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Genus transition by order shift in a dynamical system
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It is well known that the genus of a strange attractor changes if the control parameters of the dynamical system are modified. It is shown that
the genus of strange attractors may also depend on the order of the system and that such changes generate different strange attractors. In this
work, low-dimensional topological tools are applied in order to know the genus of a strange attractor.
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1. Introduction changes as well as its genus. In this work, it is shown that by
means of order change in the Li and proto-Lorenz attractors,
From the topological point of view, strange attractors arethe genus of both systems change, and these changes generate
classified by theigenus Tsankov and Gilmore show a topo- two new strange attractors.
logical tool in [1, 2] that simplifies the calculus of tiyenus This work is organized as follows: In Sec. 2, the concepts
for strange attractors. This tool is called t@nonical form  of genus, canonical forms and fractional-order dynamical
for strange attractors. In integer-order dynamical systemssystems are introduced. In Sec. 3, the integer-order strange
the topological behavior depends on the control parameterstiractors of the proto-Lorenz and Li systems are shown. In
of the system. In [3] it is shown how the genus of the LorenzSec. 4, the results of order modification for the previous sys-
attractor can be changed by modification of control parametems are shown. Finally, the conclusion and future work are
ters. stated in Sec. 5.

The theory of integration and differentiation of non-
integer order, also callettactional calculus is over 300
years old, but in recent years the number of applications ha%'
grown. Fractional calculus allows to consider the integrapis section introduces the theoretical basis on which this
tion and derivation of any order, not necessarily integer. Thig, ok is based.
mathematical topic is used in dynamical systems [4], con-
trol engineering [5, 6], signal processing [7], statistics [8],5 1 Genus, Poinca surface, first-return map, folding
among several areas. One of the main reasons that integer- 54 tearing
order models were used for a long time, was the absence of
solution methods for fractional-order differential equations.Topology is the study of the properties that remain invariant
Thanks to groundbreaking algorithms such as Caputo, Liouander continuous deformation, one of these properties is the
ville, Griinwald, Riemann, Letnikov, and enhanced computagenus The genus; is atopological invariantand it is de-
tional resources, it is nowadays feasible to solve fractionalfined as the number of holes on a surface [13]. A topological
order systems. As a research area it is in continuous devehvariant is defined as a quantitythat remains unchanged
opment and has several applications, even though, new algander smooth deformations; if there exist a homeomorphism
rithms are developed to cope with possible downsides of ther diffeomorphism it means that andY aretopologically
classical ones, such as [9]. The main advantage of the fragquivalentf (X) = v(Y') [14]. For example, the surface of
tional derivative is the property of memory effect and hered-the sphere hag = 0 and the surface of the torys= 1; for
ity; these properties provide better information than the intey > 2 the surface is the torus wititholes.
ger order derivative. From the applied point of view, frac-  The Poinca® surface and the first-return map are two
tional order systems behavior is closer to real phenomengpological tools that can be used to check whether a strange
found in nature/real world. Physically, the fractional oper-attractor undergoes changes in its surface; particularly in its
ator takes into account the past and future (memory) of thgenus [3]. For a strange attractor with= 1 the topological
dynamical system [10, 11]. process displayed at the first-return map is known as fold-

The change of order does not only affect the chaotic proping, and forg > 3 the topological process displayed at the
erties of the system, but the topology of the attractor. In [12ffirst-return map is known as tearing. For more information
it is shown how the surface of a multiscroll Chen attractorsee [3].
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2.2. Canonical forms of strange attractors wheren is the number of holes-scroll [1, 2]. Specifically, the
A, is equal toCs [1, 2], thenE = A, = C,. Figure 1 shows

As mentioned before, topologically, the strange attractors arghe canonical formd; andE, as well as Fig. 2 shows the

classified by their genus. The holes that are generated aganonical formCy.

the surface of strange attractors are determined by the fixed

points of the system [1, 2, 15]. Theanonical formis the  2.3. Fractional-order dynamical systems

topological tool that helps to know the genus of the strange

attractor. This useful tool is defined as the projection of thelhe fundamental operator of fractional calculus By,

Strange attractor onto a two_dimension;ak( y p|ane) p|a_ Wherea andt are the boundS Of the Operation a@dE R

nar surface withy-interior holes [1,2]. There are two types The operator is defined as [16]:

of canonical forms that represent the surfaces of a variety of &

strange attractors. The first is tbhhain A,, (n > 1) with n dge a>0

holes-scrolls ana. — 1 separating holes with four singulari- oDy =11, a=0

ties each. The genus of this canonical forngis- 2n — 1, fj(dr)“ a<0

wheren is the number of holes-scroll. The second is tlge

cle C,, (n > 2) with n holes-scrolls and one hole with Fora = r wherer is integer, the operatioqnDy' f (t) gives

singularities. The genus of this canonical forngis- n +1,  the same results as classical differentiation and integration
of integer-order operators. The most used approaches to de-
fine the fractional operator are theiBwald-Letnikov (G-L),
Riemann-Liouville (R-L), and Caputo. These definitions are
described as follows [16]:

Ay e Griinwald-Letnikov
Dy f(t) = li L ;a(—l)j Vi -gn). @
DRSO = Jigy 5o 3 (1P 10— )

e Riemann-Liouville

—a 1 / T
O [ O D0 = 5y [ G @

t
DE0) = g i | e

FIGURE 1. A; depicts 1-scroll attractors with= 1, where there is
a hole without singularitiesE depicts attractors with = 3, where

the attractor has 2-scrolls and one hole with four singularities.
e Caputo

Cy o p— / ) i @

/ \ I'(n—a) J (t—r)a—ntl

In this work, the G-L approximation will be used for the nu-
merical simulation of the systems.

An integer-order dynamical system can be generally de-
fined by a set of first-ordinary differential equations of the

form [17]:
d"z;
d;Z:Fi(x) r=1;, i=1,...,n, (5)
where z = (x1,z9,...2,) are thestate variablesand
\ / (c1,ca,...ck) are the control parameters of the system. From

a topological point of view, a dynamical system consists of a
FIGURE 2. C, depicts attractors witly = 5, where the attractor  topological spac& also calledsurface a timet € R and an
has 4-scrolls and one hole with eigth singularities. evolution operato® : ¥ x R — X [18]. In these types of
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systems, the topology af depends on the control parame- According to the literature [10, 16], the G-L approach is
ters [17]. equivalent to the R-L and Caputo approaches. The time do-
A fractional-order dynamical system is an extension ofmain methods to simulate fractional-order systems, require
the definition of integer-order dynamical system. It is de-higher computational cost, but are more accurate. The G-L
fined as a set of non-integer order differential equations andpproach has the property of short memory which reduces the

is described as follows [19]: computational cost. Nevertheless, this approach has the same
reliability and accuracy [10] to simulate fractional-order sys-
oDfz; = Fi(z; ), 0<a<?2; i=1,...,n. (6) tem astime domain methods.

Similarly, this system consists of a surfagea timet € R
and an evolution) : 8 x R — (. In these types of sys-

tems, the topology off depends on the order of the system, The | j attractor and the proto-Lorenz attractor are presented

as shown in [12]. . with their canonical forms.
In fractional-order dynamical systems, the concept of

“system order” is not stated as in the integer-order dynamicalg 1. The Li attractor

systems case. In integer-order dynamical systems, the or-

der of the system is equal to the number of states or set ofhe Li attractor is given by [23]:
first-order ordinary differential equations of the system. In

fractional-order dynamical systems, the order of the system & =a(y — z) + daz,
is equal to the sum of the orders of the differential equa-
tions that conform the system. This means, if we have a
dynamical system of order 3 which is composed of three 3 =cz+ay — ex?, (11)
first-ordinary differential equations, this can be modified to

a system where the differential equations are fractional order
derivatives, hence, the order of the syster is «, where 250
0 < a < 2[20] if the three differential equations are of
fractional-order, the total order is, + as + as. In fractional
systems the derivative can adopt any arbitrary real value or-  45ql.
der. A system with constant ordere. a; = as = ...
is known as a commensurate order. Whilst a system with di- N 100+
verse orders withini.e. ay # as # ...q; IS known as an

3. Theinteger-order attractors

y=kx+ fy—xz,

200+

. 50
incommensurate order system [21].
The algorithm to solve equatio)(uses theshort mem- o}
ory principle and is based in the G-L definitioh){ the nu- : - :
merical scheme has the following form [16], B T — 0 50 100 130
X

k
(k—Lm/h)kaf(f) ~ RO Z(fl)j (O‘> ft—ih), () FIGURE 3. Simulation result onta: — z plane of the systenil()

J with a = 40, ¢ =11/6,d = 0.16, e = 0.65, k = 55, f = 20; and
initial conditions(zo, yo, 2z0) = (1.5,1.5,1.5).

§=0
whereLm is thememory lengthtk = (k = 1,2,...), his
the time step of calculation arfe-1)7 () are binomial coeffi- 2507

cient3c§°‘)(j =0,1,...). For their calculation the following

expression is used [16]:

150}
g 1+a\ («
) = (1 - ) . (8)

J N 100}

:".. i
200F e THEEN \\\

The general numerical solution of the fractional differential

equation is as follows: 50t
oDix(t) = fx(t),t), 9) ) A e,
the solution to wich can be expressed as [16] -§950 g -5;0 : 5.-0 - -

k
x(tk) = f(z(tk), tk)h® — Z c§a)x(tk — 7). (10) FIGURE 4. Poincaé section spliced with Li’s attractor trajectories.

Jj=v
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5 .5
FIGURE 6. 4-scroll strange attractor iR® of the system(12),
with (a, b, ¢) = (10, 8/3,28) and initial conditiongso, wo, z0) =
(1,2,6).

5 -
FIGURE 5. Explanatory diagram of the Li attractor.

where the parameters of the system are: 40, ¢ = 11/6,
d=0.16,e = 0.65, k = 55, f = 20.

Topologically, Letellier and Gilmore in [15] define this
attractor as a solid sphere pierced by two intersecting scrolls
at symmetry axis, and they conclude that the genus of the at->~ ¢
tractor is 3. Therefore, its canonical formlis The Fig. 3
shows the integer-order Li attractor of the E41) with the
projection onto the: — = plane. Figure 4 shows the Poinéar
section with blue color and Li's attractor trajectories with
gray color, which are spliced to show the three holes (three
scrolls), the holes are pointed out by black arrows. The Fig. 5 -5
shows an explanatory diagram where C1 and C2 are the holes

that are generated in the Li attractor and the intersection of C1
and C2 generate the third hole C3. FIGURE 7. Projection ontar — y plane for the 4-scroll strange
attractor generated by systet?, with (a,b,¢) = (10, 8/3, 28)
and initial conditiongso, wo, z0) = (1, 2, 6).

3.2. The integer-order proto-Lorenz attractor

The proto-Lorenz attractor with 4-scrolls is given by [22]:

1 4. Results
$= 232 + w2 f(z), : , .
(s* +w?) In this section the genus change for the previously stated at-
1 tractors is presented. This change surfaces as the order of the
- 2(s% + w2)f(“’)’ system is modified. In these results, the parameters of the
5 5 systems remain constant through all cases.
Z=2s"w — 2sw° — bz, (12)
4.1. Fractional-order Li attractor
wheref(z) = [—as® + (2a + ¢ — 2)s?w + (a — 2)sw? —
(¢ —2)w?land f(w) = [(c — 2)s® + (a — 2)s>w + (=2a —  According to Eq. 6) the fractional-order Li system is defined
¢ + z)sw? — aw®]. The control parameters aréa,b,c) =  as follows:
(10,8/3,28). The Fig. 6 shows the 4-scrolls strange attractor
in R? of the system12) and the Fig. 7 shows the projection D'z =aly — ) +dzz

ontox — y plane of the systenig).

The Fig. 7 clearly shows that the attractor has 4 scrolls,
according to [1, 2], the canonical form that depicts this at- Dz = cz + xy — ex?, (13)
tractor is theCy. The Fig. 2 shows this canonical form, the
attractor has 4-scrolls and one hole with eight)(singulari- ~ where the parameters and initial conditions are the same as
ties. Using the expressign= n + 1, we have thay = 5. those of the integer-order system. The order of the system

Dy =kx+ fy—az
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FIGURE 8. Simulation result projection onto— z plane with order ~ FIGURE 10. Explanatory diagram of the systefh3].
(a1, 2,3) = (1,0.9,1).

4.2. Fractional-order proto-Lorenz attractor

300¢ _ ,_ : According to the Eq. ) the fractional-order proto-Lorenz
' : : ; system is defined as follows:
z Dits = s f(x),
200} k 2(s2 + w?)
: o 1
- thw:mf(w),
100} D2 = 253w — 2sw° — bz, (14)
Bk asansanl Wheref(x) = [—a53 + (2a—|—c— 2)32w+ (a_ 2)8’11}2 _
f (c—2)w?l and f(w) = [(c — 2)s* + (a — 2)s*w + (—2a —
955 1é0 ¢ + z)sw? — aw3]. The control parameters and the initial

conditions are the same as for the systdi®).( With order
(a1, a2,a3) = (1.15,0.7,1.15), the system14) generates a
new 2-scroll strange attractor, as shown in Fig. 11.

FIGURE 9. Poincagé section of the new 1-scroll attractor spliced
with the trajectories of the systei3).

« is the only parameter that changes, with incommensurate
order(ay, ag, 3) = (1,0.9,1). In Fig. 6, the new 1-scroll
strange attractor generated by sysigis shown, Fig. 9
shows the Poincérsection in blue color and trajectories of .
the system13) in gray color, which are spliced in order to 50~
show the 1-hole generated within the new attractor; the hole

is indicated with a black arrow. Figure 10 depicts an explana- ™
tory diagram where C1 and C2 holes come together making a :
single hole which connects to the C3 hole, generating asingle 45 ;
hole or scroll. 5

/10

.5
It is clearly observed that the number of scrolls changes
respect to systerii(). This attractor has 1-scroll and belongs

to the canonical formi;, using the expression = 2n — 1 FIGURE 11. Simulation result of systeni) in R with
the resulting genus ig = 1. a1 = 1.15, az = 0.7, andas = 1.15.

4p =10
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It is clearly observed that the number of scrolls changes As stated, smooth changes in the order of the system have
with respect to systenil®). This attractor has 2-scroll tra- strong implications for the dynamical behavior and the struc-
jectory, as mentioned befor®, = C5, using the expressions ture of the system, hence, the change of genus occurs in the
g = 2n — 1 andg = n + 1 the result isy = 3 therefore, its  “new” system.
canonical form igE. Previous works analyze characteristics of the system un-

Please notice that in the results for the fractional-order Lider order variation, but these works do not address the topo-
and Proto-Lorenz attractors, the only modified value is thdogical aspect[16]. The present results widen the set of possi-
order of the system. Parameters and initial values remain thile tools to analyze fractional-order systems under soft order
same. variation and its implications.

Possible applications of these results may be on the anal-
ysis of bifurcations for fractional order dynamical systems
5. Conclusions under smooth order change.
The downfalls that might affect some analyses may be
A change in the order of a fractional dynamical system maythe simulations of the dynamical systems, however, as we are
modify its topology and it may even generate new strangéising topological tools, these pitfalls can be avoided.
attractors. In this work we show two cases of such behavior.

As a future work it is proposed to analyze the fixed pointspcknowledgments
of the systems to know the process of genus modification of
the attracor. The authors thank to CONACYT for its support.
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