scattering [10]. In this case, Eqs. (15) and
(16) would require additional terms corresponding to the con-
tributions to the band of frequencyν due to the secondary
photons produced in the effect [11]. A detailed calculation of
this phenomenon is beyond the scope of the present paper, but
will be the subject of future work since interdisciplinary sit-
uations in which populations are modified through ”multiple
births” can be described using kinetic formalisms such as the
one here presented. The analogy of those kinds of situations
with the one present in the DC effect seems quite promising.

It is also possible to apply Eq. (11) to establish the inten-
sity distortion curve corresponding to the thermal SZE. The
result reads:

∆I(x)
y

=
2(kT )3

(hc)2
x4ex

(ex − 1)2
(
xex + x

ex − 1
− 4), (25)

Eq. (24) is the well-known expression for the thermal non-
relativistic SZE [4]. The distortion is shown in Fig. 2.

5. Final Remarks

This work has been devoted to the analysis of the SZE in
terms of a simplified 1D kinetic model. One of the re-
sults here obtained is the establishment of a Kompaneets-type
equation in which the coefficients of the derivative terms cor-
respond to the first moments of the distribution function of
the scatterers. Parity is a relevant feature to be considered in
the structure of the distribution function, as was noticed in
earlier work related to the SZE [8].

Rev. Mex. Fis.66 (3) 352–355



A 1D KINETIC MODEL FOR COSMIC MICROWAVE BACKGROUND COMPTONIZATION 355

FIGURE 4. Normalized non-relativistic perturbed occupation num-
ber ∆n/∆n(µ = 0) (Eq. 23). The red curve corresponds to
µ = 9 × 10−5, The green line toµ = 0 and the blue curve to
µ = −9× 10−5.

It is interesting to notice that the kinematic SZE is also
compatible with the simplified kinetic approach here pro-
posed. Indeed, ifP (β̄) = δ(β̄ − β) Eq.(16) becomes:

nd(x) = x
∂n(0)

∂x

∞∫

−∞
β̄δ(β̄ − β)dβ̄, (26)

which immediately leads to Eq. (10).
The SZE is a 3D phenomenon, which involves several

physical processes present in ionized gases. In contrast, the
present approach corresponds to a simple kinetic model that
suggests the existence of a direct link between the diffusive-
type formalisms and the use of scattering kernels. This type
of formalism allows the direct calculation of perturbed oc-
cupation numbers for other physical systems. Further appli-
cations of the type of approach here presented will include
relativistic effects, as well as multiple scattering scenarios in
dense systems.
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758(2005) 170-175.

9. J. Chluba, S. Yu. Sazonov and R.A. Sunyaev,A& A 468(2007)
785-795.https://doi.org/10.1063/1.1900517

10. F. Mandel and T.H.R. Skyrme,Proc. R. Soc. Lond. A215
(1952) 497-507. https://doi.org/10.1098/rspa.
1952.0227

11. J. Chluba,Spectral Distortions of the Cosmic Microwave Back-
ground Dissertation, LMU M̈unchen: (Fakulẗat für Physik,
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