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Dynamics of neutrino wave packet in the Tachyon-like Dirac equation
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In this study, the tachyon-like Dirac equation, formulated by Chodos to describe superluminal neutrino, is solved. The analytical solutions
are Gaussian wave packets obtained using the envelope method. It is shown that the superluminal neutrino behaves like a pseudo-tachyon,
namely a particle with subluminal velocity and pure imaginary mass that fulfills the energy-momentum relation typical of classical tachyons.
The obtained results are used to prove that the trembling motion of the particle position around the median, known as Zitterbewegung, also
takes place for the superluminal neutrino, even if the oscillation velocity is always lower than the speed of light. Finally, the pseudo-tachyon
wave packet is used to calculate the probability of oscillation between mass states, obtaining a formula analogous to the one obtained for
the ordinary neutrino. This suggests that in the experiments concerning neutrino oscillation is not possible to distinguish tachyonic neutrinos
from ordinary ones.
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1. Introduction symmetry [21]. However, the Hamiltonian fulfills the sym-

_ . ~ metry properties of a pseudo-Hermitian operator.
Recently, the results obtalneq from the experiments d_edlcate_d In this study, the Chodos equation is solved, in terms of
to the measurement of neutrino masses and the relative osc&-a

lation phenomena [1-9], often interpretable assuming a su. ussian wave packets with positive and negative frequen-
P ' P 9 cies, for a tachyon propagating along thedirection. In

perluminal behavior of the particle, have led many physicists[his way, we obtain the equations of the envelope functions:
to enhance their efforts towards the formulation of new theo- ' o ’
) . once solved, show that the group velocity is always sublu-
ries beyond the Standard Model [10-13]. In this framework group y y

the pioneering works by Surdashan, Feinberg, and Recang"nal' Therefore, the tachyonic neutrino described by rel-

tivistic guantum mechanics is a pseudo-tachyon, namely a
[14-17] on the physics of tachyons were taken into consid-__ .. . S
; . ; . . ) rticle that fulfills the energy-momentum relation typical of
eration with the aim of formulating a field theory conS|stentpa ticle that fulfills the energy-momentum refation typical o

with the theory of relativity extended to superluminal mo- an imaginary mass, but which propagates at subluminal ve-
tions. One of these theories is that of Chodos [18], whos locity, being the group velocity equal to that of the guantum

. A ) .~ particle [22]. This result was obtained also by Salesi using
governing equation is obtained from the Tanaka Lagrangia different tachyon-like Dirac- equation and following a dif-
[19]. This Lagrangian reads:

ferent approach [23]. Therefore, it is necessary to distinguish
the meaning between the group velocity, which finds its natu-
ral place in the quantum study of the tachyonic neutrino, and
the classical velocity of the particle, which, in principle, is
not upper bound. The theory developed in this work, how-
hbar = ¢ = 1. The subscript refers to tachyon and will ever, shows that the two velocities are related to each other
f';md that the tachyon velocity is an upper bound. This is an

be used in all quantities introduced below. It remains cleat” . ) ) . )
that oo, and ¢, are treated as independent variables. More-md'reCt proof that tachyonic neutrinos, in the picture of rela-

over, the Dirac matrix/ is related to the fifth current, and tivistic quantum mechanics, are unstable particles that decay

its presence in the Lagrangian (1) proves the chiral nature JP llowing mechanisms, already investigated in other works,

the particles it describes. The Lagrangian (1) is Hermitiarf© €M I the subluminal realm.

and fulfills the classical tachyonic energy-momentum rela- As occurs for a relativistic particle with half-integer spin
tion E2? = p?c — p2¢. By inserting this Lagrangian in the in the Dirac equation, the Zitterbewegung phenomenon [24],
Euler-Lagrange equation [20], the Chodos equation is recowepresented by the rapid oscillation of the position of the par-
ered: ticle concerning the median of the Gaussian packet, also takes
place for the tachyonic neutrino. This effect is because al-
[ivy0, — pelhe = 0, (2)  though the wave packets with positive and negative frequen-
cies are orthogonal, once inserted in the integral | 2|y ),
Eg. (2) is a tachyon-like Dirac equation, one of the most usedavhich represents the average position of the particle along
to study half-integer spin superluminal particle. Jentschuralirection, show a non-vanishing overlap which leads to the
proved that this equation 8 P andT invariant, but the asso- typical interference of the Zitterbewegung. It is also proved
ciated Hamiltonian operator is not Hermitian and loses paritythat, unlike what happens for a relativistic Dirac particle, the

Ly = ihy° v 0uthy — ety 1)

and holds for half-integer spin tachyons. In Eq. @), =
¥iy0, 45 = i7041y2~3(~45)2 = 1 is the tachyonic mass and



DYNAMICS OF NEUTRINO WAVE PACKET IN THE TACHYON-LIKE DIRAC EQUATION 425

oscillation velocity of Zitterbewegung is always lower than Using the gamma Dirac matrices, the operatgts” and
the speed of light. ~5~3 are:
The wave packet approach is used to calculate the proba-

bility of neutrino oscillation [25]. In this study, we apply the 00 1 0

obtained Gaussian packet to calculate the oscillation proba- - 00 0 1

bility of tachyonic neutrino. This needs the assumption that TV =11 0 0 0o |’

even in the tachyonic regime, the neutrino may oscillate be- 010 0

tween possible mass states. We will show that the formula B

of probability oscillation is analogous to that expected for the 1 000

ordinary neutrino. This is a confirmation that the (pseudo)- A58 = 0100 (4)
tachyonic neutrino cannot be distinguished from the ordinary 1010 [’

one in the experiments concerning oscillation. 0101

2. Tachyonic Wave Packets wherel means—1. The bispinory; has two components,

T andy~, each of which is associated with the positive and
Let us consider a superluminal neutrino propagating along negative frequencies (energies):
direction. For classical physics, the particle veloaitycan

take any value higher than the speed of light. Before proceed- ut

ing, we clarify that the masg; and the tachyonic Lorentz Yt = ( uﬁr ) exp{i(kz —w™t)}

factor v, = [(1 — u?/c?)]~'/? are pure imaginary, being u_2 (5)
v¢ = —i|y|. Therefore, the produgi;y; is always real, as YT = ( u;— ) exp{—i(kz —w't)}

well as the momentum and the energy [26]. The mass-

energyu,c? is instead pure imaginary. The Chodos equation ) )
for this model reads: where k = p/h and w™ = ET/h, while p is the z-

components of four-momentum. Introducing the bispinpr

[ify°7 0, — ihey®y 0. — puc®|ipy = 0. ) inthe Eq. (3) we get a system of four linear differential equa-
| tions:
ihcO, — pc? 0 —ih0; 0 uf
0 —ihcd, — pc? 0 —ih0; u; Hi(kz—wht) _
ik, 0 —ihed. — pyc? 0 u | € -
0 1ho; 0 ihed, — pu.c? Uy

We note that the matrix on the left-side of the equation is
anti-Hermitian. As it is known, anti-Hermitian operators arek/vherej\/ is the normalization factor. Therefore, the plane
the infinitesimal generators of unitary transformations and inwaves solutions of the Chodos equation can be summarized
guantum mechanics are associated with imaginary eigenvaés:

ues [27]. The system can be easily solved giving us all the 5 e
spinor components: Pt = 7V2(|’7t‘+1) (Ive]£1)
’ - 2 Ve
. . (WP =1 \Fmrn
= — E + 2 ; = — E —_ 2 ;
" [(pet e /(pe = puc’) . (6) x exp{%i(kz —wTt)}. (8)
- _ _ 2\. - _ 2
== Bfpe = et ug Ef(pet me?) The trend of the real spinor componenfs anduy is shown

in Fig. 1.
As can be seen, the two components converge to zero as
u; — ¢, while asu; — +/2¢ that tend to separate and diverge

Considering thall = ~,u.c? andp = .., Egs. (6) can be
written as functions of the dimensionless facigr

ul =vl/(vel + 1) ug=—|vel/(Je] = 1); towards infinity with different slope_s. _
. For the models we are developing, we want the solutions
up =wl/(vel =1);  uy=vel/(lnl+1) to be Gaussian wave packets. Therefore, we need to find

an envelope function that multiplied by the tachyonic plane

Wel STeﬁ th?)ttthe t(\;vo-(fotmponent ?%mors arel_reag ind 0rtr999\7ave that provides the expected wave packet. This function
nal. The obtained solutions must be normalized by applyiNgs 5 smooth curve outlining the extremes in the amplitude of

the usual normalization procedure: the rapidly varying single wavefunction that spreads in space

+ 5 5 and time. Its profile must be that type of a Gaussian func-
/¢ Y=1=N=v2(|%:]? +1)/(|n]* - 1), tion. To do this, we have to set a given value of the classical

velocity of the tachyonic neutrino, denoted hy, to which
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To solve Eqgs. (10) it is sufficient to impose that the enve-
lope functionsf* are Gaussian. As a basic function, we can
take the following Gaussian envelope, widely used in quan-

1 tum optics [28-29]:

1/2
1

21 (o + i At)

(2 Fvot)?
X exp {_ 20 (0 + iAt) } ' (12)

fi(tvz) = [

Spinor Component

p’ Where vy is the pseudo-tachyon velocity given by
W‘ Eqg. (11),0 is the wave packet dispersion coefficient alang

. e 5 7 -~ direction, andA is a numerical constant that must be found.

" tachyonic Lorentz Factor ; ' Introducing function (12) in the first equation of (10), and

FIGURE 1. Spinor components; (blue line) and:; (orange line) calculfating its V"fllue in the D.Oimb, t) = (0, 0)_, we getan a.|'
vs tachyonic Lorentz factor. gebraical equation from which constant A is easily obtained:

correspond the wave vectbg and the angular frequenay. AT = —wofy  where
These values represent the center of the Gaussian packet. The o+ -
Gaussian spinor can be written as: Oo = Ag /(hwou = 17s,), (13)

. EAESYN e Eq. (13) holds for positive freqL_Jencies. Repeating the same
VG = 271f (t,z) | _(elED procedure for the second equation of (10) we obtain the value
(h*=1) RR(EAESY: of the constant for the negative frequencies:

+i _ .t
x exp{=xi(koz —wyt)}, 9 A~ = wofo where
wheref ¥ (t, z) are the envelop functions for positive and neg- e -
ative frequencies. Introducing function (9) in the Eq. (2) we b0 = Ag/(hwor = 17]h)- (14)
get the two differential equations that, once solved, provide

s . Therefore, the Gaussian envelope function for positive
the explicit form of the envelope functions:

and negative frequencies is:

ut +
(-] &+ Va0 L
"o "o (10) FE(t2) =
o Uy o Ag _ ’ ’ 271'(0 F inaot)
m"‘CE $+ihu; f (t,Z)ZO
Yo Yo

(Z + UOt)2 } ) (15)

where~, is the module of the tachyonic Lorentz factor cor- X exp {_ 20 (0 F iwobot)

responding to the velocityy and AT = 2;c?ui|,,. The

numerical coefficient of the second term in Eqs. (10) is the The termwf, is the tachyonic correction to the disper-
propagation velocity, which coincides with the group veloc-sion of the wave packet. Figure 2 shows the real and imagi-

ity of the wave packet. Using Eq. (7) we obtain the explicitnary components of the wave packet:
form of these velocities: Let us analyze in detail this term replacingudg anddy

their explicit forms:
Yo — 1
=3 , (16
WPIlank <'YO T 1) (16)

+

Uy Uy Yo — 1)
c—| =—c—=| = c<e YV oupg>ec, (11)
uy |y, ug o (’yo—f—l _ E—02|Mt|02£

woby

Eq. (11) proves that the neutrino described by Chodos equa- h fwouy 1y,

tion behaves like a pseudo-tachyon, namely a particle prop

gating with subluminal velocity = c(yo —1)/(yo +1) but ¢ factor(yo — 1)/(70 + 1), which is simply the relativistic
fulfilling the energy-momentum relation of a tachyon. This factor 3 = v/c of the pseudo-tachyon, the following limits
result, which may seem surprising and unexpected, was alsr?old' '

obtained by Salesi following a different approach [23]. It
must be clear that the velocityin Eq. (11) is of quantum ) (70 - 1) ) I <V0 - 1)
m = ; m =

f?/T/herewmm( is the angular frequency given ty;|c?/h. For

mechanics nature and is obtained through the opei&tor, Yo+ 1 uoiﬁc Yo+ 1

which is conserved under the action of Lorentz transforma-

tions. Equation (11) gives the relation between the pseudo- lim (70 — 1> - 1. (17)
tachyon velocity and the classical velocity. u—0—c0 \ 70 +1
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3 Z: ! : ' i ; I wave packet [29]. In this regard, we consider the wave func-
tion v (¢, z) given by the linear combination of the two wave
packets given by Eq. (9):

Y(t,z) =c— 1L + by cr,c—2€R. (19)

H“““l The mean value of particle position is given fy|z|¢).
Illrﬂﬂ' The real coefficients; andcsy are such as to ensure that the
function(t, z) is normalized:

Gaussian Wave Packet
—_—
E

[ ”M | {er,c0 € R (YY) =1}

Although the wave packet@ér and, are orthogonal,
e = the integral(y|z|+) is non-vanishing. The solution of this
- integral that for the relativistic electron has been already ob-

tained by Park [29], is:
FIGURE 2. Real (blue area) and imaginary (red area) components
1 o\’
g (2 ]
Since the pseudo-tachyon has a subluminal velocity, the 77 \olkele
factor (yo — 1)/(v + 1) must range between [0,1]. This ( A > ( o2
o)

(z) = vot(c — 1% —c3) +

Of pseudo-tachyon wave packet (in arbitrary units).

means that the classical velocity of the neutrino is upper 3 171

bound touy = v/2¢. This is a further confirmation of how 275 lpele + (wofot) !/

guantum physics can lead to completely different results from { (vot)? } . {
. . . ; . X eXpy ———5——————5 ¢ Sin |2wot

those obtained applying classical physics, evenin the tachyon 2[0? + (wpbot)?]

field. We conclude this section noting that@agincreases,

the tachyonic dispersion of the wave packet progressively de-

creases up to a minimum value of zero, corresponding to the

classical velocityy/2¢c. This behavior is similar to that of

a wave packet associated with an ordinary relativistic parti-

cle, where the dispersion correction factor is proportional to

1/7* [29].

wobot)?

- (mw& — Dwot + g] 2c1c9,

wherep = arctan(wgbot) andvg = c¢(yo — 1)/(y0 + 1).
The first term in the right-side is the median position of the
particle modulated by the coefficiefit? — ¢3), which can
be positive or negative. Therefore, the median position does
not coincide with the center of the wave packet. The product
3. Zitterbewegung of Pseudo-tachyon Neu- between the fir_st and thg seg:ond fact_or in the rjght—size repre-

trino sents the maximum oscillation amplitude, while the product

between the third factor and the exponential represents the

oscillation damping term. Since it has been shown that the
termwoeo ranges within0, 2wpjan, the damping _ is max-
imum whenug = v/2¢:

A fermion that obeys the Dirac equation presents a rapid 0os
cillation of the position along the direction of propagation,
known as Zitterbewegung [24]. This happens for the inter-
ference between states with positive and negative energy and ) 1/4
occurs with a frequency &upjank. Assuming that the motion Z | /3 ( g )
uo=v2c k)

takes place in the direction, the equation of the position of + (2wpian
the ordinary particle around the median is: (vot)
con{ g1
2[0' + (QWPIank)
(t) = Iit—&-l fe { (0)_@]
‘ E T2'E E

We note also that when, — ¢, i.e. ¥ — oo, the max-
X [exp{—2iwt} — 1]. (18)  imum oscillation amplitudd goes quickly to zero, while it
increases progressively ag — +/2c up to the upper limit
The first term of Eq. (18) is the particle position along given by:
the direction of propagation, while the second one is the os-
cillation due to the partial overlap of the positive and nega- APlank ABlank -t
tive frequency wave packets. We want to investigate whether 1 | 0=v2c 9 <1 1602> ’ (21)
this behavior also takes place for the pseudo-tachyon wave
packet. To do this, we follow the same approach used byhere\piank is the reduced Plank wavelength of pseudo-
Park to study the Zitterbewegung of a relativistic electrontachyon neutrino. Finally, we observe that when— /2c¢

Rev. Mex. 5. 66 (4) 424-430



428 L. NANNI

the coefficientvyfy vanish and z) becomes: are dealing with a wave packet, the following approximations

) N\ . hold:

2 2 ~ —

<Z>|u0:\/§czvot(c1—02>+2 1—&—@ <2|Mt6> ] AE < E and AP =g, =h/o.

. (001)? Therefore AE can be Taylor expanded obtaining:

’Uot .
X ( ) exp {— } sin[2wpt]2¢q 3. OE OE A
2|t 202 ~ 27 AR = A2
|1t AFE ap op + 0,2 Ap® =wvoy, 55 Ap, (27)

The oscillation frequency around the median position isvvherev
the argument ofin function; Taylor expanding this function
aroundt — 0 and truncating the sum in the first term we get:

is the pseudo-tachyon velocity obtained in Sec. 2,
and E is the tachyonic energy-momentum relation. Suppos-
ing that the errow, affecting the momentum is of the order

N (wobot)? of po, then the wave packet dispersiorcan be reworked as
wzp Zwo (2 - —5—(w—1) (22)  follows:
g
h h
Using Egs. (21) and (22) we obtain the Zitterbewegung Ap=op = pu =0 = 20 = 7|ﬂt|u0
velocity,
_ h -1 o k’Yo—l
2 2 - = ank————— -
UZB:[|u0_ﬂCwZB:c[1_(WP'Z“@ |ele o +1 Yo +1
g Substituting this result in Eq. (27) we get:
-1
) @0 - 1> (6 - 1)]' (23) AR e (% — 1>2 _ Aid (28)
’ Atank \ Y0 + 1 2F
From Eq. (23) we see that, in the rangev/2c], the ve-  and substituting Eq. (28) in Eq. (26) we obtain the explicit
locity vz g is always lower than the speed of light. form of A®:
o . Ap — — |1 (=LY | (0]
4. Oscillation of Pseudo-tachyon Neutrino Yo+1 Yo+1
Recently, Cabaret al. have shown that the hypothesis of % h _AHZC4 ‘. (29)
tachyonic neutrino leads to the same oscillation phenomenon APlank 2K
of ordinary neutrino [30]. This result can be used to vali-  For the oscillation to take place there must be interference

date the theory presented in Sec. 2. To do this we use thgetween the mass states and this is possible only if the term
wave packet approach [25], considering that we have to writg, — (~y, — 1)/(y, — 1) is of the order of dispersion. But

down the function); for each mass eigenstate. By limiting this means that the first term of Eq. (29)<s 1 and can be
the attention to only the positive frequency and assuming thajeglected. Therefore:

there are only three mass eigenstates, the evolved state of the

2.4
pseudo-tachyon neutrino produced in the initial statés: A B, (30)
2F
3 . . . .
Considering that = L/c (since we are in the ultra-
= *. + s . . . . . . o
vt 2)) = Z; Uaivgalvilt 2)), (24) relativistic limit) we arrive at the final result:
2.4 2
where U,; is the leptonic mixing matrix that we suppose A = _Ach L = _Anp 2L. (31)
holds also for tachyonic particles. The oscillation probability 2B ¢ 2p
from a state of imaginary mags to a state with masgg is: Therefore, the oscillation probability for a tachyonic neu-

) trino in the Chodos equation is:
P(va — vg) = [(vp]lv(t, 2)))]| 3 Auo
Z Ugi€xp i Py Uz,
i=3 2p

3
<Uﬁ Z U<§i¢§i|v¢(t,2)>>
=3 Eqg. (32) is analogous, except for the sign of the square mass,
To solve this integral one must know the phase diffierencd® the oscillation probability expected for ordinary neutrino

2
(32

2 P(Ua — 7),3) =
(25)

between the IN and OUT states: [31]. Therefore, in the state of the art of current experiments
concerning the phenomenon of oscillation, is not possible to
AP =AFE-t—Ap-z. (26)  distinguish the bradyonic or tachyon nature of the neutrino.

This confirms the result obtained by Cabetnal. [30] and
Considering that we are in an ultra-relativistic regime proves the correctness of the theory developed on the Chodos
(whereu; — cand(y — 1)/(70 + 1) = 1) and that we  equation.
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5. Discussion The second validation test of the theory is represented by
the calculation of the oscillation probability of tachyonic neu-
In this study, the Chodos equation for the tachyonic neutringrino, assuming that the modules of the imaginary masses are
has been solved, obtaining Gaussian wave packets, with pogientical to those of the three ordinary neutrinos and that the
tive and negative frequencies, analogous to those obtained lyntonic mixing matrix is the same as the current model. Fol-
solving the ordinary Dirac equation [32]. The equations ob-oying the wave packet approach, it is obtained a probability
tained for the envelope functions, which guarantee the Gaugprmula having the same form of that used for ordinary neu-
sian shape of the wave packet, show that the group Vvelogying, confirming the same result achieved by other authors
ity is always subluminal. Since the group velocity coincides[3o] using a different approach, which provides for the im-

with that of neutrino propagation, one concludes that a parpossibility of distinguishing tachyonic and ordinary neutrinos
ticle with a half-integer spin with a classical velocity greaterin the oscillation phenomena.

than the speed of light, in the framework of quantum me-
chanics behaves like a subluminal fermion with imaginary ~ This work proves that the equation proposed by Chodos
mass. Furthermore, the theory shows that the results retaffr the description of a superluminal neutrino is consistent
their physica| meaning if the classical ana|og of the tachyJNith what is expected from a theory that has its foundation
onic velocity is upper bound by2¢. This suggests that such in the Dirac equation. Many physical-mathematical aspects
particles are theoretically possible but are unstable and do néf the Dirac equation also recur for that of Chodos [21], and
decrease their energy by increasing their velocity, as the cladts application to real problems reproduce results obtained by
sical tachyon theory would predict [26]. This hypothesis hadollowing other approaches [30]. The most evident result,
been deep|y investigated by Jentschura [33], who proposelﬁpwevel’, is that which proves that in the Chodos equation,
possible mechanisms of decay. the neutrino behaves like a subluminal particle that obeys the
The first validation test of the obtained solutions is repre-€nergy-momentum relationship typical of classical tachyons.
sented by the study of the Zitterbewegung effect. The theoryhis could be one of the reasons why, to date, there is no
shows that this effect also occurs for the Chodos. It highlight&xperimental evidence that proves with certainty the possi-
the typical oscillation of the position of the particle around ble tachyonic nature of neutrinos and that the efforts to detect
the median. However, the oscillation velocity always remainghem must be oriented towards the precision measurement of
lower than the speed of light, unlike what was predicted forthe value of their square masses. Only negative values of this
the electron by the Dirac equation, where this velocity result§luantity can confirm whether or not the neutrinos can have
equal to the speed of light [34]. imaginary mass states.
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