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This paper studies optical soliton perturbation that appears with Kerr law nonlinearity having spatio-temporal dispersion. The numerical
scheme adopted is the variational iteration method. The perturbation terms are of Hamiltonian type and stem from inter-modal dispersion,
self-steepening and nonlinear dispersion. Both bright and dark solitons are taken into consideration.
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Introduction In Eq. (1), u(x,t) represents a complex field envelope, and
andt are spatial and temporal variables, respectively. Here,
The study of optical soliton perturbation has been going ofpe coefficient is the group velocity dispersion (GVD) and
for several decades now [1-4]. This has led to the visibility, s the STD the coefficient of represents the Kerr law non-
of several interesting results both from analytical and numertinear term that is modeled by the functiordf|u|?) = |u/?.
ical perspective. While there exists an abundance of analytirpjs type of nonlinearity originates when a light wave in an
cal tools to handle the governing equations, there exists onlyptical fiber is subjected to nonlinear responses [6]. More-
handful few numerical schemes that are applicable and argyer, in the perturbative term of Eql)( the first term rep-
visible. These range from finite element method, finite dif-resents the inter-modal dispersion (IMD), the second term is
ference method, Adomian decomposition scheme, Laplacgne self-steepening effect and finally the last term accounts
Adomian decomposition, and the variational iteration methogor another version of nonlinear dispersion (ND). This per-
(VIM). This paper implements VIM to address soliton dy- rhed NLSE is going to be studied by the VIM in this paper,

namics, modeled by the nonlinear Setlinger's equation  for Kerr law nonlinearity with fully nonlinear perturbation
(NLSE), with a few perturbative effects. These perturbationgms.

terms come from intermodal dispersion, self-steepening ef-

fect, and nonlinear dispersion. The NLSE also includes th%right optical solitons

effect of spatio-temporal dispersion (STD) in addition to the

usual chromatic dispersion (CD). The inclusion of STD, inThe bright optical soliton solution to Ecl)is given by [5]:
addition to CD, makes the model well-posed. Both bright and

dark solitons will be studied in the current work. The surface u(x,t) = Asech[B(x — vt)]ell-ratwt+0], )
plot, contour plot, and the error plots are all presented for

both of these solitons. The details of VIM and its applicationHere,v is the soliton velocityx is the soliton frequency, is

to the model are inked in the rest of the paper. the angular velocity, and is the phase center.
The amplituded of the soliton in this case is given by
Governing model
A= 2(w + ak — awk + bk?) 3
The dimensionless form of NLSE with STD Kerr law nonlin- - c— Bk 3)

earity is given by [5]
and the width B of the soliton is given by
iUg + Qs + Dgs + cF(|ul?)u

= ifou + B(ul?w)s +([ul?)zul. (1) B= ¢ w ok - awn §brE @)

b—av
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The velocityr of the soliton in relation to the coefficients that Where \(¢) is a general Lagrange multiplier, which can be

appear in the Eqllj is identified optimally via the variational theory [7—10], the sec-
aw — bk — ond term on the right is called the correction angdis con-
Ve — (5) sidered as a restricted variation, scilicgt,, = 0

1 —ax The stationary conditions for Ec/1$) can be obtained as

and the constraints conditions on the parameters in order #®|lows:

guarantee the existence of the bright solitons are N'(€) =0,
(¢ — Br)(w + ar — awk + bk?) > 0, (6) AME)le=t =0, (16)
— / —
(b—av)(w + ak — awk + br?) > 0, (7) L= N(©)lg=t = 0.
Then, the Lagrange multipliers can be identified as
36+2y=0, and ax # 1. (8)

NE =€t (17)

Substituting the found multiplier into Eq18) results in the
following iteration formula, for every, > 0:

Dark optical solitons
The dark optical soliton solution td is given by [5, 6]:

u(x,t) = Atanh[B(z — vt)]eil-motwito], 9) .

Here,v is the soliton velocitys is the soliton frequencyy is  unt1(2,t) = un(x,t) + /(§ — 1) (Lun(z,§)
the angular velocity, andis the phase center. 0
The amplitudeA of the soliton is

+ Rup(2,€) + Nug(z,£) — g(x,€))dE
2 _
A 10ak + 106k om—l—l7 (10) t t
10(c — Bk) —|—/§Lunx§ )d€ — /tLunxg
while the inverse widthB of the soliton in this case is given 0 0
by t
oo e—pn a # (€= ) (Rua.6) + Nun(e. ) - g2, ) de
2(b—av) 0
The velocityr of the soliton is seen in Eg5Y. t
Considered Eqgs!10) and (L1), the constraint conditions = ug(x, ) / (t—¢) Run z,€)
that guarantees the existence of dark solitons are 5
(10ak + 10bk? — ak + 1)(c — Br) > 0, (12) + Nup(z,€) — g(x,€))dE. (18)
and The initial valuesu(z, 0) andu, (z, 0) should be used for se-
(b —av)(c - pr) <0. (13) lecting the zero-th approximatiamn, this is,
A brief description of the VIM uo(@, t) = uo(x) + tur(z). (19)

According to the variational iteration method, we considerConsequently, the exact solution may be obtained by
the following nonlinear partial differential equation:

lim w,(z,t) = u(x, t). (20)
{ Lu(x,t) + Ru(x,t) + Nu(z,t) = g(z,t), n—0o0
(14)
u(z,0) = uo(w),  ux(,0) = w(z). Solution of the perturbed NLSE (1) equation by

whereL = §/dt, R andN are linear and nonlinear opera- VIM

tors respectively, angd(z, ¢) is an inhomogeneous term (or

source). The variational iteration method admits the use of? this section, we outline the application of VIM to ob-
the correction functional for Eq/16) which can be written, tain explicit solution of Eq. [1) with the initial conditions

for everyn > 0, as u(z, Q) —'uo( x), ugz(x,0) = us(x). In the case of Kerr Iayv
nonlinearity whereF(ju|?) = |u|?, the perturbed NLSE is
¢ given by
i (06) = un ) + [ M) (Lua(,)
2 iUy + AUy + Dugs + clu*u

+ Riiy (2,8) + Niin(, &) — g(z,€))d¢. (15) = ifoug + B(lulu)s +v(ul?)2u] (21)
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FIGURE 2. Bright solitons: Case B-2, where a) Dynamic evolution
profile of |u|? by VIM, b) Contour plot of the wave amplitude of

2
FIGURE 1. Bright solitons: Case B-1, where a) Dynamic evolution |u|*, and ¢) Absolute error.

profile of |u|? by VIM, b) Contour plot of the wave amplitude of
|u|?, and c) Absolute error.

In the scheme of Eq.1d), we have that the linear part is uo(@, t) = uo(z) + tus (x), (22)
R = —(au, + iauy, + ibuy) and the nonlinear part is
N = —iclul*u — B(|ul*u)e — yu([ul?)s. /

(@, )0 = wo(x, £)— /(t s

By applying the VIM for Eq. 21) the following re-
currence relation for the determination of the components
un+1(x,t); are obtained:
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t—¢

ug(z,t) = uo(x,t)—/( )

0

X (Rul(m,§ +Nu1(:v,§))d§, (24)
Je-9

t—¢

us(x,t) = ug(x,t)—

0
X (RU2($,€) +NU2($,£))df, (25)

and so on.

Iuf

FIGURE 4. Dark solitons: Case D-1. where a)Dynamic evolution
profile of [u|?> by VIM, b) Contour plot of the wave amplitude of
|u|?, and c) Absolute error.

Continuing in this manner, th@ + 1)-th approximation
of the exact solutions for the unknown functiom&e, t) can
be achieved as:

(c)
FIGURE 3. Bright solitons: Case B-3, where a) Dynamic evolution u(z, t) ~ up(x,t) + ui(z, t)

profile of |u|? by VIM, b) Contour plot of the wave amplitude of

|u|?, and c) Absolute error. +uz(z, )+, ..., tun(, ). (26)
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FIGURE 5. Dark solitons: Case D-2, where a)Dynamic evolution
profile of |u|? by VIM, b)Contour plot of the wave amplitude of
|u|?, and c) Absolute error.

FIGURE 6. Dark solitons: Case D-3, where a) Dynamic evolution
profile of [u|?> by VIM, b) Contour plot of the wave amplitude of
|u|?, and c) Absolute error.

Numerical applications and graphical results ~APPlication to bright optical solitions

Consider the nonlinear Saddinger equation with Kerr law

In this section, we implement the VIM to obtain humeric- nonlinearity @1), with initial conditions

analytic solutions to the nonlinear Séklinger equation with
Kerr law nonlinearity governed by Egll) and with differ-
ent initial conditions. We perform numerical simulations for
bright and dark optical solitions.

u(z,t) = Asech[Bz]ell ="+ (27)
gz (z,0) = — ABsech[Bz] tanh[Bz]e!l# 0, (28)
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TABLE |. Bright optical solitons.

Cases a b c ! 8 5 K w v A B n |[Max Erroi
By 0.1 3.2 3.8 1.5 -1.0 1.5 3.0 0.1 —29.5 3.13 2.32 14 1.5 x 1074
Bs 0.2 1.5 4.3 1.3 1.8 —2.7 1.8 —-0.7 —6.93 3.81 1.63 14 6.0 x 107%
B3 0.4 1.1 4.2 1.8 —-2.1 3.1 1.3 0.5 -9.29 1.13 0.96 14 1.0 x 107°

TABLE Il. Dark optical solitons.

Cases a b c @ Jé] y K w v A B n |Max Erro
Dy 2.0 1.0 3.5 1.0 -2.0 3.0 1.3 0.2 2.0 0.69 0.69 14 3.0x 1074
D, 2.5 1.5 4.2 1.1 -1.3 1.9 2.1 —-0.1 1.8 1.12 1.20 14 4.0 x 1074
D3 2.2 1.8 5.1 1.2 1.5 —2.2 1.2 0.3 —-2.1 1.09 0.65 14 3.0x 107

Table | shows the comparison between the absolute error dferr law of nonlinearity. The results are visibly meaningful
the exact and approximate solutions for various values of cowith surface plots and error plots. The numerical integration
efficients in the case of bright optical solitons. Figures 1, 2scheme adopted in today’s work is VIM. Thus, the integra-
and 3 give the plots for the approximate solutions by usingion scheme showed a grand success with the model picked
VIM, contour plot of the wave amplitude df:|?, and abso- for the present study. This therefore is extremely encouraging

lute error, respectively. to consider other models in future such as to study the same
o _ N perturbed NLSE with non-Kerr nonlinearities and to also ex-
Application to dark optical solitions tend the study to optical couplers, differential group delay

and with DWDM topology. Such results are in the works and

Consider the nonlinear Sdfutinger equation with Kerr law . 1o sequentially, but surely, disseminated.

nonlinearity 1), with initial conditions
u(z,t) = Atanh[Ba]e!l=+0], (29)
g (,0) = —AB sech?[Ba]efl="+1. @0) Acknowledgements
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