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We explicitly show that the groups of2 × 2 unitary matrices with determinant equal to 1 whose entries are double or dual numbers are
homomorphic toSO(2, 1) or to the group of rigid motions of the Euclidean plane, respectively, and we introduce the corresponding two-
component spinors. We show that with the aid of the double numbers we can find generating functions for separable solutions of the Laplace
equation in the(2 + 1) Minkowski space, which contain special functions that also appear in the solution of the Laplace equation in the
three-dimensional Euclidean space, in spheroidal and toroidal coordinates.
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Mostramos explı́citamente que los grupos de matrices unitarias2 × 2 con determinante igual a 1 cuyas entradas son números dobles o
números duales son homomorfos aSO(2, 1) o al grupo de movimientos rı́gidos del plano euclideano, respectivamente, e introducimos los
espinores de dos componentes correspondientes. Mostramos que con la ayuda de los números dobles podemos hallar funciones generatrices
para soluciones separables de la ecuación de Laplace en el espacio de Minkowski(2 + 1), las cuales contienen funciones especiales que
tambíen aparecen en la solución de la ecuación de Laplace en el espacio euclideano tridimensional, en coordenadas esferoidales y toroidales.
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1. Introduction

Complex numbers are frequently employed in physics even
in areas where the quantities of physical interest are real.
For instance, the standard spherical harmonics,Ylm, are
complex-valued functions that are commonly used in electro-
magnetism, in spite of the fact that the potentials and electro-
magnetic fields are real. In some cases, the complex numbers
appear in expressions for real-valued functions. Take, for ex-
ample, the integral representations

Pl(cos θ) =
1
2π

2π∫

0

(cos θ + i sin θ cosw)l dw,

Jn(x) =
1
2π

π∫

−π

ei(x sin t−nt) dt,

for the Legendre polynomials and the Bessel functions of in-
tegral order, respectively.

There exist other lesser known types of numbers, some-
what similar to the complex ones, calleddoubleand dual
numbers (although other names are also employed), which
are also useful in various applications (see,e.g., Refs. [1–10]
and the references cited therein). The double and the dual
numbers (introduced by Clifford in 1873 [5]) are character-
ized by the presence of “imaginary units”j and ε, respec-
tively, such thatj2 = 1 andε2 = 0. Most of the existing

applications in physics for these numbers are restricted to the
double numbers (see,e.g., [1–4, 6, 7]), in many cases looking
for new theories that might substitute the established ones.
As shown in Refs. [8–10], the double and the dual numbers
are useful in the solution of well-established systems of real
differential equations.

At first sight, it would seem that the use of a unit,j, whose
square is+1 is hardly necessary or useful (for instance, it is
not required in the solution of algebraic equations with real
coefficients), but the examples given in Refs. [1–4, 6–10], to-
gether with those presented below, show that having a second
unit, besides the real number 1, is indeed very useful.

It is well known thatSU(2), the group formed by the
2 × 2 complex unitary matrices with determinant equal to
1, is homomorphic toSO(3), the group of rotations in the
three-dimensional Euclidean space; this homomorphism is
useful and physically relevant. For instance, under a rota-
tion, the wavefunctions (spinors) of spin-1/2 particles in non-
relativistic quantum mechanics, are transformed by means of
a SU(2) matrix. In this paper we explicitly show that the
analogs ofSU(2), with double or dual numbers as entries,
in place of complex numbers, are homomorphic toSO(2, 1)
(the group of Lorentz transformations in two spatial dimen-
sions) or the group of rigid motions of the Euclidean plane,
respectively. In fact, as shown below, the three cases (com-
plex, double and dual) can be treated simultaneously and the
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corresponding two-component spinors can be defined in a
unified manner.

We also show that, making use of the double numbers,
we can find a generating function for certain functions anal-
ogous to the associated Legendre functions, which arise in
the solution of the Laplace equation in the three-dimensional
Euclidean space, in spheroidal and toroidal coordinates.

In Sec. 2 we study the special unitary groups formed by
2 × 2 matrices whose entries are complex, double or dual
numbers; we show that they are homomorphic toSO(3),
SO(2, 1) or SE(2) (the group of rigid motions of the Eu-
clidean plane that preserve the orientation), respectively, and
we introduce the corresponding two-component spinors.

In Sec. 3 we study separable solutions of the Laplace
equation in the Minkowski(2 + 1) space, and we find that
some of the separated equations coincide with some of the
separated equations found in the solution by separation of
variables of the Laplace equation in the three-dimensional
Euclidean space in spheroidal and toroidal coordinates. In
Sec. 4 we show that, making use of the double numbers, one
obtains a generating function for the special functions anal-
ogous to the associated Legendre functions encountered at
Sec. 3. The basic rules for the use of the double and the
dual numbers can be found in Refs. [8, 10]; a rigorous and
fairly complete discussion of their algebraic properties can
be found,e.g., in Refs. [4–7].

2. Special unitary groups

In Sec. 3.1 of Ref. [8] the Hamiltonian

H =
1

2m

(
px

2 + py
2
)− h2

2
mω2

(
x2 + y2

)
, (1)

was considered. Herem andω are constants, and h may be
the usual imaginary unit,i; the hypercomplex unit j (which
satisfies the conditionj2 = 1); or the hypercomplex unitε
(which satisfiesε2 = 0). (That is,h2 is equal to−1, +1, or
0, respectively, so that, in all cases,H is real.) This Hamil-
tonian is invariant under the group of2 × 2 matrices of the
form

U =
(

a + hb c + hd
−c + hd a− hb

)
, (2)

wherea, b, c, d are real numbers satisfying the condition

a2 + c2 − h2(b2 + d2) = 1. (3)

The matrices of the form (2), fulfilling Eq. (3), form a group
with the usual matrix multiplication. In what follows, this
group will be denoted bySU(2)h. Whenh = i this group is
the usualSU(2) group which, as is well known, is homomor-
phic to the rotation group in three dimensions,SO(3).

The invariance of the Hamiltonian (1) under the group
SU(2)h is evident if one expressesH in the form

H =
1

2m
Ψ†Ψ, (4)

whereΨ is the two-component spinor

Ψ ≡
(

ψ1

ψ2

)
≡

(
px + hmωx
py + hmωy

)
(5)

and the Hermitian adjoint of a matrix is defined as the trans-
pose of the conjugate matrix (in all cases, the conjugate of
a + hb is defined bya + hb = a − hb). Indeed, as a conse-
quence of (3), the matrix (2) satisfiesU†U = I and therefore
(4) is invariant under the transformationΨ 7→ UΨ.

The groupSU(2)h is a (real) Lie group of dimension
three (the matrix (2) depends on four parameters, which are
restricted by one equation) and a basis for its Lie algebra is
given by the matrices

σ1 ≡
(

h 0
0 −h

)
, σ2 ≡

(
0 h
h 0

)
,

σ3 ≡
(

0 1
−1 0

)
. (6)

The matricesσi are antihermitian becauseσ†i = −σi. The
trace of each matrix (6) is zero and these matrices form a
basis for thereal vector space formed by the2 × 2 antiher-
mitian matrices with trace equal to zero. The commutators
of these matrices are given by[σi, σj ] = ck

ijσk, with sum
over repeated indices, where the structure constantsck

ij are
determined by

c3
12 = 2h2, c1

23 = −2, c2
31 = −2 (7)

(note that all of them are real, despite the fact that the matri-
ces (6) are not all real).

The products of the matrices (6) can be expressed in the
compact form

σiσj = gijI + 1
2ck

ijσk, (8)

whereI is the unit2× 2 matrix and thegij are the entries of
the diagonal3× 3 matrix

(gij) = diag (h2, h2,−1). (9)

Thus, the matrix(gij) is singular only ifh = ε. With the
aid of the matrices (6) we can construct a homomorphism
betweenSU(2)h and a subgroup ofSL(3,R) (the group of
3 × 3 real matrices with determinant equal to 1). In fact, if
g ∈ SU(2)h, then the productgσig

−1 is also a traceless an-
tihermitian matrix. (In fact,tr (gσig

−1) = tr σi = 0 and
(gσig

−1)† = (g−1)†σ†i g
† = g(−σi)g−1 = −gσig

−1, since
the elements ofSU(2)h are unitary matrices.) Hence, there
exist real numbersaj

i such that

gσig
−1 = aj

iσj . (10)

The mappingg 7→ (ai
j) given by Eq. (10) is a group homo-

morphism. In fact, ifg′ is another element ofSU(2)h then
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there exists a matrix(bi
j) such thatg′σig

′−1 = bj
iσj and

therefore,

(gg′)σi(gg′)−1 = g
(
g′σig

′−1
)
g−1 = gbj

iσjg
−1

= bj
ia

k
j σk = (ak

j bj
i )σk,

thus showing that the product of the matrix(aj
i ) by (bj

i ) cor-
responds to the productgg′. (aj

i is the entry at thej-th row
andi-th column of the matrix(aj

i ).)
In the cases whereh is equal toi or to j, the matrices(ai

j)
preserve the metric tensor(gij) (see Eq. (11), below). Indeed,
from Eqs. (8) and (10) we have

g(σiσj)g−1 = gijI + 1
2ck

ija
m
k σm,

which must coincide with (using Eqs. (10) and (8) again)

g(σiσj)g−1 = gσig
−1gσjg

−1 = ak
i σkal

jσl

= ak
i al

j(gklI + 1
2cm

klσm).

By virtue of the linear independence of the set
{I, σ1, σ2, σ3}, this amounts to

ak
i al

jgkl = gij (11)

and
ak

i al
jc

m
kl = ck

ija
m
k . (12)

Multiplying both sides of Eq. (12) by an
s gmn we obtain

an
s gmnak

i al
jc

m
kl = ck

ija
m
k an

s gmn

or, using Eq. (11),

gmncm
kla

n
s ak

i al
j = gksc

k
ij . (13)

We introduce the real constants

csij ≡ gksc
k
ij

and from Eqs. (7) and (9) we find thatcsij = −2h2εsij .
Therefore, ifh 6= ε, Eq. (13) is equivalent toεnkla

n
s ak

i al
j =

εsij , which means thatdet(ai
j) = 1. An explicit computation

shows that also in the case whereh = ε, det(ai
j) = 1 (see

Eq. (14) below).
Thus, if h = i or h = j, the matrix(aj

i ) is orthogonal
or pseudo-orthogonal; respectively, that is,(aj

i ) belongs to
SO(3) or to SO(2, 1). In the remaining case, whereh = ε,
condition (3) readsa2 + c2 = 1, and therefore we can param-
eterizea andc in the forma = cos θ/2, c = sin θ/2, then,
a straightforward computation shows that ifg ∈ SU(2)h has
the form (2), making use of (6) and (10),

(aj
i )=




cos θ sin θ 2(b sin θ/2− d cos θ/2)
− sin θ cos θ 2(b cos θ/2 + d sin θ/2)

0 0 1


 , (14)

which represents an orientation-preserving rigid motion of
the Euclidean plane. (Ifx, y are the coordinates of a point

of the Euclidean plane with respect to a set of Cartesian axes,
thenx′, y′ given by




x′

y′

1


 =




cos θ sin θ x0

− sin θ cos θ y0

0 0 1







x
y
1




are the coordinates with respect to the same axes of the point
obtained by rotating the plane through an angleθ in the clock-
wise direction about the origin and then translating the points
of the plane by the vector(x0, y0).)

2.1. Two-component spinors

Traditionally, spinors are associated with the orthogonal or
pseudo-orthogonal groups,SO(n) or SO(p, q), and the most
important examples are related to theSO(3) group (e.g., in
the description of the spin for a spin-1/2 particle) and the
SO(3, 1) group (e.g., in the spinor formalism employed in
special or general relativity and in the Dirac equation for the
electron). The basic (one-index) spinors form representation
spaces for the spin groups, which are covering groups of the
orthogonal or pseudo-orthogonal groups. In the standard ap-
proach, the spin groups are represented by complex matrices
(belonging,e.g., to SU(2) or to SL(2,C)) and the one-index
spinors have complex components.

As we shall show below, this can be modified in two
ways: instead of spinors with complex components, we can
consider spinors whose components are double or dual num-
bers and, instead of orthogonal or pseudo-orthogonal groups,
we can consider “inhomogeneous” groups, specifically, the
group of rigid motions of the Euclidean plane (formed by ro-
tations and translations on the Euclidean plane).

A two-component spinor will be represented by a column
of the form

Ψ =
(

ψ1

ψ2

)
≡

(
a + hb
c + hd

)
, (15)

just as in Eq. (5), wherea, b, c, d are real numbers. Under the
change of spinor frame given byg ∈ SU(2)h, the compo-
nents (15) transform according to

Ψ 7→ gΨ. (16)

Hence,Ψ†Ψ is invariant under these transformations. (Note
thatΨ†Ψ = ψ1ψ1 +ψ2ψ2 is always real, but only in the case
whereh = i it is positive definite.)

A non-zero spinorΨ defines a vector belonging to areal
vector space of dimension three with componentsRi given
by

hRi = Ψ†σiΨ i = 1, 2, 3. (17)

In fact, sinceΨ†σiΨ is a1 × 1 matrix, the conjugate of the
right-hand side of Eq. (17) is equal to

(
Ψ†σiΨ

)† = Ψ†σ†i Ψ = −Ψ†σiΨ,
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which shows that the numbersRi are indeed real. Making
use of the explicit expression of the matricesσi [see Eqs.
(6)], one finds that

R1 = ψ1ψ1 − ψ2ψ2, R2 + hR3 = 2ψ1ψ2. (18)

According to Eqs. (17) and (10), under (16) the compo-
nentsRi transform as

hRi 7→ (gΨ)†σi(gΨ)=Ψ†g−1σigΨ=Ψ†ãj
iσjΨ=hãj

iRj ,

where (ãj
i ) is the inverse of the matrix(aj

i ). Then, de-
noting by (gij) the inverse of the matrix(gij) (which ex-
ists only whenh is i or j), from Eq. (11) it follows that
gijRiRj is invariant. In fact, whenh = i we find that
gijRiRj = −(Ψ†Ψ)2, while in the case whereh = j,
gijRiRj = (Ψ†Ψ)2.

In the case whereh = ε, from Eq. (14) we see that the
2 × 2 block at the upper left corner of the matrix(aj

i ) rep-
resents an ordinary rotation about the origin on the plane
R3 = 0, hence, under these transformations(R1)2 + (R2)2

is invariant and one finds that(R1)2 + (R2)2 = (Ψ†Ψ)2.
Owing to the specific form of the matrices (2) (the entries

at the second row are, up to a sign, the conjugates of those at
the first row) one readily finds that the components of

Ψ̂ ≡
( −ψ2

ψ1

)
(19)

transform in the same manner as the components ofΨ. The
two-component spinor̂Ψ is themateof Ψ as defined in Ref.
[11] for the case whereh = i, and differs by a constant factor
from the definition of the mate of a spinor in a space with in-
definite metric given there. In the applications of the spinors
in quantum mechanics (whereh = i), the spinor̂Ψ represents
a state with the spin in the opposite direction to that corre-
sponding toΨ. (In the Bloch sphere,Ψ andΨ̂ correspond to
diametrically opposite points.)

As an illustration of the differences between the three
types of numbers considered here, we look for spinorsΨ
which are proportional to their mates (with the proportional-
ity factor being a complex, double, or dual number according
to the case at hand):̂Ψ = λΨ. According to Eq. (19), we
have−ψ2 = λψ1, ψ1 = λψ2, which leads toλλ = −1.
This condition cannot be satisfied in the case of the complex
or the dual numbers; however, in the case of the double num-
bers it has the general solutionλ = ±j ejα, with α ∈ R
arbitrary (note thatj j = (−j) j = −1), furthermore, in that
case,Ψ†Ψ = 0.

The spinor formalism can be employed in the study of
differential geometry (see,e.g., Ref. [11]) and, according to
the results of this section, it is possible to develop a unified
formalism applicable to three-dimensional Riemannian man-
ifolds of any signature.

The one-index spinors are the basic objects from which
vectors and tensors of any rank can be constructed; a field
of an arbitrary spin can be expressed in terms of its spinor

components; the basic transformation rule (16) determines
the transformation of a spinor with any number of indices or,
equivalently, of any spin (see,e.g., Ref. [11]).

We close this section with some remarks of a more formal
nature. By contrast with the real and the complex numbers,
which are fields with the usual operations of sum and prod-
uct, the double and the dual numbers are only commutative
rings with identity. The standard definition of a vector space
makes use of a field of scalars; its analog in the case of a ring
is called a module (see,e.g., Ref. [12]).

3. The Laplace equation in the Minkowski(2+
1) space

In this section we shall consider the Laplace equation for the
Minkowski (2+1) space, which is a three-dimensional space
with a metric tensor given,e.g., by

ds2 = −dx2 + dy2 + dz2, (20)

in terms of an appropriate coordinate system (similar to the
Cartesian coordinate systems of the Euclidean space). In-
stead of the coordinates(x, y, z) appearing in Eq. (20), we
can make use of thelocal coordinates(r, θ, φ) defined by

x = r sinh θ cosh φ,

y = r sinh θ sinhφ, (21)

z = r cosh θ,

in terms of which the metric tensor (20) takes the form

ds2 = −r2dθ2 + dr2 + r2 sinh2 θ dφ2. (22)

This last expression shows that the coordinates(r, θ, φ) can
be regarded as orthogonal, so that the standard formula for
the Laplace operator in orthogonal coordinates is applicable,
taking care of the minus signs. The Laplace equation in this
case (which is just the wave equation in two spatial dimen-
sions) is given by

− ∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0 (23)

or, equivalently,

− 1
r2 sinh θ

∂

∂θ

(
sinh θ

∂u

∂θ

)
+

1
r2

∂

∂r

(
r2 ∂u

∂r

)

+
1

r2 sinh2 θ

∂2u

∂φ2
= 0. (24)

Equation (24) admits separable solutionsR(r)Θ(θ)Φ(φ),
whereΘ(θ) has to satisfy the equation

1
sinh θ

d
dθ

(
sinh θ

dΘ
dθ

)

−
[
l(l + 1) +

m2

sinh2 θ

]
Θ = 0, (25)
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and l, m are separation constants. This equation appears
in the solution by separation of variables of the Laplace
equation in the three-dimensional Euclidean space in pro-
late spheroidal equations (withl being an integer) (see,e.g.,
Ref. [13], Eq. (8.6.7) or Ref. [14], Table 1.06) and in toroidal
coordinates (wherel is a half-integer) (see,e.g, Ref. [13], Eq.
(8.10.11) or Ref. [14], Sec. IV).

Now, in place of (21), we define the local coordinates
(r, θ, φ) by

x = r cosh θ cosh φ,

y = r cosh θ sinhφ, (26)

z = r sinh θ,

and we find that the metric tensor (20) takes the form

ds2 = −dr2 + r2dθ2 + r2 cosh2 θ dφ2. (27)

Hence, the Laplace equation (23) is now given by

− 1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 cosh θ

∂

∂θ

(
cosh θ

∂u

∂θ

)

+
1

r2 cosh2 θ

∂2u

∂φ2
= 0. (28)

Equation (28) admits separable solutionsR(r)Θ(θ)Φ(φ),
whereΘ(θ) has to satisfy the equation

1
cosh θ

d
dθ

(
cosh θ

dΘ
dθ

)
−

[
l(l+1)− m2

cosh2 θ

]
Θ=0, (29)

and l, m are separation constants. Equation (29) coincides
with one of the separated equations obtained in the solu-
tion by separation of variables of the Laplace equation in the
three-dimensional Euclidean space, in oblate spheroidal co-
ordinates (see,e.g., Ref. [13], Eq. (8.6.13) or Ref. [14], Table
1.07).

Thus, even though the Minkowski(2 + 1) space may not
seem as interesting as the three-dimensional Euclidean space
or the standard Minkowski ((3+1)) space, as we have shown,
the solution of the differential equation (23) is relevant to the
solution of the Laplace equation in the three-dimensional Eu-
clidean space.

4. Generating functions

In this section we shall show that one can obtain solutions
of Eqs. (25) and (29) by means of generating functions. The
starting point is the one employed in Ref. [15]: if the metric
tensor of the space has the formds2 = gijdxidxj , with sum
over repeated indices,i, j, . . . = 1, 2, . . . , p, and the compo-
nentsgij areconstant, then the function(k1x

1+k2x
2+ · · ·+

kpx
p)l is a solution of the Laplace equation if and only if the

constantsk1, k2, . . . , kp satisfy the condition

gijkikj = 0, (30)

where (gij) is the inverse of the matrix(gij). The proof
is a straightforward computation, taking into account that,
in these coordinates, the Laplacian is given by∇2u =
gij(∂/∂xi)(∂u/∂xj).

4.1. Generating solutions of Eq. (25)

In the case of the three-dimensional Euclidean space, with
gij = δij , condition (30) reads(k1)2+(k2)2+(k3)2 = 0, and
therefore one is led to make use of complex numbers [15], but
in the case of the Minkowski(2+1) space, in the coordinates
(x, y, z) appearing in Eq. (20), condition (30) takes the form

− (k1)2 + (k2)2 + (k3)2 = 0, (31)

which can be satisfied by nonzeroreal numbersk1, k2, k3.
However, as we shall see, it is convenient to make use of
double numbers:

(k1, k2, k3) = (j cosh v,−j sinh v, 1), (32)

where v is an auxiliary parameter. Since, by definition,
j2 = 1, the components (32) satisfy condition (31) for all
values ofv. Then, making use of Eqs. (21) and the fact that
ejv = cosh v + j sinh v, we have

k1x + k2y + k3z = r
(
j cosh v sinh θ coshφ

− j sinh v sinh θ sinh φ + cosh θ
)

= r
[
cosh θ + j sinh θ(coshφ cosh v − sinh θ sinh v)

]

= r
[
cosh θ + j sinh θ cosh(φ− v)

]

= r
[
cosh θ + 1

2 j sinh θ e−j(φ−v)

+ 1
2 j sinh θ ej(φ−v)

]
, (33)

which shows thatk1x + k2y + k3z depends onφ andv only
through the differenceφ− v.

With the aid of (33), one can convince oneself that, for
l = 0, 1, 2, . . . , the expression(k1x + k2y + k3z)l must be
of the form

(k1x+k2y+k3z)l =
l∑

m=−l

j|m| rlflm(θ) ejmφ e−jmv. (34)

Since(k1x + k2y + k3z)l must be a solution of the Laplace
equation in the Minkowski(2 + 1) space and the parameter
v is arbitrary, it follows that each term of (34) is aseparable
solution of the Laplace equation in the Minkowski(2 + 1)
space. In particular, this means thatflm(θ) is a solution of
Eq. (25). (The factorj|m| is included in order forflm(θ) to
be a real-valued function.)

Thus, settingv = 0 in Eq. (34), we obtain the generating
function

(
cosh θ + 1

2 j sinh θ e−jφ + 1
2 j sinh θ ejφ

)l

=
l∑

m=−l

j|m| flm(θ) ejmφ. (35)
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(In the case of the spherical harmonics, considered in Ref.
[15], it was useful to keep the factor analogous toe−jmv, in
order to obtain integral expressions for the spherical harmon-
ics and the Legendre polynomials.) As a simple example, we
have
(
cosh θ+ 1

2 j sinh θ e−jφ+ 1
2 j sinh θ ejφ

)2= 1
4 sinh2 θ e−2jφ

+ j sinh θ cosh θ e−jφ + cosh2 θ + 1
2 sinh2 θ

+ j sinh θ cosh θ ejφ + 1
4 sinh2 θ e2jφ,

which shows that the functionsf2,±2(θ), f2,±1(θ), and
f20(θ), are proportional tosinh2 θ, sinh θ cosh θ, and
2 cosh2 θ + sinh2 θ, respectively.

4.2. Generating solutions of Eq. (29)

Following essentially the same steps as in the preceding sub-
section, with(k1, k2, k3) given again by (32), but using now
the coordinates (26) we have

k1x + k2y + k3z = r
[
sinh θ + 1

2 j cosh θ e−j(φ−v)

+ 1
2 j cosh θ ej(φ−v)

]
(36)

and, therefore, forl = 0, 1, 2, . . . , we have

rl
(
sinh θ + 1

2 j cosh θ e−jφ + 1
2 j cosh θ ejφ

)l

=
l∑

m=−l

j|m| rlhlm(θ) ejmφ, (37)

where each term of the sum on the right-hand side is a separa-
ble solution of the Laplace equation in the Minkowski(2+1)
space and the functionshlm(θ) are solutions of Eq. (29).

5. Final remarks

The real groups found in Sec. 2 are related by means of a
contraction in the sense defined in Ref. [16]; however, as we
have shown, the use of the complex, double and dual num-
bers allows us to study these groups simultaneously, without
having to take limits.

An advantage of the use double and the dual numbers is
that their basic algebraic rules are the same as those of the
real or the complex numbers. This means that we can do
many computations that are equally applicable to complex,
double or dual quantities.
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7. P. O. Hess, M. Scḧafer, and W. Greiner,Pseudo-Complex Gen-
eral Relativity (Springer, Cham, 2016), Chap. 1, 7,https:
//doi.org/10.1007/978-3-319-25061-8 .

8. G. F. Torres del Castillo, Some applications in classical me-
chanics of the double and the dual numbers,Rev. Mex.

Fis. E 65 (2019) 152, https://doi.org/10.31349/
RevMexFisE.65.152 .

9. G. F. Torres del Castillo,Differentiable Manifolds: A Theo-
retical Physics Approach,2nd ed. (Birkḧauser, Cham, 2020),
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