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We study thermal superdense coding in a two-spin model under an external magnetic field. Its dependencies on magnetic field, strength
of the spin squeezing and temperature are presented in detail. Our main goal now is to study how we can increase the thermal superdense
coding capacity in the presence of magnetic field, strength of the spin squeezing and temperature. It shows that the dense coding tends to a
valid value by setting the value of input quantum correlations. Our most important motivation for this study is to examine the relationship
between the thermal properties of super quantum discord (SQD) and dense coding. The results show that the thermal properties of the SQD
on our channel enable us to determine when and under what conditions the system is suitable for valid dense coding. Our proposals could be
lead to that this scheme is efficient for quantum information processing.
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1. Introduction

Quantum information theory offers many methods on how
information may be stored, manipulated, and transmitted [1].
The base of quantum information theory is well known to be
the quantum entanglement. It is the most fascinating feature
of quantum mechanics that plays an essential role in quan-
tum cryptographic key distribution [2], quantum teleporta-
tion [3], and quantum dense coding [4]. For example, in
the original dense coding protocol, the sender can transmit
two bits of classical information to the receiver by sending
a single qubit if they share a two-qubit maximally entangled
state. Dense coding has been investigated both experimen-
tally [5] and theoretically [6–8]. Recently, optimal dense
coding have been extensively investigated in condensed mat-
ter physics due to their good integrability and scalability in
the context of quantum information processing [9, 10]. Up
to now, various systems have been studied in the field of
quantum processes. The spin chains have been considered
as one of the most suitable candidates for the study of en-
tanglement and quantum correlations [11-13]. Recently, the
cavity quantum electrodynamics system (CQES) has received
much attentions since this system offer an ideal coupling be-
tween atoms and photons [14]. As a result, it has been widely
applied for engineering quantum entanglement and quantum
channel [15–21]. The common result of all models show that
dynamical properties of the SQD on our channel enable us
to determine when and under what conditions the system is
suitable for dense coding capacity [22].

Quantum correlations have been comprehensively ac-
cepted as the main resource for different quantum informa-
tion processing tasks. For a long time, the study of quantum
correlations has been focused on entangelement [23]. How-
ever, recent studies indicated that entanglement does not re-
veal quantum correlation in separable states, therefore it can-
not be considered as a complete measure of quantum cor-
relation. The present work focuses on another concept of

quantum correlation, namely quantum discord (QD) [24–27].
The QD is a measure of quantumness of correlations in a
bipartite state, which was introduced as the difference be-
tween two natural quantum extension of the classical mu-
tual information. Recently, numerous works have been made
toward the significance and applications of QD [28, 29]. It
should be noted that discord is captured by strong measure-
ments (projective operators). As quantum states are fragile
to quantum measurements, the measurement of an arbitrary
quantum state in some orthogonal basis (projective measure-
ment) leads to the loss of its coherence. While if the mea-
surement be done weakly, it protects the coherence of the
system when we perform a measurement which couples the
system and the measuring device weakly. In 1988, Aharonov,
Albert and Vaidman have proposed to use weak measure-
ments [30]. Lately, it was shown that weak measurements
can also protect QD from the decoherence [31]. It is known
that the weak measurement captures more quantum corre-
lation of a bipartite system than the strong (projective) one
under certain situation. In technological applications, weak
measurements are important for exploring the extra quantum
correlation for information processing. Actually, replacing
the projective measurement with weaker one in the definition
of QD, gives rise to new correlation called super quantum dis-
cord (SQD) [33, 34]. Hence, a weak measurement enforced
on one of the subsystems can lead to SQD, which is always
larger than the normal QD captured by the strong measure-
ment [32].

Our most important motivation for this study is to ex-
amine the relationship between thermal properties of SQD
and superdense coding. We know that entangled states have
the important role in dense coding. Here we propose a two-
qubit spin squeezing model as quantum channels to study the
thermal dense coding capacityχ. Motivated from the recent
study on the thermal of entanglement in the above model, we
here devote to examining the quantum correlation properties
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in terms of SQD with dense coding capacity. Our results sug-
gest that the thermal properties of SQD in the channel can
accurately determine the valid dense coding. Dense coding
plays a major role in quantum communication, in such a way
that valid dense coding detection using the thermal proper-
ties of SQD in the channel seems to play an important role in
quantum information theory. Therefore, the notion of SQD
can be a more useful resource for quantum information pro-
cessing tasks, quantum communication and quantum compu-
tation than QD.

The remainder of this paper is organized as follows. In
Sec. 2, we introduce the Hamiltonian of the systems that we
want study dense coding and quantum correlations through
them. In Sec. 3 firstly, we briefly review the dense coding
scheme, then we obtain the thermal super dense coding and
analyze its characters. Finally, the main results will be sum-
marized in Sec. 4.

2. Description of the model

The two-spin model under an external magnetic field and
coupled to each other by a one-axis twisting spin squeezing
interaction is given by [35,36]:

Ĥ = µS2
x + ΩSz, (1)

where, transverse field termSz can control the strength of the
external magnetic fieldΩ ≥ 0 in z direction. The first term
includes an ensemble ofN spin-1/2 particles with exchange
symmetry that its dynamical properties can be described by
collective operatorsSα = (1/2)Σ2

i=1σ
i
α, (α ∈ x, y, z), and

σi
α are the Pauli matrices for theith spin. In the follow-

ing, we consider N=2.µ ≥ 0 describes the strength of the
spin squeezing interaction inx direction which depends on
the scattering lengths between particles and the condensate
density. The interaction establishes pairwise correlations be-
tween all of individual spins in the collective spin system;
in our case bipartite correlations are formed between the two
spins. This model is considered as a simple one in solid state
in order to generate and manipulate entangled states.

The eigenvaluesEn and the corresponding eigenvec-
tors |ψn〉 of Hamiltonian Eq. (1) in the standard basis of
|00〉, |10〉, |01〉, |11〉 can be easily obtained as the following
forms [38]:

E1,4 =
µ± κ

2
, |ψ1,2〉 =

1
A∓

(µ|00〉+ (2Ω± κ)|11〉),

E2 = 0, |ψ3〉 =
1√
2
(|10〉 − |10〉),

E3 = µ, |ψ4〉 =
1√
2
(|01〉+ |01〉), (2)

where κ =
√

µ2 + 4Ω2 and the normalization constant
is A∓ =

√
µ2 + (2Ω± κ)2. We can introduce ther-

mal fluctuations for the system, the density matrix of this
two spins at thermal equilibrium isρ = (1/Z)e−βH =

Σ4
n=1P (n)|ψn〉〈ψn|, whereP (n) = (1/Z)e−βEn are ther-

mally distributed populations in the quantum states,β =
(1/k)T (k = 1) and T is the temperature. Also,Z =∑

n e−βEn is the partition function.

Equipped with these concepts and formulas, we are now
in the status to obtain density matrixρ(T ) in the standard
basis|00〉, |10〉, |01〉, |11〉,

ρ =




ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ∗23 ρ33 0

ρ∗14 0 0 ρ44


 , (3)

with the element of density matrix

ρ11 =
1
z
µ2e−βµ/2

(
e
−κβ

2

A2
+

− e
κβ
2

A2−

)
,

ρ14 =
1
z
µe−βµ/2

(
e
−κβ

2 (2Ω + κ)
A2

+

− e
κβ
2 (2Ω− κ)

A2−

)
,

ρ22 = ρ33 =
1
2z

(
1 + e−βµ

)
,

ρ23 = ρ32 =
1
2z

(−1 + e−βµ
)
,

ρ44 =
1
z
e−βµ/2

(
e
−κβ

2 (2Ω + κ)2

A2
+

+
e

κβ
2 (2Ω− κ)2

A2−

)
,

ρ41 = ρ14.

With knowing that density matrix is the X-state form, one
can obtain the quantum correlation behaviors by using cor-
relation measure. It is determined that the quantum corre-
lations such as SQD and QD are more comprehensive than
entanglement [37]. Recent studies indicated that at a cer-
tain temperature entanglement and quantum correlations can
be increased with changing the value of theΩ andµ. The
results in Ref. [13, 38] indicate that thermal quantum corre-
lations depends on the spin squeezing interactionµ and the
external magnetic interactionΩ at the same of temperature.
In following, we extend the quantum dense coding to spin
channel. Their study show that quantum correlations can ap-
proach a maximum value by adjusting the external magnetic
field, the spin squeezing interaction and temperature.

3. Superdense Coding

Now, we carry out the thermal optimal dense coding in one-
axis twisting model as a quantum channel. For this purpose,
the set of mutually orthogonal unitary transformations is nec-
essary to be made. The set of mutually orthogonal unitary
transformations for two-qubit are given as follows [39]:
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U00|j〉 = |j〉
U01|j〉 = |j + 1(mod2)〉
U10|j〉 = e

√−1(2π/2)j |j〉
U11|j〉 = e

√−1(2π/2)j |j + 1(mod2)〉 (4)

where|j〉 is the single qubit computational basis(|j〉 =
|0〉, |1〉). The average state of the ensemble of signal states
generated by the unitary transformations Eq. (4) given by:

ρ∗ =
1
4

3∑

i=0

(Ui ⊗ I2)ρ(U†
i ⊗ I2) (5)

where0 stands for00, 1 for 01, 2 for 10, 3 for 11, andρ is the
density matrix of the quantum channel. Eq. (5) represents the

FIGURE 1. The super dense coding capacity as a function of tem-
perature, (a) with external field interactionΩ = 1 and different of
value for spin squeezing interactionµ, (b) with spin squeezing in-
teractionµ = 2 and different of value for external field interaction
for the spin channel.

operations that Alice(sender) performs on the shared entan-
gled stateρ. If the sender does the set of mutually orthogonal
unitary transformations, the maximum dense coding capacity
χ can be obtained by

χ = S(ρ∗)− S(ρ) (6)

whereS(ρ∗) is an von Neumann entropy for the average state
of ensemble of signal statesρ∗, andS(ρ) is the von Neumann
entropy of the quantum channel. Ifχ > 1 dense coding is
valid, and for optimal dense codingχ must be the maximum,
i.e. χmax = 2. In the following, we will use one-axis twist-
ing spin squeezing interaction as a quantum channel to study
the optimal dense coding.

Figure 1(a) presents the effects of temperature on dense
coding described by Eq. (4) forΩ = 1 and different values of
µ. We found that valid dense coding exists at T = 0, whereas
with the enhancement of temperature the dense coding capac-
ity decreases quickly to the minimum value. From Fig. 1(a)
one can see that valid dense coding vanishes with increas-
ing µ in the limit of low temperatures. In order to transmit
ρ(T ) with valid dense coding, we require the value ofχ to be
strictly greater than 1. In Fig. 1(b), we consider the strength
of the external magnetic fieldµ = 2 with various values of
spin squeezing interactionΩ. It can be said that valid dense
coding happens with decreasingΩ at µ = 2 for the smaller
values of temperature. In general from Figs. 1, the influence
of Ω andµ on the valid dense coding can be obvious when
the temperature is increasing from zero. The optimal dense
coding vanishing occurs by increasing temperature in the a
short range. By choosing the appropriate value forΩ andµ,
we can preserve valid dense coding at the short range of tem-
perature, for which exists valid dense coding by increasingΩ
andµ.

In the following, we tend to study the effects ofΩ andµ
on dense coding capacity at low temperature. We can identify
valid dense coding with the help of calculating SQD in the

FIGURE 2. The super dense coding capacity as a function of ex-
ternal magnetic interactionΩ , spin squeezing interactionµ for the
spin channel in T = 0.5.
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FIGURE 3. The super dense coding capacity and SQD as a function
of temperature with spin squeezing interactionµ = 1 with different
of values external field (a)Ω = 0.5 (b) Ω = 1.2 (c) Ω = 2.

the quantum channel. Figure 2 indicates that the dense coding
capacity is plotted as a function ofΩ andµ at same tempera-

tureT = 0.5. It indicates that thermal dense coding capacity
depends on the spin squeezing interactionµ and the external
magnetic interactionΩ at the same of temperature. One can
see clearly that there is no thermal valid dense coding when
the strength of the spin squeezing or the strength of the exter-
nal magnetic filed is zero. Hence, we can say that weaker or
stronger external magnetic field will change the valid dense
coding for the smaller value of T. We are looking for whether
we can identify valid dense coding with the help of calculat-
ing the quantum correlation in the quantum channel. Formal-
ism for a special subset of two qubit density operators named
X-state is provided to calculate SQD in Refs. [32, 47, 56] or
see appendix of this paper. In order to see the relationship
between dynamical properties of quantum correlations and
thermal dense coding capacity, in Fig. 3 we plot thermal SQD
and dense coding capacity for various values of external field
Ω with spin squeezing interactionµ. They show that dense
coding capacity is similar to the behavior of SQD. Therefore,
the prediction of dense coding behavior is feasible through
the thermal properties of SQD in the quantum channel. As a
result through the thermal properties of SQD, we can deter-
mine when and under what conditions the channel is suitable
for dense coding. Moreover, we can see the value of valid
dense coding with the dencreasing of external field inµ = 1.

4. Conclution

In this work, we have studied the thermal valid dense coding
in a system of two spins under an external magnetic field and
coupled to each other by a one-axis twisting spin squeezing.
We investigated that the thermal properties of SQD how can
have important role in predictng valid dense coding. We turn
to the main goal of our study, first we investigated the role
of squeezing interaction and the external magnetic interac-
tion on dense coding capacity. The results showed that dense
coding capacity decreases by increase of temperature. Also,
the spin squeezing interaction and the external magnetic in-
teraction have an important role in thermal valid dense cod-
ing. Comparing thermal properties of the quantum channel
and dense coding capacity leads to an interesting outcome.
That we can identify valid dense coding with the help of cal-
culating the SQD in the quantum channel.

Appendix

A.

Here, we briefly explain QD and SQD as the measures of
quantum correlations used in our investigation. QD was orig-
inally defined as the difference between total correlation and
the classical correlation and it measures all nonclassical cor-
relations. It prepares us information on the quantum nature of
the correlations in a bipartite system without emphasis that it
is entangled or separable [40–42]. For a bipartite systemAB
quantum discord is given by [24]:
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QD(ρAB) = I(ρAB)− C(ρAB) (A.1)

the quantityC(ρAB) is defined as a measure of classical cor-
relation [43]:

C(ρAB) = S(ρA)− S(ρA|B) (A.2)

WhereρAB denotes the bipartite density matrix of a compos-
ite systemAB, ρA andρB represent the density matrices of
partsA andB. The quantityS(ρ) = −trρ log ρ refers to the
Neumann entropy andρA = trBρAB represent the reduced
states for subsystemA(B), wheretr stands for the trace of
matrix [44–46]. The quantum conditional entropy is given by

S(ρA|B) = min
ΠB

i

S(ρA|ΠB
i
) = min

ΠB
i

∑

i

S(ρA|i) (A.3)

with the minimization being over all projection-valued mea-
surements,ΠB

i , performed on the subsystem B. Where{ΠB
j }

denotes a complete set of positive operator-valued measure
(POVM) performed on the subsystemB, in such a way that∑

j ΠB
j = 1. The probability for obtaining outcomei is

pi = trAB [(IA⊗ΠB
i )ρAB(IA⊗ΠB

i )], and the corresponding
post measurement state for the subsystem A is

ρA|i =
(IA ⊗ΠB

i )ρAB(IA ⊗ΠB
i )

pi
(A.4)

whereIA is the identity operator on the Hilbert spaceHA.
The total correlation is quantified by the quantum mutual in-
formationI(ρAB):

I(ρAB) = S(ρA) + S(ρB) + Σ4
i=1εi log2 εi (A.5)

For X state, described by the density matrix Eq.3, the
reduced matrix ofρA andρB is given by:

S(ρA) = −(ρ11 + ρ22) log2(ρ11 + ρ22)

− (ρ33 + ρ44) log2(ρ33 + ρ44) (A.6)

S(ρB) = −(ρ11 + ρ33) log2(ρ11 + ρ33)

− (ρ22 + ρ44) log2(ρ22 + ρ44) (A.7)

The eigenvalues of the density matrixρAB , εi, are given by:

ε1 =
1
2

[
(ρ11 + ρ44) +

√
(ρ11 − ρ44)2 + 4|ρ14|2

]
(A.8)

ε2 =
1
2

[
(ρ11 + ρ44)−

√
(ρ11 − ρ44)2 + 4|ρ14|2

]
(A.9)

ε3 =
1
2

[
(ρ22 + ρ33) +

√
(ρ22 − ρ33)2 + 4|ρ23|2

]
(A.10)

ε4 =
1
2

[
(ρ22 + ρ33)−

√
(ρ22 − ρ33)2 + 4|ρ23|2

]
(A.11)

The calculation of QD is a complex function due to the op-
timization over all possible measurements, at present there
exists no general analytical expression of discord even for

the simplest case of two-qubit state. Hopefully, for the a spe-
cial bipartite quantum X-state described by the density ma-
trix ρ Eq. (3), the analytical expression of theQD is speci-
fied by [47]. Despite some counterexamples have been given
in [48, 49], Huang confirmed numerically, in a recent arti-
cle [50], that the Ali and et al. algorithm is valid with worst
case absolute error 0.0021 for two qubit X states. According
to proposed scheme proposed in Ref. [47,51]:

QD(ρAB) = min(Q1, Q2), (A.12)

where,

Qi = H(ρ11 + ρ33) +
4∑

i=1

εi log2 εi + Dj ,

D1 = H

(
1 +

√
[1− 2(ρ33 + ρ44)]2 + 4(|ρ14|+ |ρ23|)2

2

)
,

D2 = −
∑

i

ρii log2 ρii −H(ρ11 + ρ33),

H(x) = −x log2 x− (1− x) log2 (1− x).

It is necessary to say a few important feature to discord.
Firstly discord is always non-negative [52]. Secondly, dis-
cord is asymmetric under the interchange ofA andB. The
main idea of calculation discord is to extract some informa-
tion aboutA by reading the state ofB without disturbing of
stateA in any way. When discord is minimized, we disturb
these correlation at least and hence we extract maximum in-
formation [53,54].

Now, let us to define what we call to the SQD [55]. A kind
of quantum correlation in quantum information processing is
SQD with weak measurement which is always larger than the
QD captured by the strong measurement. These are called
weak measurement operators because they do not cause com-
plete collapse. The weak measurement operators are given
as:

P (∓x) =

√
1± tanh x

2
Π0 +

√
1∓ tanh x

2
Π1 (A.13)

wherex is the strength parameter of measurement,Π0 and
Π1 are orthogonal projectors that satisfyΠ0 + Π1 = I. In
addition, in the strong measurement limit we have the projec-
tive measurement operators,i.e., limx→∞ P (+x) = Π0 and
limx→∞ P (−x) = Π1. For small x, the distance between the
initial state and state after the measurement is close to zero,
i.e., action ofP (∓x) does not alter the state of the system
much. If we replace all projection measurements with weaker
ones in classical correlation and quantum discord, it leads to a
new type of quantum correlations called SQD. The classical
correlation represents the information gained about the sub-
systemA after performing the measurementsPB(x) = P (x)
on subsystemB [52]. The SQD denoted byDw(ρAB) is de-
fined as:
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Dw(ρAB) = S(ρB)− S(ρAB)

+ min
{P B(x)}

Sw(A|PB(x)) (A.14)

This is a positive quantity which follows from monotonicity
of the mutual information, where the weak quantum condi-
tional entropy is given by:

Sw(A|PB(x)) = p(+x)S(ρA|P B(+x))

+ p(−x)S(ρA|P B(−x)), (A.15)

with

p(∓x) = trAB [(IA ⊗ PB(±x))ρAB(IA ⊗ PB(±x))],

and

ρA|P B(±x) =
trB [(IA ⊗ PB(±x))ρAB(IA ⊗ PB(±x))]
trAB [(IA ⊗ PB(±x))ρAB(IA ⊗ PB(±x))]

.

whereIA is the identity operator on the Hilbert spaceHA.
Also, PB(±x) is the weak measurement operator performed
on subsystemB and ρA|P B(±x) is the post measurement
state for the subsystemA after the weak measurement. Un-
luckily, SQD is also difficult to calculate. At recent years,
some researchers have tried to calculate it. They were able
to give only few explicit formulae for general X-type two-
qubit states [32,56]. In this article, we will use the method of
reference [32]. From Eq. (A.14) the SQD is given by

Dw(ρAB) = p(+x)[λ+ logλ+
2 +λ− logλ−

2 ]

+ p(−x)[ κ+ logκ+
2 +κ− logκ−

2 ]

+ S(ρB)− S(ρAB)]

that

κ± =
1
2


1±

tanh[x]
√

a2
1 − a2

2 + (a3 − c3z3)
2

1− b3z3




λ± =
1
2


 1±

tanh[x]
√

a2
1 + a2

2 + (a3 + c3z3)
2

1 + b3z3




and

p(+x) =
1
2
(1 + b3z3 tanh[x])

p(−x) =
1
2
(1− b3z3 tanh[x])

These parameters are determined by the entries of the density
matrix,

a3 = ρ11 − ρ44 − ρ22 − ρ33

b3 = ρ11 − ρ44 − ρ22 + ρ33

c3 = ρ11 + ρ44 − ρ22 − ρ33

c1 = 2(ρ23 + ρ14)

c2 = 2(ρ23 − ρ14)

a1 = z1Re[c1] + z2Im[c2]

a2 = z2Re[c2]− z1Im[c1]

Now, we can compute the minimum value ofDw(ρAB) . In
order to avoid redundant narrating, we only state that the min-
imum value lies atz1 = z2 = 0 andz3 = 1 in our work.
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