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We explicitly show that the groups @f x 2 unitary matrices with determinant equal to 1 whose entries are double or dual numbers are
homomorphic taSO(2, 1) or to the group of rigid motions of the Euclidean plane, respectively, and we introduce the corresponding two-
component spinors. We show that with the aid of the double numbers we can find generating functions for separable solutions of the Laplace
equation in thg2 + 1) Minkowski space, which contain special functions that also appear in the solution of the Laplace equation in the
three-dimensional Euclidean space, in spheroidal and toroidal coordinates.
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toroidal coordinates.

Mostramos exptitamente que los grupos de matrices unitafias 2 con determinante igual a 1 cuyas entradas domeros dobles o
nimeros duales son homomorfo§@(2, 1) o al grupo de movimientosgidos del plano euclideano, respectivamente, e introducimos los
espinores de dos componentes correspondientes. Mostramos que con la ayudaimetos dobles podemos hallar funciones generatrices
para soluciones separables de la edurade Laplace en el espacio de Minkowski+ 1), las cuales contienen funciones especiales que
tambien aparecen en la soldci de la ecuaéin de Laplace en el espacio euclideano tridimensional, en coordenadas esferoidales y toroidales.

Descriptores: Numeros dobles; imeros duales; grupos unitarios; espinores; espacio de Minkd@skil ); ecuacdbn de Laplace; coorde-
nadas esferoidales; coordenadas toroidales.
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1. Introduction applications in physics for these numbers are restricted to the
) _ double numbers (see.g, [1-4, 6, 7]), in many cases looking

Complex numbers are frequently employed in physics evefo; new theories that might substitute the established ones.

in areas where the quantities of physical interest are reajs shown in Refs. [8-10], the double and the dual numbers

For instance, the standard spherical harmoniqs,, are  are yseful in the solution of well-established systems of real
complex-valued functions that are commonly used in electrogifferential equations.

magnetism, in spite of the fact that the potentials and electro-

magnetic fields are real. In some cases, the complex numbers Atfirst sight, it would seem that the use of a ujitvhose
appear in expressions for real-valued functions. Take, for exsquare is+1 is hardly necessary or useful (for instance, it is
ample, the integral representations not required in the solution of algebraic equations with real
coefficients), but the examples given in Refs. [1-4, 6-10], to-
gether with those presented below, show that having a second
unit, besides the real number 1, is indeed very useful.
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It is well known thatSU(2), the group formed by the

™

Jn(z) = 1 /ei(“int_m) dat 2 X 2 complex ur_1itary matrices with determingnt egual to
" o ’ 1, is homomorphic t&O(3), the group of rotations in the
- three-dimensional Euclidean space; this homomorphism is
for the Legendre polynomials and the Bessel functions of inuseful and physically relevant. For instance, under a rota-
tegral order, respectively. tion, the wavefunctions (spinors) of spin-1/2 particles in non-

There exist other lesser known types of humbers, somerelativistic quantum mechanics, are transformed by means of
what similar to the complex ones, calleidubleanddual a SU(2) matrix. In this paper we explicitly show that the
numbers (although other names are also employed), whichnalogs ofSU(2), with double or dual numbers as entries,
are also useful in various applications (se@, Refs. [1-10] in place of complex numbers, are homomorphiS€2, 1)
and the references cited therein). The double and the duéihe group of Lorentz transformations in two spatial dimen-
numbers (introduced by Clifford in 1873 [5]) are character-sions) or the group of rigid motions of the Euclidean plane,
ized by the presence of “imaginary unitg’ande, respec- respectively. In fact, as shown below, the three cases (com-
tively, such thati? = 1 and<2 = 0. Most of the existing plex, double and dual) can be treated simultaneously and the
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corresponding two-component spinors can be defined in whereW is the two-component spinor
unified manner.

We also show that, making use of the double numbers, ¥ = < P! ) _ ( Pz + hmwz ) (5)
we can find a generating function for certain functions anal- P2 py + hmwy

ogous to the associated Legendre functions, which arise in

the solution of the Laplace equation in the three-dimensionafnd the Hermitian adjoint of a matrix is defined as the trans-
Euclidean space, in spheroidal and toroidal coordinates. ~ P0S€ Of the conjugate matrix (in all cases, the conjugate of

In Sec. 2 we study the special unitary groups formed by? T 1 is defined bya +hb = a —hb). Indeed, as a conse-
2 x 2 matrices whose entries are complex, double or duafiuence of$), the matrix ) satisfies/"U = I and therefore
numbers; we show that they are homomorphicSto(3), (4) is invariant under the transformgtldrIH vv. ) )
SO(2,1) or SE(2) (the group of rigid motions of the Eu- The groupSU(2), is a (real) Lie group of dimension
clidean plane that preserve the orientation), respectively, andiree (the matrix2) depends on four parameters, which are
we introduce the corresponding two-component spinors. restricted by one equation) and a basis for its Lie algebra is

In Sec. 3 we study separable solutions of the LaplacdVen by the matrices

equation in the Minkowsk{2 + 1) space, and we find that
. o ) ~(h o0 (0 h
some of the separated equations coincide with some of the o=\, _y ) 2=y o)
separated equations found in the solution by separation of
variables of the Laplace equation in the three-dimensional B 0 1
Euclidean space in spheroidal and toroidal coordinates. In 3=\ _1 0 /- (6)

Sec. 4 we show that, making use of the double numbers, one

obtains a generating function for the special functions analThe matricesr; are antinermitian becaugé = —g;. The
ogous to the associated Legendre functions encountered @ce of each matrix6) is zero and these matrices form a
Sec. 3. The basic rules for-the use of the dOUble and thgasis for thereal vector space formed by thex 2 antiher-
dual numbers can be found in Refs. [8, 10]; a rigorous angnijtian matrices with trace equal to zero. The commutators
fairly complete discussion of their algebraic properties canyf these matrices are given by, ;] = Ci_cjgk, with sum
be founde.g, in Refs. [4-7]. over repeated indices, where the structure consi@tare
determined by
2. Special unitary groups
P y group iy = 2h?, 33 = —2, i =2 @)
In Sec. 3.1 of Ref. [8] the Hamiltonian _ )
(note that all of them are real, despite the fact that the matri-
ces B) are not all real).
The products of the matrice§)(can be expressed in the
compact form

2
H= %(pm2 +py?) — %m(ﬁ (z® + %), (1)
was considered. Hene andw are constants, and h may be
the usual imaginary unit; the hypercomplex unit j (which
satisfies the conditioff = 1); or the hypercomplex unit
(which satisfieg? = 0). (That is,h? is equal to—1, +1, or
0, respectively, so that, in all case, is real.) This Hamil-
tonian is invariant under the group Bfx 2 matrices of the

form .
- (a+hb c+hd> (gij) = diag (h*,h? —1). )

—c+hd a—hbd ) . . . .
Thus, the matriXg;;) is singular only ifh = . With the
wherea, b, c, d are real numbers satisfying the condition  ajd of the matrices@) we can construct a homomorphism
5 2 12,0 oy betweenSU(2)h. and a subgroup oL (3,R) (the group of _
a”+c —h* (" +d°) = 1. () 3 x 3 real matrices with determinant equal to 1). In fact, if
g € SU(2)y, then the producyo;g—! is also a traceless an-
tihermitian matrix. (In facttr (go;g~!) = tro; = 0 and
(9oig™)" = (97 ))folg! = g(—0i)g™" = —goig™", since
the elements o8U(2);, are unitary matrices.) Hence, there
exist real numbers? such that

oioj = gi;I + 3cion, (8)
where! is the unit2 x 2 matrix and they;; are the entries of
the diagonaB x 3 matrix

The matrices of the forn2}, fulfilling Eq. (3), form a group
with the usual matrix multiplication. In what follows, this
group will be denoted bU(2),. Whenh = i this group is
the usuaBU(2) group which, as is well known, is homomor-
phic to the rotation group in three dimensiof€)(3).

The invariance of the Hamiltoniarl) under the group

L= dlo;. 10
SU(2),, is evident if one expresséds in the form K (10)

goig-

The mappingy — (a;) given by Eq.10) is a group homo-

1
H = %\I’T‘P, (4)  morphism. In fact, ifg’ is another element 3U(2),, then
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there exists a matrixb?) such thatg'o;g'~! = blo; and
therefore,

(99)0i(99)) " = g(d'oig’ " )g™ = gblojg~!

= b{a?ak = (afbf)ak,
thus showing that the product of the matti¥ ) by (b7) cor-
responds to the produgy’. (a! is the entry at the-th row
andi-th column of the matrixa?).)
In the cases wheiieis equal ta or toj, the matricega’)

preserve the metric tensg@y;;) (see Eq.11), below). Indeed,
from Eqgs. 8) and (L0) we have

9(0i0)97" = gij 1 + 5¢5ai T,
which must coincide with (using Eqsl@) and 8) again)
g(oio;)g™" = goig ' gojg7" = afordlo

koL 1
= a;a; (gl + 5¢50m).

By virtue of the linear
{I,01,09,03}, thisamounts to

k1
a; 09kl = Gij (11)

and
afaécﬁ = cf’ja?. (12)

Multiplying both sides of Eq.12) by a” g,,., we obtain

n k_ L m k _m_mn
Qg GmnQ; Q;Cp = €A Qg Gmn

or, using Eq./11),

gmncz,’;agafa; = gkscfj. (13)
We introduce the real constants
Csij = gkscfj
and from Egs.[{) and ©) we find thatc,;; = —2h258ij.
Therefore, ifh # ¢, Eq. [13) is equivalent tas,,;,a”aal =

s Yy

€sij, which means thatet(a;'-) = 1. An explicit computation
shows that also in the case whére= ¢, det(aj) = 1 (see
Eq. (14) below). .

Thus, ifh = iorh = j, the matrix(a}) is orthogonal
or pseudo-orthogonal; respectively, that (g]) belongs to
SO(3) or to SO(2, 1). In the remaining case, whete= ¢,

condition B) readsa? + ¢?> = 1, and therefore we can param-

eterizea andc in the forma = cos /2, ¢ = sin6/2, then,
a straightforward computation shows thayit SU(2),, has
the form @), making use of@) and (L0),

cosf sinf 2(bsin€/2 — dcosf/2)
—sinf cosf 2(bcosf/2+ dsinf/2)
0 0 1

, (14)

independence of the set
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of the Euclidean plane with respect to a set of Cartesian axes,
thenz’,y’ given by

x’ cosf sinf =z T
y | = —sinf cosf 1o Yy
1 0 0 1 1

are the coordinates with respect to the same axes of the point
obtained by rotating the plane through an arglethe clock-

wise direction about the origin and then translating the points
of the plane by the vectdrz, yo).)

2.1. Two-component spinors

Traditionally, spinors are associated with the orthogonal or
pseudo-orthogonal groupSO(n) or SO(p, ¢), and the most
important examples are related to th@(3) group €.g, in

the description of the spin for a spin-1/2 particle) and the
SO(3,1) group €.9, in the spinor formalism employed in
special or general relativity and in the Dirac equation for the
electron). The basic (one-index) spinors form representation
spaces for the spin groups, which are covering groups of the
orthogonal or pseudo-orthogonal groups. In the standard ap-
proach, the spin groups are represented by complex matrices
(belonging.e.g, to SU(2) or to SL(2, C)) and the one-index
spinors have complex components.

As we shall show below, this can be modified in two
ways: instead of spinors with complex components, we can
consider spinors whose components are double or dual num-
bers and, instead of orthogonal or pseudo-orthogonal groups,
we can consider “inhomogeneous” groups, specifically, the
group of rigid motions of the Euclidean plane (formed by ro-
tations and translations on the Euclidean plane).

A two-component spinor will be represented by a column

of the form
v Pl _( a+hb
"\ w? ) " \c+hd )’

just asin Eq.%), wherea, b, ¢, d are real numbers. Under the
change of spinor frame given hy € SU(2);,, the compo-
nents|L5) transform according to

(15)

U g0, (16)
Hence, ¥V is invariant under these transformations. (Note
thatW & = 1! 14292 is always real, but only in the case
whereh = i it is positive definite.)

A non-zero spino® defines a vector belonging toreal
vector space of dimension three with componeR{sgiven
by

hR; = Uig, U i=1,2, 3. (17)

In fact, since¥’o; ¥ is al x 1 matrix, the conjugate of the
right-hand side of Eql1(/) is equal to

which represents an orientation-preserving rigid motion of

the Euclidean plane. (lf,y are the coordinates of a point

(Vo 0)' = Ulolw = —Wio,w,
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which shows that the numbers; are indeed real. Making components; the basic transformation rudé)(determines
use of the explicit expression of the matrices[see Eqgs. the transformation of a spinor with any number of indices or,
(6)], one finds that equivalently, of any spin (see,g, Ref. [11]).
. . . We close this section with some remarks of a more formal
Ry = ¢lyt — ¢24?, Ry +hRs =2¢)'y°  (18)  nature. By contrast with the real and the complex numbers,
) which are fields with the usual operations of sum and prod-
According to Eqgs.17) and (L0), under (L€) the compo- ¢t the double and the dual numbers are only commutative
nentsk; transform as rings with identity. The standard definition of a vector space
_ i i makes use of a field of scalars; its analog in the case of a ring
hR; = (90)'oi(gW)=W'g ™ oigU=Vlajo; U=ha]R;, is called a module (see,g, Ref. [12]).

where (@/) is the inverse of the matrixa/). Then, de- o _ _
noting by (¢%/) the inverse of the matrixg;;) (which ex- 3. The Laplace equation in the Minkowski(2+

ists only whenh is i or j), from Eq. {L1) it follows that 1) space

g“ R;R; is invariant. In fact, wherh = i we find that

g“R;R; = —(UT0)2, while in the case wherd = j, In this section we shall consider the Laplace equation for the
97 R;R; = (UTW)2, Minkowski (2+ 1) space, which is a three-dimensional space

In the case wherk = ¢, from Eq. (L4) we see that the With a metric tensor givere.g, by
2 x 2 block at the upper left corner of the matriu) rep- 9 9 9 9
resents an ordinary rotation about the origin on the plane ds® = —da” +dy” +dz7, (20)

Ry = 0, hence, under these trar;sformat;(mﬁs)zﬁ (232)2 in terms of an appropriate coordinate system (similar to the
IS Invariant and one fmsjs thak)” + (R2)' = (PTw)" _ Cartesian coordinate systems of the Euclidean space). In-
Owing to the specific form of the matrice?) (the entries  giead of the coordinatds:, y, z) appearing in Eq/0), we

at the second row are, up to a sign, the conjugates of those ghn make use of tHecal coordinatesr, §, ¢) defined by
the first row) one readily finds that the components of

_ x = rsinh 6 cosh ¢,
=
U= ( o (19) y = rsinh @ sinh ¢, (21)
transform in the same manner as the components. fhe
two-component spino¥ is themateof ¥ as defined in Ref. iy terms of which the metric tensc2@) takes the form
[11] for the case wherk = i, and differs by a constant factor
from the definition of the mate of a spinor in a space with in- ds? = —r2d6? + dr? + r? sinh? 6 d¢?. (22)

definite metric given there. In the applications of the spinorsTh, | . h hat th di 6
in quantum mechanics (whelie= i), the spinor represents b IS astdexogl)ressmﬂ S owslt at:] € cr?or lnﬁéﬁ (ﬁ) canl f
a state with the spin in the opposite direction to that corre- e regarded as orthogonal, so that the standard formula for

sponding tol. (In the Bloch spherey and ¥ correspond to thE_ Laplace (}pre]rato_r in or@hogor%zri]l chrollinates is gppli_cak;ll_e,
diametrically opposite points.) taking care of the minus signs. The Laplace equation in this

As an illustration of the differences between the three®@S€ (which is just the wave equation in two spatial dimen-

types of numbers considered here, we look for spinbrs sions) is given by

which are proportional to their mates (with the proportional- 2y BPu  Hu

ity factor being a complex, double, or dual number according T or2 + 87312 + 922 0 (23)
to the case at hand = AW. According to Eq./19), we _

have —42 = \!, 1 = M2, which leads tox\ = —1.  OF equivalently,

z =rcosh#,

This condition cannot be satisfied in the case of the complex 1 9 Su 1 0 5 Ou
; ; . —————— — ([ sinh6— —— —
or thg dual numbers; however., in the cfe\se of t'he double num 2 sinh 0 90 (Sln 89) + 29 (7“ m)
bers it has the general solution = +je/®, with a € R
arbitrary (note thajj = (—j)j = —1), furthermore, in that n 1 52771 —0 (24)
case Ui = 0. 72 sinh? 6 O¢?

The spinor formalism can be employed in the study of
differential geometry (see.g, Ref. [11]) and, according to
the results of this section, it is possible to develop a unifie
formalism applicable to three-dimensional Riemannian man- 1 d (S_ d@)

Equation 24) admits separable solutionB(r)©(0)®(¢),
thereG(e) has to satisfy the equation

ifolds of any signature. sinh @ d§
The one-index spinors are the basic objects from which

vectors and tensors of any rank can be constructed; a field _ [l(l +1)+ m] 0 =0, (25)

of an arbitrary spin can be expressed in terms of its spinor inh” ¢

Rev. Mex. 566 (4) 418-423
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and [, m are separation constants. This equation appearshere (¢/) is the inverse of the matriXg;;). The proof

in the solution by separation of variables of the Laplaceis a straightforward computation, taking into account that,
equation in the three-dimensional Euclidean space in proin these coordinates, the Laplacian is given Byu =
late spheroidal equations (wittbeing an integer) (see,g, ¢ (9/0z%)(du/dz7).

Ref. [13], Eq. (8.6.7) or Ref. [14], Table 1.06) and in toroidal

coordinates (wherkis a half-integer) (se&.g Ref. [13], Eq. 4.1. Generating solutions of Eq.25)

(8.10.11) or Ref. [14], Sec. IV).

Now, in place of 21), we define the local coordinates In the case of the three-dimensional Euclidean space, with

(1,0, 6) by gij = 6:;, condition B0) reads(k1 )2+ (k2)?+(k3)? = 0, and
therefore one is led to make use of complex numbers [15], but
2 = r cosh 6 cosh ¢, in the case of the MinkowsKR+ 1) space, in the coordinates
(x,y, z) appearing in Eq/20), condition B0) takes the form
y = r cosh 0 sinh ¢, (26)
— (k1)* + (k2)® + (k3)* = 0, (31)
z = rsinh6,
which can be satisfied by nonzereal numbersky, ko, k3.
and we find that the metric tensQ) takes the form However, as we shall see, it is convenient to make use of

double numbers:
ds? = —dr? + r2d6? + r? cosh? 0 d¢>. (27)
(k1, ka2, k3) = (jcoshwv, —jsinh v, 1), (32)

Hence, the Laplace equatiaad is now given by where v is an auxiliary parameter. Since, by definition,

10 ( 23u> 1 o ( h@au) j2 = 1, the components3Q) satisfy condition[81) for all
[¢0)] —

2o \" o 72 cosh 6 90 90 values ofv. Then, making use of Eqs21) and the fact that
) o2 eV = cosh v + jsinh v, we have
u
+ r2 cosh2 0 @ =0. (28) kix + koy + k3z = r(j cosh v sinh 0 cosh ¢
Equation [28) admits separable solutionB(r)©(6)®(¢), — jsinhvsinh sinh ¢ + cosh 6)
where®(f) has to satisfy the equation =r [ cosh 0 + j sinh f(cosh ¢ cosh v — sinh 6 sinh v)]
1 d de m® = r[cosh6 + jsinh 6 cosh(¢ — v)]
———— (coshf—) — |1(I+1)— =0, (29 ]
cosh 6 d6 (COS d9) |: ( * ) COSh2 9:| © 07 ( )

=r[coshf + 3 jsinhfe 3@~
and/,m are separation constants. Equati@8)(coincides L. i(6—v)
with one of the separated equations obtained in the solu- + 2 sinh 6 ¢ ], (33)

tion by separation of variables of the Laplace equation in th& hich shows thak,z + koy + ks> depends o andw only
three-dimensional Euclidean space, in oblate spheroidal CQhrough the difference — v.

ordinates (see.g, Ref. [13], Eq. (8.6.13) or Ref. [14], Table With the aid of 83), one can convince oneself that, for

1.07). ) 1 =0,1,2,..., the expressiofik, = + kay + k3z)! must be
Thus, even though the Minkowsk2 + 1) space may not ¢ the form

seem as interesting as the three-dimensional Euclidean space .

or the standard Minkowsk{$-+1)) space, as we have shown, 1 dml 1 imd  —imw

the solution of the differen(tial ezquatio?n) is relevant to the | (F17 FRayFksz) = ZZJ‘ S (0) € 7. (34)

solution of the Laplace equation in the three-dimensional Eu- "

clidean space. Since(kix + koy + k3z)! must be a solution of the Laplace

equation in the Minkowsk{2 + 1) space and the parameter

v is arbitrary, it follows that each term dB4) is aseparable

solution of the Laplace equation in the MinkowsRi + 1)

In this section we shall show that one can obtain solution§Pace. In particular,.l'gvrl‘is_ means thfat, (0) is a solution of
of Egs. £5) and 29) by means of generating functions. The Ed- 25). (The factorj!™! is included in order forf;,,,(6) to

starting point is the one employed in Ref. [15]: if the metric 0€ @ real-valued function.) _ ,
tensor of the space has the fods? = g;;dz?dz7, with sum Thus, setting = 0 in Eq. (34), we obtain the generating

4. Generating functions

over repeated indices, j, ... = 1,2, ....p, and the compo- function
nentsg;; areconstantthen the functiorfk, ! + kaz?+- - -+ (cosh @+ Ljsinh@e 3 4 1] sinheej¢)l
kpxp)l is a solution of the Laplace equation if and only if the 2 2
constantsk, ko, . . . , k, satisfy the condition l ) )
n = > " fim(0) €™ (35)
97 kikj =0, (30) m==1

Rev. Mex. 566 (4) 418-423
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(In the case of the spherical harmonics, considered in Refvhere each term of the sum on the right-hand side is a separa-
[15], it was useful to keep the factor analogous:té™?, in ble solution of the Laplace equation in the Minkowski+ 1)

order to obtain integral expressions for the spherical harmorspace and the functioris,,, (9) are solutions of Eq29).

ics and the Legendre polynomials.) As a simple example, we

have 5. Final remarks
(cosh 0+%j sinh 0 e*j¢+% jsinh 6 ej¢)2:% sinh? § e~ %¢ _

The real groups found in Sec. 2 are related by means of a
contraction in the sense defined in Ref. [16]; however, as we
have shown, the use of the complex, double and dual num-
bers allows us to study these groups simultaneously, without
having to take limits.

An advantage of the use double and the dual numbers is

+ jsinh 6 cosh 6 e3¢ + cosh® 6 + 1 sinh® 0
+ jsinh 6 cosh 6 ¢® + % sinh? § e%?,

which shows that the functiong, +2(6), f2+1(0), and
f20(6), are proportional tosinh?#, sinhcoshf, and

2 cosh? § + sinh? 6, respectively.

4.2. Generating solutions of Eq.29)

that their basic algebraic rules are the same as those of the

real or the complex numbers. This means that we can do

section, with(k1, k2, k3) given again by32), but using now

the coordinates26) we have

ke1x + koy + k3z = r[sinh 6 + 3 jcosh @ e3¢~

+ Ljcoshhel®™)] (36)
and, therefore, fok=0,1,2, ..., we have
rl(sinhﬁ + %j cosh@e 3% + %j cosh@ej¢)l
l
= > i by, () €79, (37)

—_

m=-—I

many computations that are equally applicable to complex,

Following essentially the same steps as in the preceding Sugpuble or dual quantities.
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