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In this paper, the encryption improvement via modulation of the fractional-order chaotic oscillators state variables is presented. A network

of N-coupled fractional-order il chaotic oscillators, is synchronized. A voice message is encrypted, via additive encryption, by using a
state variable of the synchronized network. The selected state variable is modulated and used to encrypt the message again. The results are
compared.
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En este aitulo, se presenta la mejora de la calidad de encriptado mediante la modudadas variables de estado de osciladorétiazs

de orden fraccionario. Se sincroniza una red\desciladores aaticos Lii de orden fraccionarios acoplados. Se encripta un mensaje de voz
mediante encriptado aditivo, utilizando una variable de estado de la red sincronizada. La variable de estado seleccionada se modula y se
utiliza para cifrar el mensaje nuevamente. Se comparan los resultados.

Descriptores: Sistemas no lineales; orden fraccionario; caos; sincrorimaencriptado; modulagn.

PACS: 05.45.-a; 05.45.Gg; 05.45.Pq; 05.45.Vx; 05.45.Xt DOI: https://doi.org/10.31349/RevMexFis.66.364

1. Introduction In a transmitter-receiver communication scheme, it is im-
portant to ensure that the initial conditions of the receiver are

In this document, an alternative way to improve a voice en_identical to those of the transmitter in time. If this is notguar-
cryption quality is addressed. Some terms as fractional-ordeq'meed’ the recovery of the encrypted message can be partial
oscillators, chaos, complex networks, synchronization, dat8" null

encryption and state variables modulation are shown. It is This is due to the sensitive dependence on the initial con-
recommended to the reader interested in deepening on thed#ions presented by the chaotic systems. To guarantee the
topics to read [1-4]. correct recovery of the message, establishing a communica-
tion system that transmits the dynamics of the transmitter in

The wordchaosderives from the greek worgaoo, com- h N ded. Thi b hieved b h ¢
monly associated with disorder, irregularity, or erratic behav"® receiver Is needed. This can be achieved by synchrony et-
fect. This phenomenon is responsible for homogenizing the

iors [2]. In 1963, Edward Lorenz, an American mathemati-. ; .
cian and meteorologist, discovered one of the principles Ol'ndependent dynamics of each oscillator.

complexity, the chaos. During his research, he observed that The termsynchronymeaning “with, at the same time”
the climate exhibits a non-linear behavior known as a seneomes from the Greekvr “with” and from the Greek
sitive dependence to initial conditions. Using a mathematmythology xpdéros “time”. Synchrony, refers to the fact that
ical model to forecast the behavior of the climate, showedwo different behaviors will be equal in time, if there exists
that starting from two nearby points, the trajectories of thea coupling medium. In 1990, Pecora & Carrol, managed to
system that is currently known #ise Lorenz systepdiverge  synchronize two identical chaotic systems with different ini-
rapidly. He explained that this phenomenon makes impossitial conditions, proving the synchrony phenomenon [5]. On
ble the long-term weather forecast. Time later, it was knowrthe other hand, in order to synchronize non-identical systems,
as the butterfly effect [2]. the existence of a generalized synchronization between cou-
np_)led systems has been studied [6]. Furthermore, the chaos
synchronization has been demonstrated by several physical
implementationse.g, [7, 8].

Due to their chaotic nature, the chaotic oscillators are se
sitive to their initial conditions, generating apparently ran-
dom. However, chaos is deterministic [2]. This makes pos
sible to replicate their behavior, if the initial conditions are  In this paper, the synchronization betwe€mon-integer
known. This feature can be used in a secure communicatioorder identical systems, commonly known as fractional-order
scheme to confuse the attackers. systems, is achieved. These systems can be coupledin a
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complex network that can be defined as an interconnected sate the binomial coefficienté‘”,j € N, calculated as fol-
of oscillators (two or more). lows:

It is important to mention, that the fractional calculus al- (@)
lows describing and model a real object, more accurately than ¢ =1
the classical “integer” methods, [1]. The main reason for us- @ 1+g
ing integer-order models was the absence of solution methods ¢ = (1 - j)
for fractional differential equations [9]. At present, there are

many methods for approximation of the fractional derivative A general numerical solution of the fractional-order differ-
and integral [1, 10]. ential equation can be obtained:

9

). )

To_e_ncrypt the message using a complex n_etwork, for this DIy(t) = fy(t), 1), ©)
case, itis needed to synchronize the network first. Once done,
any oscillator in the network is selected. A state variable ofThe Eq. B) can be expressed as:
the selected oscillator is used to encrypt the message, based i
on the criteria mentioned in Sec. 4. Then, the selected state _ q (@) ,
variable is modulated and used to encrypt the same message ylt) = J(y(te), ti)h Z% ¢ y(te=i)- “)
to compare the results. =

The modulation of chaotic signals has been applied t@.2. Complex networks and synchronization
secure communications schemes. In [11], the authors use ]
chaotic modulation schemes to generate chaotic symbols fgonsidering a complex network composed\oidenticaln-
improve the physical layer security. In this paper, the Chaotiéﬂlmen5|onal dynamic subsystems. Each chaotic oscillator is
signals are modulated to improve the encryption quality bydefined by:
shifting the energy to the frequency band of the message to oD¥" Zyi(t) = fo(@ist) + s, (5)
be encrypted. ’ ’

This paper is organized as follows: Section 2 shows somwithn =1,2,...,nandi =1,2,..., N.
notations and definitions of the fractional calculus. Section3 Thex, ;(t) andu, ; terms are the state variables and the
shows the synchronization results of a regular complex neteontrol law respectively of the statgin the oscillatori. The
work composed ofV-coupled identical fractional orderiL  control laws are defined as follows:

chaotic oscillators. In Sec. 4, the chaotic encryption results N
are shown. In Sec. 5, a physical implementation is shown. Uy i = 502%%7 i=1,2,...,N. (6)
Finally, in Sec. 6, the conclusions are given. =

The constant > 0 is the coupling strength. The con-
2. Preliminaries stantd = 0 if n is not the coupling staté), = 1 otherwise.
) . o A = (a;;) € RV*N is a constant matrix that denotes the
The term of the fractional derivative was initially found in ¢onnections between the oscillators in the complex network.

a letter written for 'Hopital by Leibniz in 1695. In it, the | there exists a connection between the oscillatoasd ,
possibility of generalizing the operation of differentiation t0 e, the element;; = 1, otherwisea;; = 0 for i # j. The
non-integers was mentioned. In this section, the method Userﬂagonal elements of matrit are calculated as follows:
to solve the fractional order differential equations is shown.

N N
ai=— Y ag=- Y aii=12..N (7)
j=1,5#i j=1,j#i
One of the most popular methods for numerical solu- The identical synchronization of the dynamical network

tions of the fractional-order integrals and derivatives is thqS achieved, if the synchronization error between the state
Grunwald-Letnikov method. A numerical approximation can of the oscilléltors' and;j is zero ag — oo, i.e. [13];

be obtained by the following expression derived from the

2.1. Fractional order integrals and derivatives

Grunwald-Letnikov definition [1,12]: lim || 2,,:(t) — z,;(t) |=0, (8)
t—o0o ’ g
k with i # j.
- i [ 4
k=L /w DY (8) = B Z(*l)j ( j > flte—3), (1) The coupling strengthis calculated according to the fol-
7=0 lowing lemma [14]:

Lemma 1. Consider network3). Let )\, be the largest
nonzero eigenvalue of the coupling matrxof the complex
network. The synchronization state of the network (8) defined
by z1(t) = z2(t) = - - - = xn(t) is asymptotically stable if

cv (1), . ©

c

The Eq. Q) represents a numerical approximation taydeh
derivative at point&h, wherek € N,, k # 0 andh is the time
step. The constarit,, is the “memory length” and
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wherec > 0 is the coupling strength of the network and
T > 0 is a positive constant such that zero is an exponen-
tially stable point of the:-dimentional system

y1 =f1(y) — Ty,
Y2 =fa(y), (10)

By the condition(12), the network achieves synchrony if
Ao is negative enough is a constant such that the self-
feedback term-T'y, stabilizes an isolated system.

It is important to mention that théemma 1 is not
adapted to the fractional-order systems case.

FIGURE 2. Regular star coupled network topology with bidirec-

3. Synchronization of N-coupled fractional- e
tional configuration.

order LU chaotic oscillators via coupling
matrix

In this section, the same principleslamma 1 are applied 3-2- Regular star coupled network

to galculate an apprqu_ate coupling gtrength This, 10 The following coupling matrixdA €¢ RV*N N = 12, corre-
achieve the synchronization of a non-directed complex neté onds to the network tonoloay shown in Fig. 2
work composed byV identical fractional-order i chaotic P pology 9. <

oscillators coupled in a star topology. -N+1 1 --- 1 1

1 -1 0 o
3.1. Fractional-order Lu chaotic oscillator A= . — : : . (12)
The LU system is known as a bridge between the Lorenz sys- 1 8 _01 01

tem and Chen’s system [1]. Its fractional version is described

as follows [15] In this case, the chaotic oscillators are coupled by the sec-

oDIa(t) = o(y(t) — (1)), ond state variable.e., » = 2. By means of the Eq. (6),= 0
o if n # 2. Therefore, the control laws, ; fori = 1,...,12
oDy(t) = —x(t)z(t) + vy(t), (11)  are applied to the statg (t) of the complex network. The
oD 2(t) = x(t)y(t) — Bz(t). mathematical model of the complex network is described as
follows:

The set of Egs. (11) exhibits chaotic behavior for parameters "
o =36,8=3,v=20and orders;; = g5 = g3 = 0.95 [1]. oD} xi(t) = o(yi(t) — i(t)),
Figure 1 shows the chaotic attractor of the fractional-order L 0Dy (t) = —xi(t) i (t) + Yy (t) + ua,, (13)

chaotic oscillator. .
0DF zi(t) = zi(t)yi(t) — Bzi(t),

wherei =1,2,3,...,12.
The control laws are defined by:

ug = c(—1ly1 +y2 + Y3 +ya + ys + s

+y7 4+ ys + Yo + Y10 + Y11 + v12),

40\_ff—f—f—\——f(« ,LLQ,Q ) C(yl ) y2)’
20
y®m 0 15 20 25 : :

-10 -5 0 X (0 5 10
FIGURE 1. Phase space of the chaotic attractor of tfiedscilla- uz,12 = c(y1 — Yi2)- (14)
tor Eq. (12) for parametersy = 36,0 = 3,y = 20, and ini- o N .
tial conditions(z(0), »(0), 2(0)) = (1,0.1,2.5) proyected onto Table | shows the initial conditions of each oscillator
(z(t),y(t), 2(t)) space. present in the network.
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TABLE . Initial conditions of the complex network.

Oscillator z(0) y(0) z(0)
1 5.0003 —8.3208 —2.9502
2 —1.3903 2.1136 —8.3510
3 2.3582 —6.0642 0.3310
4 3.2618 1.6353 5.4132
5 5.0304 —3.2545 1.2853
6 —4.7219 —6.6089 4.6241
7 0.0002 —0.2746 4.5556
8 2.9729 1.7510 6.2513
9 4.6489 1.1988 —3.4518
10 —3.2578 5.9605 —8.0592
11 —0.1223 —9.7442 5.1025
12 4.3086 0.0058 —0.3542

f=1

35

0.15 0.2 0.25

t (sec)

0.1 0.3 0.35
FIGURE 3. Temporal evolution of some state variables of the com-

plex network:z;(t), v (t), z:(t), (Wherei = 1,2, ..., 6).

20 20+ 20[-+

20| At 20t

20 0 20 20 0 20 20 0 20
y y A

1 6
FIGURE 4. Phase portrait of some states of the complex network:

Y1 VS Y2, Y6 VS Y7, Y8 VSY12.

.35

i35

0.25 0.3 0.35

FIGURE 5. Time evolution of the synchronization error between
some state variables of the complex netwogk:— o, ¥5 — Y10,

Ya — Y11
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Applying the principles ofLemma 1, the network
achieves synchronization with an aproximate coupling
strengthc = 19. The network achieves identical synchro-
nization and can be graphically observed in Fig. 3.

Additionally, Fig. 4 shows some phase portraitsyg(f)
state variables of the network. The synchronization errors
between some of the (¢) state variables of the complex net-
work are shown in Fig. 5.

4. Encryption process

In this section, the process to encrypt a voice message is
shown. First, the message is encrypted using a selected state
variable of a fractional-orderiLchaotic oscillator. Then, the
state variables are modulated and used to encrypt the same
message. The results are compared.

4.1. Chaotic encryption

By the conventional additive method, a chaotic signal and
the message signal are added. This encrypted signal is sent
through a public channel. A second chaotic signal is sent and
used by the receptor to reproduce a dynamic equivalent to
the chaotic signal used to encrypt the message. This signal
is subtracted from the encrypted signal, and the message is
restored [16]; this is illustrated in Fig. 6.

In [17], the authors select a state variable from the net-
work in order to encrypt the message, based on the total en-
ergy provided by the chaotic signals and the frequency loca-
tion of the message. It is important to mention that, once the
complex network achieves synchrony, any chaotic oscillator
can be selected from the network to use its state variables.

According to the previously mentioned criteria [17]:

CriterionJ4: selection based on the chaotic signal energy

N-1 N-1
D lzem)? > Y Im(t)), (15)
n=0 n=0

with the chaotic signat.(n), and the message signal(t),

the criterionJ, compares and calculate how many times the
energy ofz.(n) is higher than the energy ai(¢). If J; > 1
leads to a good encryption.

Transmitter Receptor
Fractional-order Fractional-order
chaotic oscillator chaotic oscillator
t
’ y(t) 2
' Retrieved
x(t x'(t
Message ) M message
s, (t)=x(t)+m(t -
[mo0) () —plommi, o o)
Encoder Decoder

FIGURE 6. Communication scheme using the conventional addi-
tive encryption method. Message(t), encrypted messagst),
and retrieved message’ (¢).

Rev. Mex. 5. 66 (3) 364-371



368 0. GARJA-SEPULVEDA et al,,
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20— ; , ; ; ; ;
T
' -20 W‘ I A v I | i i i I g
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5 E-
1 T T T T T T T e
©m o—WMW——
-10 015 1 1‘.5 é 2‘.5 3‘ 315 z‘l 4.5 5
t(sec) e ‘ | | | | | ‘ ‘ ‘
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
FIGURE 7. a) Message to be encrypted(t), b) Encrypted mes- t (sec)
sages: (1), and c) Retrieved message (t). FIGURE 8. Time evolution of the error between the message)

o ) o and the retrieved messagg (¢).
CriterionJ5: selection based on the chaotic signal energy

in the frequency domain The encryption results are shown in Fig. 7. Where (a)
N m(t), is the message to encrypt, Q)t) = z(t) + m(¢), is
- the encrypted message, and«c)¢) = s1(t) — z(t), repre-
2 2
Z k)| Xe (k)" > Z p(k) | X (K)I, (16) sents the retrieved message. In Fig. 8, the error between the
k=0 k=0 messagen(t) and the retrieved messagg(t) is shown.

N—

_

with the chaotic sampled signal.(k), the message sampled . i B i i
signal X, (k), and (k) the frequency weighting function. 4.2. Modulation ofthe fractional-order L G chaotic oscil-
The criterionJ ., based on the frequency band of the mes- lator state variables

salg;a(, sZoyvsrT_O\r/]v m(ta\hny tltrEes the enerfgi/hof thg V;f'%ht?d S'Iqh this section, the chaotic state variables are modulated and
g? k:C( I)f ';’ '9 frl gn i € en:rgy ° t'e V\.’e'tgh € ISlgtnz located in the frequency band of the message as an alterna-
m (k). 2 > 1eads 1o good encryption in the selected ;o way to ensure that the highest possible energy values pro-

frequency ban_d. ) i i o vided by the chaotic signals are utilized. The above, leads to
For numerical solutions, a discrete time criterion is usedan encryption quality improvement

due to the integration step. The Fast Fourier Transform is The resulting product of a sequencén) and e/°" is

used in order to transform the signals from time domain to aequal to a frequency translation of the spectrixii) by

frequency domain. wo [4]. The state variables modulation of the first chaotic os-

Table Il shows the resilts of the criteriby andJ2 in Gjjiat0r of the previously synchronized network is performed
numerical values. The message to be encrypted: “data eRy follows:

crypted with fractional-order chaotic oscillators”, is a voice

message located in a frequency band.6fkHz - 3 kHz [3] z g, (n) = z1(n) cos(won),
recorded with a sampling frequenéy = 11.025 kHz.
From Table II, by theJ; criterion: z(¢) provides the high- Yso(n) = y1(n) cos(won),
est value. They(t) state is needed to achieve synchrony. In 24, (n) = 21 (n) cos(won), (17)

order to retrieve the messaggt) is sent via a public chan-
nel. We consider:(t) and z(t) as the only possible candi- wherew, = (27 fy/Fs). The chaotic signal is shifted to
dates to encrypt the message. Ti{¢) state provides the the frecuency band,. Considering the message(t) used
highest energy value in the frequency band in which our mesin Subsec. 4.1w, = (300 Hz/5512.5 Hz). The com-
sage is located. However, we have selectedrift¢ state to  munication scheme applying the state variables modulation
encrypt the message in order to compare the results obtaingsishown in Fig. 9.

after the state variables modulation. Hence, it is selected as

the state variable to encrypt the message; the additive chaotis Transmitter Receptor
encryption is used. Fractional-order Fractional-order

chaotic oscillator chaotic oscillator

TABLE Il. Criteria values for the chaotic signals of the synchro- Retrieved

nization of the complex network. Message message
7 4 t)=x(t t
State E.(107) J1(10%) J2 Im(t) s,(1)=X, (+m(t) Y
:E(t) 0.2943 0.2406 26.5344 Encoder Decoder
y(t) 0.3172 0.2593 44.1517 . _ _ ]
FIGURE 9. Communication scheme using the conventional addi-
2(t) 1.9887 1.6257 35.6678

tive encryption method and(t) state variables modulation.

Rev. Mex. 5. 66 (3) 364-371
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In Table I1I, J5 represents the total amount of energy pro-  Figure 10 shows the encryption results are after the state
vided by the chaotic signal at the frequency band of the mesrariables modulation. Where (a)(t), is the message to en-
sage.Jam represents the total amount of energy provided bycrypt, (b)s2(t) = x4, (t) + m(t), is the encrypted message,
the chaotic signal at the frecuency band of the message aftand (c)m/(t) = s2(t) — 2, (t), represents the retrieved mes-
the state variable modulation. The constéhtepresents a sage.
relation betweed z,,, compared withl 5. Figure 11 shows the error between the messa(yg and

It is important to mention that the energy values do notthe retrieved message’(t) whenz y, (¢) is used.
increase by a gain application. The increase of energy val-
ues shown in this paper is the result of correctly locating the
chaotic signals to the frequency band of the message. 5. Physical implementation

As previously mentioned, the second state of the chaotic
oscillator, in this casey, (), is the coupling state variable. It In this section, FPGA realization of a communication scheme
is needed to achieve synchrony and therefore, it is unavaiabl®omposed of two identical fractional-order systems is pre-
to be selected as a candidate to encrypt the message. sented.

From Table Ill, it is observed thaty, (t), employing cri-
terion Jo.,, provides the highest energy value at the fre-

. : : ek L. FANTALLR
cuency band in which the message is located. Therefdtg, —
is selected to encrypt the message.

2 Persistencia
TABLE IlI. Criteria values for the chaotic signals of the synchro- Foirain
nization of the complex network. it
hurnentar
State Jz J2m B A Contraste
x5y () 26.5344 957.1 36.1 - ;
| Peduck
Yo () 44.1517 1019.6 23.1 : | Contraste
25, () 35.6678 713.6 20 b 30 g Bgv T Y Mode
a)
1 : : ‘ ‘ ‘ ; ‘ i ¥ CHe

Wrnedio

(a) m(t) o 1 W . L6y
4 | | | | | | | R . Lo CHZ2
(1] 0.5 1 15 2 25 3 3.5 4 4.5 5 W VDiCO-DIt‘J
20 6.0
ORIy b b it bl sk b b _
i
\ .
i | Deshacer
|
I

20
i autoconfia.

1

(cym’(t) o

-1

t(s.ec) ) = b SE S .
CHT B0V CH B00Y" F 5.00ms CH2 7 248¢
FIGURE 10. a) Message to be encrypted(t), b) Encrypted mes- 175.038Hz
- b)
sagesz(t), and c) Retrieved message (). e o
Interpolacidr
. x107% ‘
15 | Parsistencia
s - 5
| Formato
|
£ o ! | | ’ fumentar
£ | | Contraste
<.05 |
Al | = > Reducir
- : Contrasté
e 1 bebi g TR Made 2
2 I I I L I I L ! C)
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
t(sec) FIGURE 12. a) 2D chaotic strange attractor formed byt;] vs
FIGURE 11. Time evolution of the error between the message) y[tk], b) Time evolution ofz[tx] andy[tx], c) Confirmed synchro-
and the retrieved messageé (¢) after modulatingz(t). nization of the second stagétx] vsy'[tx].
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FIGURE 13. a) Time evolution of the state variablgt.] (above)
and the time evolution of the synchronization ewrf#.] = ' [tr] —
y[tx] (under), b) Dynamic of the state variahj&], and the en-

0. GARJA-SEPULVEDA et al,,

e FiG
CH1

Wmedio

WWWWM

Deshacer
autoconfia.

T 11 T o W

167.540He

a)
Eim ® Ao Cnmpl&te 1 Pos TS AITOCORFG

CH1
Vmedio

W S
: “ W M A

Deshacer
1 autoconfig

CHi ;‘n'u'f" R W e T BTy

200 ACLI
b)

crypted data signaltx] = x[tx] + m[tx].

We use two National Instruments MyRIO 1900 for im-
Both MyRIO are connected following a
transmitter-receiver scheme. Their technical characteristics

plementation.

are identical and they are described as follows:

e Xilinx Z-7010 processor 667 MHz (ARM Cortex A9
x2 cores 28mm process NEON SIMD, VFPv3 Vec-
tor Float). Memory: NV: 256 MB, DDR3 512 MB,
533 MHz, 16 bits. FPGA type: same as the processor,

and

Due to hardware storage capacity limitations, we use a
simple master-slave topology and a memory length= 8.

The parameters previously shown in the subsection 3.1 are
used.

Consider the encoder modulated states defined[hy,
yltr], z[tx], and the decoder modulated states defined by
' [tk), y'[t], 2'[tk]-

Figure 12a) shows th2D atractorx[tx] vs y[tx]. Fig-
ure 12b) shows[tx] (above) andy[tx] (under) time evolu-
tion. Figure 12c) shows|tx] vs y'[tx] portrait, providing a
graphical demonstration of synchrony.

Figure 13a) showg|t;] time evolution (above) and the
synchronization error defined yt.] = y'[tx] — y[tx] (un-
der). Figure 13b) showg]t, ] (above) and the encrypted data
defined bys[tx] = z[tx] + m[tx] (under).

FIGURE 14. Photograph of the hardware used for physical imple-
mentation.

Wireless: IEEE 802.11 b, g, n ISM 2.4 GHz 20 MHZ.

USB 2.0 Hi-Speed, breakout board support, 2 ports of
16 Digital I/O lines, 3 axis accelerometer. Max power Next-state Togic
consumption: 14 W, typical idle: 2.6 W and LED’s.

By using the Grundwald-Letnikov method to solve the
fractional order numerical integration, théi digital aproxi-

mated system is defined as:

ilther] = (o (yilte] — 2ltr]) A — Q,
Yiltht1]
ziltkr1] = (xi[tr]yi[te] — Bzilts]) R — Q3.

(—zilte]zilte] + vyilte] + uz,i) R

Where

Rev.

7Q27

widtner] [ nile)
T

{ 2p
| fu (@i 2wy,

uyi [t]

(18)

FIGURE 15. Block diagram of the proposed implementation of the
oscillatori. The next state logic for each state register is calculated

by Q1, Q2, andQs.
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Figure 14 shows the hardware used for physical implethe message is located is recommended. Jihealues show
mentation. how z(t) provides the highest energy value. However, using
Figure 15 shows the block diagram corresponding to (22)the criterionJ 2., we can observe that the energyaof (¢)
We use a memory length,,, = 8 in order to save resources is higher than the energy provided by, (¢). By modulating
of the FPGA. The FIR blocks correspond to the filtering pro-the fractional order i chaotic oscillator state variables, we
cess of the states through the binomial coefficients shifted the energy to the frequency band of the message, help-
ing us to improve the encryption quality by an approximate

6. Conclusions factor of 36.

To retrieve the messagg(t) is used to achieve synchroniza-
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