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Synchronization of fractional-order L ü chaotic oscillators for voice encryption
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In this paper, the encryption improvement via modulation of the fractional-order chaotic oscillators state variables is presented. A network
of N -coupled fractional-order L̈u chaotic oscillators, is synchronized. A voice message is encrypted, via additive encryption, by using a
state variable of the synchronized network. The selected state variable is modulated and used to encrypt the message again. The results are
compared.
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En este artı́culo, se presenta la mejora de la calidad de encriptado mediante la modulación de las variables de estado de osciladores caóticos
de orden fraccionario. Se sincroniza una red deN osciladores cáoticos Lü de orden fraccionarios acoplados. Se encripta un mensaje de voz
mediante encriptado aditivo, utilizando una variable de estado de la red sincronizada. La variable de estado seleccionada se modula y se
utiliza para cifrar el mensaje nuevamente. Se comparan los resultados.
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1. Introduction

In this document, an alternative way to improve a voice en-
cryption quality is addressed. Some terms as fractional-order
oscillators, chaos, complex networks, synchronization, data
encryption and state variables modulation are shown. It is
recommended to the reader interested in deepening on these
topics to read [1–4].

The wordchaosderives from the greek wordχαoσ, com-
monly associated with disorder, irregularity, or erratic behav-
iors [2]. In 1963, Edward Lorenz, an American mathemati-
cian and meteorologist, discovered one of the principles of
complexity, the chaos. During his research, he observed that
the climate exhibits a non-linear behavior known as a sen-
sitive dependence to initial conditions. Using a mathemat-
ical model to forecast the behavior of the climate, showed
that starting from two nearby points, the trajectories of the
system that is currently known asthe Lorenz system, diverge
rapidly. He explained that this phenomenon makes impossi-
ble the long-term weather forecast. Time later, it was known
as the butterfly effect [2].

Due to their chaotic nature, the chaotic oscillators are sen-
sitive to their initial conditions, generating apparently ran-
dom. However, chaos is deterministic [2]. This makes pos-
sible to replicate their behavior, if the initial conditions are
known. This feature can be used in a secure communication
scheme to confuse the attackers.

In a transmitter-receiver communication scheme, it is im-
portant to ensure that the initial conditions of the receiver are
identical to those of the transmitter in time. If this is not guar-
anteed, the recovery of the encrypted message can be partial
or null.

This is due to the sensitive dependence on the initial con-
ditions presented by the chaotic systems. To guarantee the
correct recovery of the message, establishing a communica-
tion system that transmits the dynamics of the transmitter in
the receiver is needed. This can be achieved by synchrony ef-
fect. This phenomenon is responsible for homogenizing the
independent dynamics of each oscillator.

The termsynchronymeaning “with, at the same time”
comes from the Greekσύν “with” and from the Greek
mythologyχρóνoς “time”. Synchrony, refers to the fact that
two different behaviors will be equal in time, if there exists
a coupling medium. In 1990, Pecora & Carrol, managed to
synchronize two identical chaotic systems with different ini-
tial conditions, proving the synchrony phenomenon [5]. On
the other hand, in order to synchronize non-identical systems,
the existence of a generalized synchronization between cou-
pled systems has been studied [6]. Furthermore, the chaos
synchronization has been demonstrated by several physical
implementations,e.g., [7,8].

In this paper, the synchronization betweenN non-integer
order identical systems, commonly known as fractional-order
systems, is achieved. These systems can be coupled in a
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complex network that can be defined as an interconnected set
of oscillators (two or more).

It is important to mention, that the fractional calculus al-
lows describing and model a real object, more accurately than
the classical “integer” methods, [1]. The main reason for us-
ing integer-order models was the absence of solution methods
for fractional differential equations [9]. At present, there are
many methods for approximation of the fractional derivative
and integral [1,10].

To encrypt the message using a complex network, for this
case, it is needed to synchronize the network first. Once done,
any oscillator in the network is selected. A state variable of
the selected oscillator is used to encrypt the message, based
on the criteria mentioned in Sec. 4. Then, the selected state
variable is modulated and used to encrypt the same message
to compare the results.

The modulation of chaotic signals has been applied to
secure communications schemes. In [11], the authors use
chaotic modulation schemes to generate chaotic symbols to
improve the physical layer security. In this paper, the chaotic
signals are modulated to improve the encryption quality by
shifting the energy to the frequency band of the message to
be encrypted.

This paper is organized as follows: Section 2 shows some
notations and definitions of the fractional calculus. Section 3
shows the synchronization results of a regular complex net-
work composed ofN -coupled identical fractional order Lü
chaotic oscillators. In Sec. 4, the chaotic encryption results
are shown. In Sec. 5, a physical implementation is shown.
Finally, in Sec. 6, the conclusions are given.

2. Preliminaries
The term of the fractional derivative was initially found in
a letter written for l’Hopital by Leibniz in 1695. In it, the
possibility of generalizing the operation of differentiation to
non-integers was mentioned. In this section, the method used
to solve the fractional order differential equations is shown.

2.1. Fractional order integrals and derivatives

One of the most popular methods for numerical solu-
tions of the fractional-order integrals and derivatives is the
Grünwald-Letnikov method. A numerical approximation can
be obtained by the following expression derived from the
Grünwald-Letnikov definition [1,12]:

k−Lm/hDq
tk

f(t) ≈ h−q
k∑

j=0

(−1)j

(
q
j

)
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The Eq. (1) represents a numerical approximation to deq−th
derivative at pointskh, wherek ∈ N,, k 6= 0 andh is the time
step. The constantLm is the “memory length” and
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A general numerical solution of the fractional-order differ-
ential equation can be obtained:

aDq
t y(t) = f(y(t), t), (3)

The Eq. (3) can be expressed as:

y(tk) = f(y(tk), tk)hq −
k∑

j=v

c
(q)
j y(tk−j). (4)

2.2. Complex networks and synchronization

Considering a complex network composed ofN identicaln-
dimensional dynamic subsystems. Each chaotic oscillator is
defined by:

0D
qη

t xη,i(t) = fη(xi, t) + uη,i, (5)

with η = 1, 2, . . . , n andi = 1, 2, . . . , N .
Thexη,i(t) anduη,i terms are the state variables and the

control law respectively of the stateη in the oscillatori. The
control laws are defined as follows:

uη,i = δc

N∑

j=1

aijxj , i = 1, 2, . . . , N. (6)

The constantc > 0 is the coupling strength. The con-
stantδ = 0 if η is not the coupling state,δ = 1 otherwise.
A = (aij) ∈ RN×N is a constant matrix that denotes the
connections between the oscillators in the complex network.
If there exists a connection between the oscillatorsi andj,
then the elementaij = 1, otherwiseaij = 0 for i 6= j. The
diagonal elements of matrixA are calculated as follows:

aii = −
N∑

j=1,j 6=i

aij = −
N∑

j=1,j 6=i

aji, i = 1, 2, . . . , N. (7)

The identical synchronization of the dynamical network
is achieved, if the synchronization error between the stateη
of the oscillatorsi andj is zero ast →∞, i.e. [13]:

lim
t→∞

‖ xη,i(t)− xη,j(t) ‖= 0, (8)

with i 6= j.
The coupling strengthc is calculated according to the fol-

lowing lemma [14]:
Lemma 1. Consider network (5). Let λ2 be the largest

nonzero eigenvalue of the coupling matrixA of the complex
network. The synchronization state of the network (8) defined
byx1(t) = x2(t) = · · · = xN (t) is asymptotically stable if

λ2 ≤ −T

c
(9)
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wherec > 0 is the coupling strength of the network and
T > 0 is a positive constant such that zero is an exponen-
tially stable point of then-dimentional system

ẏ1 =f1(y)− Ty1,

ẏ2 =f2(y), (10)

ẏn =fn(y).

By the condition(12), the network achieves synchrony if
λ2 is negative enough.T is a constant such that the self-
feedback term−Ty1 stabilizes an isolated system.

It is important to mention that theLemma 1 is not
adapted to the fractional-order systems case.

3. Synchronization of N -coupled fractional-
order L ü chaotic oscillators via coupling
matrix

In this section, the same principles ofLemma 1 are applied
to calculate an approximate coupling strengthc. This, to
achieve the synchronization of a non-directed complex net-
work composed byN identical fractional-order L̈u chaotic
oscillators coupled in a star topology.

3.1. Fractional-order Lü chaotic oscillator

The Lü system is known as a bridge between the Lorenz sys-
tem and Chen’s system [1]. Its fractional version is described
as follows [15]:





0D
q1
t x(t) = σ(y(t)− x(t)),

0D
q2
t y(t) = −x(t)z(t) + γy(t),

0D
q3
t z(t) = x(t)y(t)− βz(t).

(11)

The set of Eqs. (11) exhibits chaotic behavior for parameters
σ = 36, β = 3, γ = 20 and ordersq1 = q2 = q3 = 0.95 [1].
Figure 1 shows the chaotic attractor of the fractional-order Lü
chaotic oscillator.

FIGURE 1. Phase space of the chaotic attractor of the Lü oscilla-
tor Eq. (12) for parameters:σ = 36, β = 3, γ = 20, and ini-
tial conditions(x(0), y(0), z(0)) = (1, 0.1, 2.5) proyected onto
(x(t), y(t), z(t)) space.

FIGURE 2. Regular star coupled network topology with bidirec-
tional configuration.

3.2. Regular star coupled network

The following coupling matrixA ∈ RN×N N = 12, corre-
sponds to the network topology shown in Fig. 2.

A =




−N + 1 1 · · · 1 1
1 −1 · · · 0 0
...

...
.. .

...
...

1 0 · · · −1 0
1 0 · · · 0 −1




. (12)

In this case, the chaotic oscillators are coupled by the sec-
ond state variable,i.e., η = 2. By means of the Eq. (6),δ = 0
if η 6= 2. Therefore, the control lawsu2,i for i = 1, . . . , 12
are applied to the stateyi(t) of the complex network. The
mathematical model of the complex network is described as
follows:





0D
q1
t xi(t) = σ(yi(t)− xi(t)),

0D
q2
t yi(t) = −xi(t)zi(t) + γyi(t) + u2,i,

0D
q3
t zi(t) = xi(t)yi(t)− βzi(t),

(13)

wherei = 1, 2, 3, . . . , 12.
The control laws are defined by:

u2,1 = c(−11y1 + y2 + y3 + y4 + y5 + y6

+ y7 + y8 + y9 + y10 + y11 + y12),

u2,2 = c(y1 − y2),

...
...

u2,12 = c(y1 − y12). (14)

Table I shows the initial conditions of each oscillator
present in the network.
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TABLE I. Initial conditions of the complex network.

Oscillator x(0) y(0) z(0)

1 5.0003 −8.3208 −2.9502

2 −1.3903 2.1136 −8.3510

3 2.3582 −6.0642 0.3310

4 3.2618 1.6353 5.4132

5 5.0304 −3.2545 1.2853

6 −4.7219 −6.6089 4.6241

7 0.0002 −0.2746 4.5556

8 2.9729 1.7510 6.2513

9 4.6489 1.1988 −3.4518

10 −3.2578 5.9605 −8.0592

11 −0.1223 −9.7442 5.1025

12 4.3086 0.0058 −0.3542

FIGURE 3. Temporal evolution of some state variables of the com-
plex network:xi(t), yi(t), zi(t), (wherei = 1, 2, ..., 6).

FIGURE 4. Phase portrait of some states of the complex network:
y1 vsy2, y6 vsy7, y8 vsy12.

FIGURE 5. Time evolution of the synchronization error between
some state variables of the complex network:y3 − y9, y5 − y10,
y4 − y11.

Applying the principles ofLemma 1, the network
achieves synchronization with an aproximate coupling
strengthc = 19. The network achieves identical synchro-
nization and can be graphically observed in Fig. 3.

Additionally, Fig. 4 shows some phase portraits ofyi(t)
state variables of the network. The synchronization errors
between some of theyi(t) state variables of the complex net-
work are shown in Fig. 5.

4. Encryption process

In this section, the process to encrypt a voice message is
shown. First, the message is encrypted using a selected state
variable of a fractional-order L̈u chaotic oscillator. Then, the
state variables are modulated and used to encrypt the same
message. The results are compared.

4.1. Chaotic encryption

By the conventional additive method, a chaotic signal and
the message signal are added. This encrypted signal is sent
through a public channel. A second chaotic signal is sent and
used by the receptor to reproduce a dynamic equivalent to
the chaotic signal used to encrypt the message. This signal
is subtracted from the encrypted signal, and the message is
restored [16]; this is illustrated in Fig. 6.

In [17], the authors select a state variable from the net-
work in order to encrypt the message, based on the total en-
ergy provided by the chaotic signals and the frequency loca-
tion of the message. It is important to mention that, once the
complex network achieves synchrony, any chaotic oscillator
can be selected from the network to use its state variables.

According to the previously mentioned criteria [17]:
CriterionJ1: selection based on the chaotic signal energy

N−1∑
n=0

|xc(n)|2 À
N−1∑
n=0

|m(t)|2, (15)

with the chaotic signalxc(n), and the message signalm(t),
the criterionJ1 compares and calculate how many times the
energy ofxc(n) is higher than the energy ofm(t). If J1 À 1
leads to a good encryption.

FIGURE 6. Communication scheme using the conventional addi-
tive encryption method. Messagem(t), encrypted messages(t),
and retrieved messagem′(t).
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FIGURE 7. a) Message to be encryptedm(t), b) Encrypted mes-
sages1(t), and c) Retrieved messagem′(t).

CriterionJ2: selection based on the chaotic signal energy
in the frequency domain

N−1∑

k=0

µ(k)|Xc(k)|2 À
N−1∑

k=0

µ(k)|Xm(k)|2, (16)

with the chaotic sampled signalXc(k), the message sampled
signalXm(k), andµ(k) the frequency weighting function.
The criterionJ2, based on the frequency band of the mes-
sage, shows how many times the energy of the weighted sig-
nal Xc(k) is higher than the energy of the weighted signal
Xm(k). If J2 À 1 leads to good encryption in the selected
frequency band.

For numerical solutions, a discrete time criterion is used
due to the integration step. The Fast Fourier Transform is
used in order to transform the signals from time domain to a
frequency domain.

Table II shows the resilts of the criteriaJ1 and J2 in
numerical values. The message to be encrypted: “data en-
crypted with fractional-order chaotic oscillators”, is a voice
message located in a frequency band of0.3 kHz - 3 kHz [3]
recorded with a sampling frequencyFs = 11.025 kHz.

From Table II, by theJ1 criterion:z(t) provides the high-
est value. They(t) state is needed to achieve synchrony. In
order to retrieve the message,y(t) is sent via a public chan-
nel. We considerx(t) andz(t) as the only possible candi-
dates to encrypt the message. Thez(t) state provides the
highest energy value in the frequency band in which our mes-
sage is located. However, we have selected thex(t) state to
encrypt the message in order to compare the results obtained
after the state variables modulation. Hence, it is selected as
the state variable to encrypt the message; the additive chaotic
encryption is used.

TABLE II. Criteria values for the chaotic signals of the synchro-
nization of the complex network.

State Ec(107) J1(104) J2

x(t) 0.2943 0.2406 26.5344

y(t) 0.3172 0.2593 44.1517

z(t) 1.9887 1.6257 35.6678

FIGURE 8. Time evolution of the error between the messagem(t)

and the retrieved messagem′(t).

The encryption results are shown in Fig. 7. Where (a)
m(t), is the message to encrypt, (b)s1(t) = x(t) + m(t), is
the encrypted message, and (c)m′(t) = s1(t)− x′(t), repre-
sents the retrieved message. In Fig. 8, the error between the
messagem(t) and the retrieved messagem′(t) is shown.

4.2. Modulation of the fractional-order L ü chaotic oscil-
lator state variables

In this section, the chaotic state variables are modulated and
located in the frequency band of the message as an alterna-
tive way to ensure that the highest possible energy values pro-
vided by the chaotic signals are utilized. The above, leads to
an encryption quality improvement.

The resulting product of a sequencex(n) and ejω0n is
equal to a frequency translation of the spectrumX(ω) by
ω0 [4]. The state variables modulation of the first chaotic os-
cillator of the previously synchronized network is performed
as follows:

xf0(n) = x1(n) cos(ω0n),

yf0(n) = y1(n) cos(ω0n),

zf0(n) = z1(n) cos(ω0n), (17)

whereω0 = (2πf0/Fs). The chaotic signal is shifted to
the frecuency bandf0. Considering the messagem(t) used
in Subsec. 4.1:ω0 = π(300 Hz/5512.5 Hz). The com-
munication scheme applying the state variables modulation
is shown in Fig. 9.

FIGURE 9. Communication scheme using the conventional addi-
tive encryption method andx(t) state variables modulation.
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In Table III,J2 represents the total amount of energy pro-
vided by the chaotic signal at the frequency band of the mes-
sage.J2m represents the total amount of energy provided by
the chaotic signal at the frecuency band of the message after
the state variable modulation. The constantB represents a
relation betweenJ2m compared withJ2.

It is important to mention that the energy values do not
increase by a gain application. The increase of energy val-
ues shown in this paper is the result of correctly locating the
chaotic signals to the frequency band of the message.

As previously mentioned, the second state of the chaotic
oscillator, in this caseyf0(t), is the coupling state variable. It
is needed to achieve synchrony and therefore, it is unavaiable
to be selected as a candidate to encrypt the message.

From Table III, it is observed thatxf0(t), employing cri-
terion J2m, provides the highest energy value at the fre-
cuency band in which the message is located. Therefore,x(t)
is selected to encrypt the message.

TABLE III. Criteria values for the chaotic signals of the synchro-
nization of the complex network.

State J2 J2m B

xf0(t) 26.5344 957.1 36.1

yf0(t) 44.1517 1019.6 23.1

zf0(t) 35.6678 713.6 20

FIGURE 10. a) Message to be encryptedm(t), b) Encrypted mes-
sages2(t), and c) Retrieved messagem′(t).

FIGURE 11. Time evolution of the error between the messagem(t)

and the retrieved messagem′(t) after modulatingx(t).

Figure 10 shows the encryption results are after the state
variables modulation. Where (a)m(t), is the message to en-
crypt, (b)s2(t) = xf0(t) + m(t), is the encrypted message,
and (c)m′(t) = s2(t)−x′f0

(t), represents the retrieved mes-
sage.

Figure 11 shows the error between the messagem(t) and
the retrieved messagem′(t) whenxf0(t) is used.

5. Physical implementation

In this section, FPGA realization of a communication scheme
composed of two identical fractional-order systems is pre-
sented.

FIGURE 12. a) 2D chaotic strange attractor formed byx[tk] vs
y[tk], b) Time evolution ofx[tk] andy[tk], c) Confirmed synchro-
nization of the second statey[tk] vsy′[tk].

Rev. Mex. F́ıs. 66 (3) 364–371
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FIGURE 13. a) Time evolution of the state variabley[tk] (above)
and the time evolution of the synchronization errore[tk] = y′[tk]−
y[tk] (under), b) Dynamic of the state variabley[tk], and the en-
crypted data signals[tk] = x[tk] + m[tk].

We use two National Instruments MyRIO 1900 for im-
plementation. Both MyRIO are connected following a
transmitter-receiver scheme. Their technical characteristics
are identical and they are described as follows:

• Xilinx Z-7010 processor 667 MHz (ARM Cortex A9
×2 cores 28mm process NEON SIMD, VFPv3 Vec-
tor Float). Memory: NV: 256 MB, DDR3 512 MB,
533 MHz, 16 bits. FPGA type: same as the processor.
Wireless: IEEE 802.11 b, g, n ISM 2.4 GHz 20 MHZ.
USB 2.0 Hi-Speed, breakout board support, 2 ports of
16 Digital I/O lines, 3 axis accelerometer. Max power
consumption: 14 W, typical idle: 2.6 W and LED’s.

By using the Grundwald-Letnikov method to solve the
fractional order numerical integration, the Lü digital aproxi-
mated system is defined as:





xi[tk+1] = (σ(yi[tk]− xi[tk])hq1 −Q1,

yi[tk+1] = (−xi[tk]zi[tk] + γyi[tk] + u2,i)hq2 −Q2,

zi[tk+1] = (xi[tk]yi[tk]− βzi[tk])hq3 −Q3.
(18)

Where

Q1 =
Lm−1∑

j=0

cq1
j xi[tk − j],

Q2 =
Lm−1∑

j=0

cq2
j yi[tk − j]

and

Q3 =
Lm−1∑

j=0

cq3
j zi[tk − j].

Due to hardware storage capacity limitations, we use a
simple master-slave topology and a memory lengthLm = 8.
The parameters previously shown in the subsection 3.1 are
used.

Consider the encoder modulated states defined byx[tk],
y[tk], z[tk], and the decoder modulated states defined by
x′[tk], y′[tk], z′[tk].

Figure 12a) shows the2D atractorx[tk] vs y[tk]. Fig-
ure 12b) showsx[tk] (above) andy[tk] (under) time evolu-
tion. Figure 12c) showsy[tk] vs y′[tk] portrait, providing a
graphical demonstration of synchrony.

Figure 13a) showsy[tk] time evolution (above) and the
synchronization error defined bye[tk] = y′[tk] − y[tk] (un-
der). Figure 13b) showsy[tk] (above) and the encrypted data
defined bys[tk] = x[tk] + m[tk] (under).

FIGURE 14. Photograph of the hardware used for physical imple-
mentation.

FIGURE 15. Block diagram of the proposed implementation of the
oscillatori. The next state logic for each state register is calculated
by Q1, Q2, andQ3.
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Figure 14 shows the hardware used for physical imple-
mentation.

Figure 15 shows the block diagram corresponding to (22).
We use a memory lengthLm = 8 in order to save resources
of the FPGA. The FIR blocks correspond to the filtering pro-
cess of the states through the binomial coefficients

6. Conclusions

To retrieve the message,y(t) is used to achieve synchroniza-
tion. Thereby,y(t) is not eligible as a candidate to encrypt
the message. We only considerx(t) andz(t) as candidates to
encrypt the message. Providing the highest value of energy is
not enough property to select a signal as a good candidate to
encrypt a message. Considering the frequency band in which

the message is located is recommended. TheJ2 values show
how z(t) provides the highest energy value. However, using
the criterionJ2m, we can observe that the energy ofxf0(t)
is higher than the energy provided byzf0(t). By modulating
the fractional order L̈u chaotic oscillator state variables, we
shifted the energy to the frequency band of the message, help-
ing us to improve the encryption quality by an approximate
factor of 36.
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