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Deviation of inverse square law based on Dunkl
derivative: deformed Coulomb’s law
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In this paper, we consider the Coulomb’s law with deviation. We use the Dunkl derivative to derive the deformed Gauss law for the electric
field and the electrostatic potential, which gives a new deformed electrostatics called a Dunkl-deformed electrostatics. We modify the Dunkl
derivative for the electric field for multi-sources or continuous charge distribution. We discuss some examples of the Dunkl-deformed
electrostatics.
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1. Introduction

The inverse square law arises in the Coulomb’s law. This
states that the electric field atr due to the chargeq located at
origin is given by

E(r) =
q

|r|2 r̂ =
q

|r|3 r. (1)

Recently, some measurements were accomplished for the ac-
curacy of inverse square law for Coulomb’s law by consider-
ing the small deviation of the inverse square law of the form

E(r) =
q

|r|2+σ
r̂ =

q

|r|3+σ
r, (2)

where σ can be regarded as a deviation from the inverse
square law [1-3]. Plimpton and Lawton [1] charged an outer
sphere with a slowly varying alternating current and de-
tected the potential difference between the inner and outer
spheres. They foundσ = 2 × 10−9. In 1970, Bartlett,
Goldhagen, and Phillips [2] also achieved an upper limit of
σ = 1.3 × 10−13. One year later, Williams and Faller [3]
estimatedσ = (2.7 ± 3.1) × 10−16. From these experimen-
tal data forσ, we know that the deviation from the inverse
square law is sufficiently small but can be considered to be
non-zero.

As a theoretical background of the Eq. (2), we will in-
voke Wigner deformation. In 1950, Wigner [4] proposed a
new deformed Heisenberg algebra of the form

[x̂, p̂] = i (1 + 2νR) , ν ∈ R, (3)

whereR is the reflection operator obeying

Rx̂ = −x̂R, (4)

and we set~ = 1. It is well known that algebra (3) gives
the same equation of motion for the harmonic potential,

which implies that algebra is the general second quantization
scheme for the classical harmonic potential problem. The co-
ordinate representation for the Eq. (3) is then given by

p̂ =
1
i
Dx, x̂ = x, (5)

where Dunkl derivative (DD) [5]Dx is given by

Dx = ∂x +
ν

x
(1−Rx) (6)

and the reflection operator obeys

Rxf(x) = f(−x). (7)

It is well known that Wigner algebra (3) is linked to the
two-particle Calogero model [6-8] when the Wigner param-
eter is related to the Calogero coupling constant. Wigner
Hamiltonian, which comes from Wigner algebra, has the po-
tential which consists of a simple harmonic potential and an
additional inverse square potential. This potential was shown
to possess the conformal symmetry and has been the subject
of much interest [9-14]. Especially, Macfarlane [14] found
the relation between Wigner algebra and para-statistics.

Here we have a fundamental question. If Coulomb’s law
does not obey the inverse square law, what will happen? Is it
possible to construct the electrostatics in such case? The an-
swer is YES, which is the main purpose of this work. In this
paper, we use DD to derive the deviation of the inverse square
law. We apply the deviation of the inverse square law to the
electrostatics. This paper is organized as follows. In Sec. 2,
we discuss the deformed electrostatics with DD. In Sec. 3,
we discuss the modification of DD and deformed electrostat-
ics when the point charge is not located at origin. In Sec. 4,
we discuss the deformed electrostatics with a multi-source
and continuous source. In Sec. 5, we discuss some examples
of electrostatics with discrete charges. In Sec. 6, we discuss
some examples of Dunkl-deformed electrostatics with con-
tinuous charge distribution.
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2. Deformed electrostatics with DD

In this section, we consider the electrostatics with DD. To do
so, we introduce the vector DD’s as

D =∇∇∇+ νP (8)

where

P = ê1
1
x1

(1−R1)

+ ê2
1
x2

(1−R2) + ê3
1
x3

(1−R3) (9)

and

Rixj =

{
−xjRi (i = j)
xjRi (i 6= j)

. (10)

We consider the electromagnetic theory in which the vector
differential operator∇∇∇ is replaced with the vector DD op-
eratorD. Outside the point chargeq located at the origin,
the electric field is assumed to obey the deformed Gauss law
outside source

D ·E = 0. (11)

Now let us solve the Eq. (11) by setting

E = f(r)r, (12)

where

r = |r| =
√

x2
1 + x2

2 + x2
3. (13)

Inserting the Eq. (12) into the Eq. (11) we get

D ·E = rf ′(r) + (3 + 6ν)f(r) = 0. (14)

Solving the Eq. (14) we get

f(r) =
q

r3+6ν
. (15)

Thus, the deformed electric field reads

E =
q

r3+6ν
r, (16)

which reveals the law of inverse square with deviation. One
can easily check that the deformed electric field obeys

D×E = 0, (17)

which holds becauseP × E = 0. Thus, the electrostatic
potential is defined through

E = −DV (r) = −∇∇∇V (r). (18)

Now let us derive the deformed Gauss law. We assume that
the Gauss law for a point charge located at the origin takes
the form

∫
(D ·E)µ(r)d3r = 4πq, (19)

whereµ(r) is the weight function. The Eq. (19) can be writ-
ten as

∫
(∇∇∇ ·E)µ(r)d3r + ν

∫
(P ·E)µ(r)d3r = 4πq (20)

or
∫
∇∇∇ · (Eµ(r)) d3r−

∫
E · µ′(r)r

r
d3r

+ ν

∫
(P ·E)µ(r)d3r = 4πq. (21)

Inserting the Eq. (16) into the Eq. (21) we get

4πqr−6νµ(r) + q

∫ (
6νµ(r)

r3
− µ′(r)

r2

)
d3r = 4πq, (22)

which gives

µ(r) = r6ν . (23)

Thus, the deformed Gauss law reads

r6νD ·E = 4πρ(r), (24)

whereρ denotes the charge density, and for a point charge it
is

ρ(r) = qδ(r). (25)

If we locate a chargeQ onr, it will be subject to the force of
the form

F = QE =
qQ

|r|3+6ν
r. (26)

Now let us find the potential energy for the deformed
Coulomb force (26). The Eq. (26) indicates that the deformed
Coulomb force is also conservative. Thus, the potential en-
ergy is defined through

F = −∇∇∇U(r). (27)

Solving the Eq. (27) we get

U(r) =
qQ

(1 + 6ν)|r|1+6ν
. (28)

Similarly, the electrostatic potentialV is defined through

E = −∇∇∇V (r), (29)

which gives

V (r) =
q

(1 + 6ν)|r|1+6ν
. (30)

Thus, the electrostatic potential obeys the Dunkl-Laplace
equation

D · ∇∇∇V = 0. (31)
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3. Modification of DD and deformed electro-
statics when the point charge is not located
at the origin

In ordinary electro-magnetics, consider the Coulomb force.
Let F denote the force acting on a electrically charged parti-
cle, with chargeq located atr, due to the presence of a charge
q′ located atr′. According to Coulomb’s law, this force is, in
a vacuum, given by the expression

F =
qq′(r− r′)
|r− r′|3 = −qq′∇∇∇

(
1

|r− r′|
)

= qq′∇∇∇′
(

1
|r− r′|

)
. (32)

The vector DD defined in the Eq. (8) does not obey the above
property. Thus, we need a new definition for vector DD when
we consider two points, source point, and field point, and this
derivative is acted on the function inr − r′. Here we define
the DD gradient of the functionf(|r− r′|) as

DDgradf(|r− r′|) = Dr,r′f(|r− r′|), (33)

where

Dr,r′ =∇∇∇+ νPr,r′ (34)

and

(Pr,r′)i =
1

xi − x′i
(1−Rxi,x′i), (35)

and the exchange operator obeys

Rxix′i(xi − x′i) = (x′i − xi)Rxix′i . (36)

Similarly, we define the DD divergence, and DD curl acted
on the vector function of the formf(|r− r′|)(r− r′) as

DDdiv (f(|r− r′|)(r− r′)) = Dr,r′

· (f(|r− r′|)(r− r′)) (37)

and

DDcurl(f(|r− r′|)(r− r′)) = Dr,r′

× (f(|r− r′|)(r− r′)) . (38)

The electric field atr due to chargeq′ located atr′ is then
given by

E(r− r′) =
q′

|r− r′|3+6ν
(r− r′), (39)

which satisfies

|r− r′|6νDr,r′ ·E(r− r′) = 4πq′δ(r− r′) (40)

Dr,r′ ×E(r− r′) = 0. (41)

The deformed electrostatic potential is given by

E(r− r′) = −∇∇∇V (|r− r′|), (42)

which gives

V (|r− r′|) =
q′

1 + 6ν

(
1

|r− r′|1+6ν

)
. (43)

4. Deformed electrostatics with multi source
and continuous source

Now let us consider the multi source case. Consider the situ-
ation that there areN chargesq1, q2, · · · , qN , each of which
is located atr1, r2, · · · , rN . The electric field atr due to
N charges is defined as the sum ofN sub electric fields as
follows:

E(r) =
N∑

j=1

E(r− rj), (44)

where the sub electric field due to chargeqj is

E(r− rj) =
qj

|r− rj |3+6ν
(r− rj). (45)

The sub electric field obeys

|r− rj |6νDr,rj
·E(r− rj) = 4πqjδ(r− rj), (46)

and

Dr,rj ×E(r− rj) = 0. (47)

The electrostatic potential is defined through

Etot(r) = −∇∇∇V (r), (48)

which gives

V (r) =
N∑

j=1

qj

(1 + 6ν)|r− rj |1+6ν
. (49)

If the discrete electric charges are small and numerous
enough, we introduce the electric charge densityρ located
atr′ within a volumeV ′ of a limited extent and replace sum-
mation with integration over this volume. This allows us to
describe the total electric field as integral of the infinitesimal
electric field as follows:

E(r) =
∫

V ′

d3r′E(r− r′), (50)

where the infinitesimal electric field due to the infinitesimal
charge located atr′ is

E(r− r′) = ρ(r′)
r− r′

|r− r′|3+6ν
. (51)

The infinitesimal electric filed obeys

|r− r′|6νDr,r′ ·E(r− r′) = 4πρ(r′)δ(r− r′), (52)

and

Dr,r′ ×E(r− r′) = 0. (53)

The electrostatic potential is defined through

E(r) = −∇∇∇V (r), (54)

which gives

V (r) =
∫

V ′

ρ(r′)
1 + 6ν

(
1

|r− r′|1+6ν

)
. (55)
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5. Some examples of Dunkl-deformed electro-
statics with discrete charges

Now let us discuss some examples of Dunkl-deformed elec-
trostatics with discrete charges.

5.1. Monopole

Let us consider the case that a chargeq is located atak, where
k denotes the unit vector inz direction. Then the electrostatic
potential is

V =
q

1 + 6ν

(
1

|r− ak|1+6ν

)
(56)

and the electric field is

E = −∇∇∇V =
q(r− ak)
|r− ak|3+6ν

. (57)

If we express the Eq. (56) in terms of the spherical coordi-
nates, we get

V =
q

(r2 + a2 − 2ar cos θ)1/2+3ν
. (58)

Let us consider the Gegenbauer polynomial defined
through the following generating function

1
(1− 2xt + t2)α

=
∞∑

n=0

C(α)
n (x)tn. (59)

The generating function for Gegenbauer polynomial is a gen-
eralization of the generating function for Legendre polyno-
mials. Indeed, whenα = 1/2, the Gegenbauer polynomials
become Legendre polynomials. Thus, with the help of gener-
ating function for Gegenbauer polynomials, the electrostatic
potential reads

V =
q

(1 + 6ν)r

∞∑
n=0

C(1/2+3ν)
n (cos θ)

(a

r

)n

(60)

for r > a, while we get

V =
q

(1 + 6ν)a

∞∑
n=0

C(1/2+3ν)
n (cos θ)

( r

a

)n

(61)

for r < a. We know that the Gegenbauer polynomial satisfies
the recurrence relation

Cα
0 (x) = 1 (62)

Cα
1 (x) = 2αx (63)

Cα
n (x) =

1
n

[2x(n + α− 1)Cα
n−1(x)

− (n + 2α− 2)Cα
n−2(x)]. (64)

5.2. Dipole

Let us consider the case that a chargeq is located atak, and
another charge−q is located at−ak. Then the electrostatic
potential is composed of the electrostatic potential due toq,
Vq, and the electrostatic potential due to−q, V−q,

V =
q

1 + 6ν

(
1

|r− ak|1+6ν

)

− q

1 + 6ν

(
1

|r + ak|1+6ν

)
. (65)

Thus, the electric field is

E = −∇∇∇V =
q(r− ak)
|r− ak|3+6ν

− q(r + ak)
|r + ak|3+6ν

. (66)

If we express the Eq. (65) in terms of the spherical coordi-
nates we get

V =
q

1 + 6ν

[
1

(r2 + a2 − 2ar cos θ)1/2+3ν

− 1
(r2 + a2 + 2ar cos θ)1/2+3ν

]
. (67)

The electric field is then given by

E = Er r̂ + Eθ θ̂, (68)

where

Er = q

[
r − a cos θ

(r2 + a2 − 2ar cos θ)3/2+3ν

− r + a cos θ

(r2 + a2 + 2ar cos θ)3/2+3ν

]
(69)

Eθ = qa sin θ

[
1

(r2 + a2 + 2ar cos θ)3/2+3ν

+
1

(r2 + a2 − 2ar cos θ)3/2+3ν

]
. (70)

For r À a, we have

V ≈ p cos θ

r
, (71)

where the electric dipole moment isp = 2qa. Thus we have
the same form as ordinary electro-magnetics.

5.3. Quadrupole

Let us consider the case that a chargeq is located atak, an-
other chargeq is located at−ak, and the third charge−2q at
origin. Then the electrostatic potential is

V = − 2q

1 + 6ν

(
1

|r|1+6ν

)
+

q

1 + 6ν

(
1

|r− ak|1+6ν

)

+
q

1 + 6ν

(
1

|r + ak|1+6ν

)
. (72)
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Thus, the electric field is

E = −∇∇∇V =
q(r− ak)
|r− ak|3+6ν

+
q(r + ak)
|r + ak|3+6ν

− 2qr
|r|3+6ν

. (73)

If we express the Eq. (72) in terms of the spherical coordi-
nates we get

V =
q

1 + 6ν

[
1

(r2 + a2 − 2ar cos θ)1/2+3ν

+
1

(r2 + a2 + 2ar cos θ)1/2+3ν
− 2

r1+6ν

]
. (74)

The electric field is then given by

E = Er r̂ + Eθ θ̂, (75)

where

Er = q

[
2

r2+6ν
− r − a cos θ

(r2 + a2 − 2ar cos θ)3/2+3ν

− r + a cos θ

(r2 + a2 + 2ar cos θ)3/2+3ν

]
(76)

Eθ = qa sin θ

[
1

(r2 + a2 − 2ar cos θ)3/2+3ν

+
1

(r2 + a2 + 2ar cos θ)3/2+3ν

]
. (77)

For r À a, we have

V ≈ Q

r3

[(
3
2

+ 3ν

)
cos2 θ − 1

2

]
, (78)

where the electric quadrupole moment isQ = 2qa2. Thus
we know that theθ-dependency of the potential is deformed.

6. Some examples of Dunkl-deformed electro-
statics with continuous charge distribution

Let us discuss some examples of Dunkl-deformed electrostat-
ics with continuous charge distribution.

6.1. Electric field on the axis of a finite line charge

A chargeQ is uniformly distributed along thex axis from
x = 0 to x = L > 0. The linear charge density for this
charge isλ = Q/L. We wish to find the electric field pro-
duced by this line charge at some field pointP (x) with x > L
on thex-axis. The electrostatic potential is then given by

VP (x) =
1

1 + 6ν

L∫

y=0

λdy

|x− y|1+6ν

=
λ

6ν(1 + 6ν)
[
(x− L)−6ν − x−6ν

]
. (79)

For a smallν, we get

VP (x) ≈ λ ln
(

x

x− L

)

+ 3λν ln
(

x− L

x

)
[2 + ln(x(x− L))] . (80)

Forx À L we have

VP (x) ≈ λL

(1 + 6ν)x1+6ν
. (81)

The electric field is

EP (x) = − d

dx
V (x)

=
λ

1 + 6ν

[
1

(x− L)1+6ν
− 1

x1+6ν

]
. (82)

For a smallν, we get

EP (x) ≈ λL

x(x− L)
− 6ν

x(x− L)

×
(

L + L ln x + x ln
(

x− L

x

))
. (83)

We can see that ifx is much larger thanL, the electric field
atP is approximately

EP ≈ Q

x2+6ν
. (84)

That is, if we are sufficiently far away from the line charge, it
approaches that of a point chargeQ at the origin.

6.2. Electric field on the perpendicular bisector of a uni-
formly charged line segment

A chargeQ is uniformly distributed on a straight-line seg-
ment of lengthL on they-axis. The charge density is given
by

λ(y) =

{
λ (|y| ≤ L/2)
0 (|y| > L/2)

. (85)

Now let us find the electrostatic potential and electric field at
point P on thex-axis,P (x, 0), where we consider the case
of x > 0. The electrostatic potential is

VP =
1

1 + 6ν

L/2∫

y=−L/2

λdy

|r− r′|1+6ν
, (86)

wherer = xi, r′ = yj, (|y| ≤ L/2). Then we have

VP =
2λ

1 + 6ν

L/2∫

y=0

dy

(x2 + y2)
1
2+3ν

=
λL

(1 + 6ν)x1+6ν 2F1

(
1
2

+ 3ν,
1
2
;
3
2
;

L2

4x2

)
. (87)
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Forx À L we have

VP (x) ≈ λL

(1 + 6ν)x1+6ν
. (88)

The electric field is

EP (x) = − d

dx
V (x)

=
λL

x2+6ν 2F1

(
3
2

+ 3ν,
1
2
;
3
2
;

L2

4x2

)
. (89)

We can see that ifx is much larger thanL, the electric field
atP is approximately

EP ≈ Q

x2+6ν
. (90)

6.3. Electric field on the axis of a uniformly charged disk

Consider a uniformly charged disk of radiusR centered at
the origin and total chargeQ, which lies onxy-plane. We
can calculate the electrostatic potential and electric field at
the pointP (0, 0, z) on thez-axis withz > 0. In this case, the
surface charge density (the charge per unit area) is given by
σ = Q/(πR2). Then the electrostatic potential is

VP =
2πσ

1 + 6ν

R∫

0

rdr

(z2 + r2)
1
2+3ν

=
2πσ

1− 36ν2

(
(z2 + R2)

1
2−3ν − z1−6ν

)
, (91)

and the electric field is

EP (z) =
2πσ

1 + 6ν

(
z−6ν − z(z2 + R2)−

1
2−3ν

)
. (92)

For a smallν we have

V ≈ 2πσ(
√

z2 + R2 − z)

+ 2πνσ
(
6z ln z − 3

√
z2 + R2 ln(z2 + R2)

)
(93)

and

EP (z) ≈ 2πσ

(
1− z√

z2 + R2

)
+ 2πνσ

(
− 6

+
6z√

z2 + R2
− 6 ln z

+
3z√

z2 + R2
ln(R2 + z2)

)
. (94)

7. Conclusion

According to Cavendish type experiments [15], let us con-
sider that the radii of the two concentric spheres areR1 and
R2, (R1 < R2), with the chargesQ1 andQ2 spread uni-
formly over them, respectively. Then, the potential atr [16]
is given by

V (r) =
Q1

2R1r
(f(r + R1)− f(|r −R1|)

+
Q2

2R2r
(f(r + R2)− f(|r −R2|), (95)

wherer is the distance from the origin ( center of concentric
spheres). According to Ref. [17], we get the potential on the
inner shell and outer shell as

V (R1) =
Q1

2R2
1

f(2R1)

+
Q2

2R1R2
[f(R1 + R2)− f(|R2 −R1|)] (96)

V (R2) =
Q2

2R2
2

f(2R1)

+
Q1

2R1R2
[f(R1 + R2)− f(|R2 −R1|)], (97)

where

f(r) =

r∫

0

sU(s)ds (98)

andU(r) is the electrostatic potential for a unit charge. For
the ordinary electrostatics, we haveU = 1/r, which gives
f = r. In the deformed electrostatics with DD, from the
Eq. (30), we get

U =
1

1 + 6ν

1
r1+6ν

, (99)

For smallν, we have

f(r) ≈ r(1− 6ν ln r). (100)

After the outer shell was charged by a potentialV0, a part
of the charge would pass through the connecting wire into
the inner shell until the equilibriumV (R1) = V (R2) = V0

was reached. Then, the charges on the inner shell could be
determined as

Vc(R1) ≈ 6ν

(
R2

R2 −R1

)
V0M(R1, R2), (101)

where

M(R1, R2) =
1
2

[
R2

R1
ln

R2 + R1

R2 −R1
− ln

4R2
2

R2
2 −R2

1

]
. (102)

In the ordinary electrostatics (ν = 0), we haveVc(R1) = 0,
while Vc(R1) 6= 0 for ν 6= 0. So, by detecting the electro-
static potential on the inner shell directly, one could obtain
the deviation from Coulomb’s inverse square law, and then
the ordinary derivative in the Maxwell equation could be re-
placed with DD.

There remains much to be studied in this direction. We
should investigate the Maxwell equation with DD and de-
rive the electromagnetic wave equation for the completion
of this deformed electro-magnetics. The study of magnetic
monopole with deviation seems to be possible with the help
of DD. We think that these topics and their related content
will be clear soon.
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