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We firstly discuss the geometric phase rotation for an electromagnetic wave traveling along with the optical fiber in Minkowski space. We
define two novel types of geometric phases associated with the evolution of the polarization vectors in the normal and binormal directions
along with the optical fiber. We also identify the normal-Rytov parallel transportation law and binormal-Rytov parallel transportation law.
Moreover, we derive their relationships with the Fermi-Walker transportation law in Minkowski space. Then we solve Maxwell’'s equations by
using geometric quantities associated with the curved path, which characterizes the optical fiber. Finally, we investigate that electromagnetic
wave propagation admits the Maxwellian evolution equation for the anholonomic coordinate system in Minkowski space.
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1. Introduction well-defined, due to the Maxwell's equations. The set of
Maxwell's equations implicitly demonstrates how electro-
Recently, the improvement of the optical fiber technologymagnetic field vectors propagate and explicitly tell sources
has led to an enormous interest in wave propagation alongf the field. In the optical fiber configuration of uni-
twisted waveguides. Especially, rotation effects of the geoform, isotropic, nonconducting, free-from charge, and non-
metric phase of polarized light propagating along the opticatlispersive, we solve Maxwell’s equations for the electric and
fiber have been the research subject of many recent articlasagnetic field vectors. We also derive the Laplacian-like for-
regardless of their contents are practical or theoretical. Fomal equations belonging to the electromagnetic wave prop-
example, Smith [1] investigated that a rotation of the polar-agating along with the fiber in Minkowski space, in which
ization of light propagating in a monochromatic optical fiber details can be found in Sec 4.
wrapping around the conductor is induced by the magnetic The time evolution of the physical system in a given
field owing to the electric current flowing. In that study, it spacetime structure can be described by the principle of the
was also concluded that the current is proportional to theeast action. The evolution of the space curve is a very effi-
rotation, which is typical of a few degrees order. The ge-cient tool to understand many physical processes such as vor-
ometric effect of the plane rotation of the light propagationtex filaments, dynamics of Heisenberg spin chain, integrable
in a mono mode optical fiber tracing a non-planar trajectorysystems, soliton equation theory, sigma models, relativity,
was given by Ross [2]. He developed a purely geometrigvater wave theory, fluid dynamics, field theories, linear and
method to calculate the rotation in the helical optical fibernonlinear optics_ Evolution systems and equations usua”y
with a constant-torsion. He also supported his results witleontain intrinsic core geometric meaning. For instance, the
some measurements on the fiber bent into a helix. Tomitgine-Gordon equation, which originally seen in differential
and Chiao [3] generalized the former study of Ross for morgyeometry, is employed as a model in nonlinear optics, field
general fiber configurations. On the other hand, Chiao aneheories, and dislocation of crystals. The localized induction
Wu [4] focused on mainly the theoretical aspect of the ef-equation, also known as the Betchov-Da Rios equation or the
fects of geometric phase rotation. They suggested that thesgament equation, is an idealized example of the evolution
effects should be considered as topological features of the trgf the centerline of a thin vortex tube in a 3D inviscid in-
ditional Maxwellian theory. Later, Haldane [5] proposed thatcompressible fluid [11,12]. This equation also constrains the
these effects can be generalized for any arbitrary fiber traevolution of curves in magnetohydrostatic and steady hydro-
jectory without any restriction as in the earlier studies. Apartdynamic problems of nested toroidal flux surfaces [13,14].
from previous researches [6-10], in Sec. 3, we propose that amhe connection between the solutions of the cubic nonlinear
electromagnetic wave acquires novel geometric phases in tt&chrodinger equation and the solutions localized induction
normal and binormal directions during its propagation alongequation was discovered by Hasimoto [15]. He described a
the curved path in Minkowski space. special transformation, including complex curvature and tor-
In optical fiber researches, light is mostly considered as aion functions of the curve. Furthermore, these functions
carrier of an electromagnetic wave and its features. Whehave been used to define the heat flow, curvature flow, tor-
it is supposed to propagate within the optical fiber, it ission flow, curve shortening flow, and inextensible flow. In all
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these flows, the evolution of geometric quantities is a cruciaHere, we assume thét= 6 (s, n, b) is a space curve lying in
common element. In Sec. 5, we derive a novel class of curva three-dimensional Minkowski spacsis the distance along
evolution by considering the propagation of electromagnetiavith the s — lines of the curve in the tangential d|rect|on
waves and Maxwell's equations along with the optical flberso that unit tangent vector af — lines is defined byt =
in Minkowski space. We call this evolution as a Maxwellian t (s,n,b) = (00/0s) - nis the distance along the— lines
evolution of the curve. Then we derive Maxwellian evolu- of the curve in the normal direction, so that unit tangent vec-
tion identities of corresponding geometric quantities associtor of n — lines is defined byn’ = 1 (s,n,b) = (96/0n)-b
ated with the given curve. Finally, the paper is completed byis the distance along the-lines of the curve in the binormal
stating some important consequences in Sec. 6 dlrect|on , SO that unit tangent vector bf- lines is defined

by b =b (s,n,b) = (89/81)) The moving trihedron of

2. Geometric constraints on the space curve in orthonormal unit vector(st n b) provides a platform for
three-dimensional Minkowski space mvestlgatlng the mtrmsmfeatures of the cutudn this trlad
T is the tangential vectom’ is the normal vector, ant is
In this introductory section, we recall some of the formu-the binormal vector of the cuné Directional denvatlve_s) of
lae which are used to characterize a three-dimensional vecttine moving trihedron of orthonormal unit vectoirs m,b)
field and the geometry of curvature and torsion of vector linesan be given by the extended Serret-Frenet relatlons in the
in terms of anholonomic coordinates in Minkowski space.following forms

5 t 0 f 0 t
—_— ﬁ = —glﬁ 0 —837' H) s (1)
Os \ & 0 lor 0 b
T 0 lybps L3 (0ymy —T) T
0 — .77 —
% g = —fg(sns 0_) —fz[gd“} b g s (2)
b —51 (5177'1,—7') divb 0 b
g [t 0 —ly (17, — T) 03, T
—| o | = 4m,—7) 0 (1K + divnal o 3)
D\ B 0 Oy (G + div ) 0 iy

The inner product and the cross product are defined by

0 = 7.7 =W, s = b b he abnormalies of the — field, ' — field,and b — field
’ ’ are respectively computed by

?xﬁ):&gb,ﬁx bzgl?,§><?:€2ﬁ>.

The gradient operatdv is expressed by ws:?«curl?:élﬁgﬁg (B} : 82? +7 - (‘?b?) , (11)
n
— 0 — 0 — 0
V=0t —+ Ll + 0 b2 4
Yras T an T o “) =1 -curlm =/, (? . gl)ﬁ}—i-T) , (12)
ands,, = W - (9/dn)t, anddys = b - (9/0b) T [14] .
Thus, other geometric quantities are given by Ty = b - curlb — " (T _ ?_3§> (13)
on ’
d’L”U? = €25ns + £36bsa (5)
div® = —lyk+ 1552, (6)
b 3. Geometric phases of the electromagnetlc
divh = _gzﬁ.ﬁﬁ, @) waves traveling in the( t, b) d_lrectlon
on along the optical fiber in Mlnkowskl space
curlt = ms t + kb, 8)
Let us consider the propagation of linearly polarized light
curlm = €1€3(dwb) + lomp I+ £10,s b 9

along with an ideal mono mode optical fiber in Minkowski
_ LT — space. The ideality of the fiber implies that the fiber has

curlb =~y + (divE) T8, T +lm b (10) no elastoptic effects such as torsional-stress-induced circular

birefringence and bend-induced linear birefringence.
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An electromagnetic wave in the optical fiber can consist  In this section, we demonstrate that the electromagnetic
of the propagation of light, which travels in the optical fiber wave acquires a novel class of geometric phases in the nor-
and oscillates in time. Thus, naively speaking, we assumenal and binormal directions during the propagation of the
for the rest of the paper that the electromagnetic wave propalectromagnetic wave along the curved path in Minkowski
gates along with the optical fiber in which its axis is given by space. These novel geometric phases are described by the
the curve) (s, n, b) in Minkowski spaceOwing to the vecto- geometric quantities, which are induced by the characteriza-
rial nature of the light, it is an obvious fact that electromag-tion of the curve in the three-dimensional Minkowski space.
netic waves can be described by using the adapted coordinaiée also show _t}hat th_e> parallel transportation law of polar-
frame and associated vector fields. ization vectorsE and B in the normal and binormal direc-

The orientation of the propagation and polarization of thetions along the curved path is also related to another geomet-
electromagnetic wave in t_h}e fibgr> can be defined by the orric concept known as Fermi-Walker transportation. Thus, we
thonormal set of vectorét , n’, b). The electromagnetic obtain corresponding Fermi-Walker transportation definition,
wave propagation is in the direction of =t (s,n,b),and  which is_t}he counterpart of the Rytov law, for the polarization
the polarization of the eIectromagn_e}tic wave is referred by theectors E and B in the normal and binormal directions in
direction of the electric field vectoE = E (s,n,b). Since  Minkowski space.

light propagates as an electromagnetic wave inside the optical Case 1. Let the polarization vectors of the propagated

fiber the electromagnetic wave also carries inherently magelectromagnetic wave are referred by the electric field vec-

netic field vectorB = B (s,n,bLA_S} a consequence, the tor E) — E) (3 n b) and magnetic field Vectoﬁ —
. REN ) s 10y
electromagnetic wave vectofs , E, B) can be considered B (5,5, b) . They are also both perpendicular to the propa-

as a physically observable adapted coordinate frame, which @ation vectort = t (s, n, b) along with the optical fiber in

eﬁ)rissgd in terms of Frenet-Serret orthonormal unit vectorginkowski space. The change of the electric vedbibe-
(t, o, b). ) ) _ tween any two points in the normal direction along with the
When the electromagnetic wave is constrained to travebyryed pattd is given by

along with a space curve, the curve geometry provides to re-
late the geometric phase and the rotation of the polarization 9 — R . .
of the electromagnetic wave vectors. Many research effort %E (5,mb)=E,=wt + A0 +7b, a7
has been devoted to achieving to explore this connection and
further details. However, all these efforts have been made

o ; . . Wherew = w (s,n,b), A = A(s,n,b), andy = v (s,n,b)
by only considering the light ray propagating along with the re sufficiently smooth arbitrary functions along thdf we
optical fiber described by the curve, which is parameterizec?l — = = = :
b . . use the factthat - E = 0andE - E = C, whereC'is a

y only the s parameter. According to this approach, for
: . constant term, then we have

an electromagnetic wave having the form of a space curve,
the electric field vectof£ and the magnetic field vectds

are supposed to perform a rotation in the tangential direction 3? E=_-%. iﬁ, (18)

concerging to_t)he orthonormal unit vectors of Frenet-Serret’s on on

triple (.t ., b).lhen tﬁg.parallel transportqtion-law of po- Qﬁ E =0 (19)

larization vectorskE and B in the tangential direction along on

the optical fiber is verified by the Rytov law in the following . )

way [6,10,16] Thus, from Egs. (2,17-19), it is obtained that
E,=+(E -t,)t 14) = - = P

s=+(E-t)t, A4 E, = (636, E" + lo(tym, — 1)ED T +7(E x t), (20)

— - — —
B, =+(B - t5)t. (15)

) ) ) wheren is a constant term and independentﬁf Here,
Here, & sign occurs depending on the variable character of,q g1s0 use the fact thdt — —¢,(,, wherel; — +1 for

the tangent vector of the curée This geometric transporta- ; _ 1 9 3 This last equation is the most general form of the
tion law implies that polarization vectore and B do not  yariation of the electric field vector in the normal direction
rotate around the tangent vecter in the tangential direc-  zjong with the fiber in Minkowski space. The last term of
tion however, they rotate with respect to the osculating planee Eq, (20) determines the rotation of the electric figidn
which is spanned by then', b ) basis, in the tangential direc- the normal direction around the . We should also note that
tion in Minkowski space. Consequently, a geometric phasgnhe ahove expression was obtained without considering the
p = p(s,n,b) inthe tangential direction is defined by the ro- geometric optics approximation. Hence, we can assume that
tation of polarization vector& and B concerning(m’, b) 5 = 0 since the optical fiber does not favor the left or right

with an angular velocity rotation of the field. As a result, we can conclude that the
) electric fieldE is parallel transported in the normal direction
9:P=T (s)- (16)  along with the fiber since it satisfies the following modified
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type of Rytov parallel transportation law in Minkowski space v_v)here_]}3" :_)Eb @d B’ = ¢,E". By using the fact that
N R B L EandB L t,we compute that
E, = ((36,sE" + ly({1m, — T)EY) t (21)

0 — — b T

— — —
Here, we call the expression in the Eq. (22) as a normal- +((E, —6E"divb )0 +(—6E] + E'divb ) b, (28)
Rytov parallel transportation law in Minkowski space. Thus, . L

in Minkowski space, we can easily see that normal-RytoyVhich satisfies

parallel tra!’lsported law gnd .Ferm|-WaIker p:?\ra!le_l) .trans- _B)n E_-_B. E’ru (29)
ported law in the normal direction for the electric fidkl is
associated with each other. Consequently, we may state that ﬁn T = ,ﬁ.a . (30)

E is normal-Rytov parallel transported if and only if it is
Fermi-Walker parallel transported in the normal direction inlf we check Egs. (32,33), then itis obtained that= (/> = 1

Minkowski space. In this space, the definition of the Fermi-and /3 = —1, which implies that the optical fiber cou-
Walker derivative in the normal direction is defined by pling into the curve patld is represented by the spacelike
- e curve hav!ng a timelike bmor_mal in th(_a normal d_|rect|on in
A" =AH0(A -ttt — (A t)t,, (23)  Minkowski space. Moreover, if we multiply both sides of the

Eq. (30) by?> then it can be verified thdB also satisfies the
normal-Rytov Iawl)vith acquiring the same geometric phase
as the electric field= in Minkowski space.

whereA is an arbitrary vector field along with the curve. The
proof is left to the reader since it is obvious from Eqgs. (2,18-
23).

Now, we examine a very important consequence of the B,=-6(Bt)t. (31)
choEe of the parallel transportation of the electric field vec-
tor E in the normal direction along with the optical fiber in Case 2. Let the polarization vectors of the propagated
Minkowski space. A natural choice for the selection of theelectromagnetic wave are referred by the electric field vector

electric fieldE can be made by E = E (s,n,b) and magnetic field vectdB = B (s,n,b).
_ _ They are also both perpendicular to the propagation vector
n—> b — — . . . . . .
E =(E"n 4 (3E’D, (24) 't = t (s,n,b) along with the optical fiber in Minkowski

space. The change of the electric ved®between any two

n b i H
whe@)E , B are arb|tr§r|ly smooth cgmponents of te __points in the binormal direction along with the curved péth
and b vectors, respectively. The derivative of the electrlcis given by

field E in the normal direction yields that
— gﬁ(s,n,b) :Eb :wo?—kx\oﬁ—&—’yog, (32)

%E’ (8,1, b) =B n=(l30,s E"+Lo (0, —7)EY) ¢ ab
n b T —s b . TN wherew® = w®(s,n,b), \° = A°(s,n,b), and~° =
HOE+GE divb )+ (GE, +E divb)b.(25) o}, ) are sufficiently smooth arbitrary functions. If we

— = — = .
If E is assumed to be parallel transported in the normal diEjse the factthat - E =0andE - E = C*, whereC” is a
onstant term, then we have

rection along with the fiber, then comparing the Eq. (22) and”

Eq. (25) implies th . L
g. (25) implies that 2t-E:—t~2E, -
0 /E od g B ob ob
a5 ) ) = 0 262 . 0=
on (Eb>_< —lydivb 0 )(Eb> (26) %E-Ezo. (34)

Hence, we can conclude that E@26) defines the rotation Thus, from Egs. (3,32-34) it is obtained that

of the polarization plane in the normal direction so thata ge- _. - N
ometric phase = p (s,n,b) in the normal direction is de-  Eu=(—3 (1, —7) E"+£26,E*) t +7°(E x t), (35)
scribed by

AP divh. wheren° is a constant term and independentﬁ))fThis last
on equation is the most general form of the variation of the elec-
We can also characterize the other polarization vectotric field vector in the binormal direction along with the fiber
E) (_ﬁ = ¢B"n + g3BbE>) because§ — T x ﬁ That  in Minkowski space. The Iasttgr)m of the Eq. (35) determines
is, we can expresgthe magnetic field vector in terms of théhe rotation_)of the electric fiel® in the binormal direction
components of th& in the following form. around thet . Here we should also note that the above ex-
- _ pression was obtained without considering the geometric op-
B = E'D — LE" Db, (27)  tics approximation again. Hence, we can assumerthat 0
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since the optical fiber does not favor the left or right rota-found to be a spacelike curve having a timelike binormal in
tion of the field. As a result, we can conclude that the electriche binormal direction in Minkowski space. We can further
field E is parallel transported in the binormal direction along conclude that Eq. (41) defines the rotation of the polariza-
with the fiber since it satisfies the following modified type of tion plane in the binormal direction so that a geometric phase
Rytov parallel transportation law in Minkowski space p = p(s,n,b) in the binormal direction is described by

— —

Eb = (763 (7Tn - T) E" + £25bsEb) t ) (36) %p =K+ dwﬁ)
One can also charactenze the other polarlzatlon vector

nIy b
Here we call the expression in the Eq. (37) as a bmormalB (B = (4,B"W + (;B"b) becauseB = t x E. That
Rytov parallel transportation law in Minkowski space. Thus, S We can express the magnetic field vector in terms of the
in Minkowski space, we can easily see that binormal- Ryto\pomponents of th in the following form
parallel transported law and Fermi-Walker parallel trans- b n
ported law in the binormal direction for the electric fike) B=E'T B b’ (42)
is associated with each other. Consequently, we may StaWhere B" — Eb and B® = E". By using the fact that
that E is binormal- -Rytov parallel transported if and only if § | & andB 1t , we compute that
it is Fermi-Walker parallel transported in the binormal direc-
tion iq Minkowski space. In this.space, the de_finit.ion of the Qg (s,n,b) = ﬁb = ((mn — 7)E + 5bsE")?
Fermi-Walker derivative in the binormal direction is defined ~ 9b
by + (Ef — E"(k + divn)) 1 + (—Ej

AT = A, +6(A-6)t — (A -

E,=—(Et)t. (37)

), (38) Bk + divT) D, (43)
where A is an arbitrary vector field along with the curve. which satisfies

Thus, one can easily see that binormal-Rytov parallel trans- SN NN

ported law and Fermi-Walker parallel transported law in the By -E =-B-E, (44)
binormal direction of the electric field is interchangeable T -_Bo (45)
with each other. The proof is left to the reader since it is b

obvious from Egs. (3,33-38). - So, if we multiply both sides of the E¢(45) by T, then it
Now, we examine a very important consequence of t %an be verified thaB also satisfies the binormal- Rytov law

choge_ of the parallel trgnsp_ortatlon of the electrlc_fleld_vec with acquiring the same geometric phase as the electric field
tor E in the binormal direction along with the optical fiber =

in Minkowski_}space. A natural choice for the selection of the E in Minkowski space and we finally obtain
electric fieldE can be made by B,=—(Bt,)t. (46)

E = ,E"n + GE'D, (39) _ ,
4. Maxwell's equations for electromagnetic
WhereE" E? are arbitrarily smooth components of the waves propagating along the optical fiber in
and b vectors, respectively. The derivative of the electric Minkowski space
field E in the binormal direction yields that
Maxwell's equation has an important role to understand the

—E (s,n,0) = Ey = (7, — 7) E" + g25bsEb) t electromagnetic theory. It provides an exact comprehension
b and observation of the propagation of light along with the op-
+ (LLE} — LE (0K + divd)) 1 tical fiber. Electromagnetic waves propagated along the op-

) . = tical fiber satisfy the following conditions supposing that the
+ (6E) + HE"(Lik + divm))b. - (40)  fiber is uniform, isotropic, nonconducting, free-from charge,

and non-dispersive [17]
If E is assumed to be parallel transported in the binormal di-

rection along with the fiber, then comparing the Eq. (37) and V.-E = 0, (47)
Eq. (40) implies that N

V-B =0, (48)

o (E\ 0 —{3(k+div) [E" a1 _
ob \Eb | — \ ly(k+divT) 0 g ) (4D UxT - OE 49
. - 6U%7 ( )

Here if we also compare the Eq. (40) and Egs. (36,37) _
it yields ¢, = ¢, = 1 and/3 = —1, which implies that UxE - _3713. (50)

the curved patld representing the path of the optical filter ou
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wheree andv have the same values at all points, and theywhere it is assumed for the rest of the paper that= 1
do not depend on the direction of propagation since they artor the simple reason. From Eq&l5, 28,43, 50) ,we finally
not functions of frequency. In the previous section, we haveeompute that

already investigated that the curved péttwhich character-

izes the geometry of the optical fiber, is a spacelike curve —

having a timelike binormal both in the normal and binormal _9B —VXE = (78 + ﬁﬁ _ E’a> ~ ﬁ,

directions. Hence, for the rest of the paper, it is assumed that du s on 9b

{1 = ¢y = 1and/l3 = —1. From Eqgs. (14,25,40,47), we oB o o o

compute that 2 T IZE+ o x LE-_bx2E,
Ju ds on b

0=V.F = ?0+ﬁa_ﬁa)ﬁ,
which implies that

~ T 284w 28-7 UF,
ds on b OB - .
which implies that = (Eb —E'divb + E} — E’(k + divn)) t
E" — E! = —E"divT + E'divb. (51) (B B 6 )T
From Eqs.(15, 28,43, 48) , we compute that b —
+ (EY —mE” 4+ 0,,E")b. (56)
o-v.B-(t2+v2l_v2).8
N N 0s on Ob ’ _
Here we should recall thds, n, b) andu are space and time
0=t - QE’ +7- QE’ + b QE” variables, respectively. These subscripts also denote partial
S s on 9b derivatives. Nonlinear partial differential equation systems
which implies that are given by Egs. (51-54) and provide to investigate the
E! —Ep} = E"divb — EtdivT. (52)  significant connections between the geometry and nonlinear

: o . evolution of the given mechanism. Equations (55,56) rep-

If we further consider Eqgs. (51,52), then it is obtainedggent the geometrically observable time evolution systems
Laplacian-like formal equations along with the-lines and ot glectric field and magnetic field vectors along the opti-
b — lines of the electromagnetic waves as follows cal fiber governed by the Maxwellian equations. Character-
0% ., 0%, il T N izations of the time evolution of the unit Frenet-Serret vec-
WE B wE = E"((divb), - (div),) tors (t, T, b) and other geometric quantities will be the

brr . T o main subject of the next section. Even though we use the

+E((divb )y — (divi)n) Maxwellian equation to describe the evolution of the elec-

n divg(Ez +ED) — divm (EL + EP),  (53) tromagnetic wave along with the fiber, our 'investigatic.m can

easily be applied for quantum wave equations. In this con-

text, this study will lead to a positive and direct impact on the

research of the evolution of quantum particles.

P g~ P g B ((divE)s - (divE
2 T2 = ((divb )y — (divn)y,)
+EY(—(divb )y — (divE),)

+divb (EP + EY) — divn (E" + EL).  (54)
Detailed discussion on the exact solutions of this Laplacian-5' Maxwellian motion of Frenet-Serret vectors

like formal equations will be presented later in the applicaton ~ along with the optical fiber in Minkowski
section. From Egs. (14,25,40,49), we also compute that space

N A XA KA
Von VP Os +to am Pan) The research of the evolution of a space curve has produc-

tive applications in many branches of science. Equations of

_
LE v 98 LT x 98 _ ¥« Qﬁ, moving curves have been analyzed by using the representa-
Ju s on ob tion of Frenet-Serret orthonormal vectors and compatibility
which implies that equations on these vectors by many researchers. These equa-
PYo! - _ tions are mostly expressed by non-linear partial differential
ev— = (-E; + Eldivb — EZ +E"(k + divn)) t equations. Their main components are torsion and curvature
u functions of the curve. However, these representations of the
+ (E? — 1,E? — 6, E") moving curve are generally a challenging task. Here, we de-
, . T fine a new class of evolutions by considering the Maxwell’'s
+ (-E{+mE" — 6, E")b. (55) equation of the propagated electromagnetic waves along with
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the fiber in Minkowski space. Thus we aim to improve athe following manner
novel and special class of evolution kinematics.

Since(t, T, b ) is an orthonormal unit triad, it is canon- n, = <ap((E”) + (EY?) — E"(E" + E})
. [ s L e “ ob n b
ically true thatt - t = 1, which impliest,, - t = 0. Sowe
may assume that

—

—E"(E’,’L+E{,L)+2gp>?+l‘b,
mn

— — —
t,=a1n +axb. (57) — 3/)
b = (a2 + () - B(EL + B
We aIso know from the assumptlon thet- t = = 0, which 9
|mpl|esE .t =—E - t,. Soitis obtained that —E"(E + E}) + 285) t — Y,
o E" + apEY = —(—E" + E’divb whereT is an arbitrarily smooth function. Consequently, we

have the corresponding formula of the Maxwellian evolution

b n n g T
— By + £E" + E'divn). - (58) ot ihe Frenet-Serret vectors in Minkowski space

. . = — = — —
Now, if we consider the factthdB = t x E, then we ob- 9 t 0 r ¢ t
tain the Maxwellian evolution of electromagnetic fields in the u E: = —r 0 Y E’) , (62)
following manner “\'p g T 0 b
B,=t,xE+t x E,. (59) Where

1= g (o2 + (B?) - BB +

Hence, from Eqgs(55 — 57) , we obtain that

—~EYE! +E}) + 28”),

1 (9p 2 b\2
= — | — mn a
o = g (G + ) "
dp b2 b b
= E" E - E(E!+E
~E"(E! + E}) — E'(E}, + E}) + 22”), (60) e <8n(( f o4 (B — BA(E + B
mn
op
8/) b ErL(Eb +ETL) =+ 2)
= " ob
o2 =~ (G + (B
0 Here the matrix is not an antisymmetric form as expected due
—EYE" + E}) — E"(E? + E}) 4 2 82) (61)  to the characterization of the unit vector fields in Minkowski

space. This characterization is determined by the inner prod-
uct of unit vector fields given earlier as follows

where (9/db)p = (k + divT), (9/dn)p = divb, Q = SN - =
(E®)2 — (E™)2 (Q # 0). Here, we also obtain the following t-t=1,n-m=1b-b=-1
identity

E' LB mp— et G More details a_bout the consequences of this cha_ra_c_terization
s s — n__ns = can be found in [18]. If we assume that compatibility con-
E" + E? 2 ditions hold and consider the above characterization, then
the Maxwellian evolution of all geometric quantities given

by Egs. (5-13) and the arbitrary functidhis given by

whereE™ + Eb # 0. To sum up, in Minkowski space, the
Maxwellian evolution of the tangent vector is stated by

Ky =Ts+qT, Ty = Kq, T =0,

g 6p n b\2\ _ n n b
t, = (8b((E )2+ (E")?) — E"(E} + Ep) (Sns)u = T — qdivD ,
b b n p\— 0P xm by2 (mp = T)u = — —rdivb
—-E'(E, +E))+2— |n ——((E")* + (E")?) u= ~4n ’
on on N
8/’ ( ’Ub)u = (Wb—T)J"q(snm
_ mwbmn b n (b n
E’(E" + EL) — E"(E! + EJ )+2ab)b (Boe)u = —ao — (5 1 div ),
—T)y=—-1p—q(k+ divﬁ)),
Recalling thatt - mw =0andt - b = 0, we compute the
Maxwellian evolution of the normal and binormal vectors in (k + div), =105 — q(my — 7).
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The above system may be considered as Mainardi-Gausghere
Codazzi equations for surfaces parametrized with anholo-

nomic coordinates. For a given solution of this system, the (y) = _é 2 (-1 ) — (cq4—ca )
evolution equations presented by (1-3,62) are compatible and =3 30 ~y :
may define a surface up to their position in space. ol
Bl(’Y) = 7% [Qi(cg _ Cl,—) JrZ.(64 62,—)} 7

6. Application: Soliton solutions of Laplacian- ) 7

Like formalism of electromagnetic waves C1 () = 2% 2 (cs+ 1) + (ca + 62,+)]

along with the uniform optical fiber 8 ’ v ’

1

The research of the traveling wave transformation of nonlin- Di(y) = 24 {21 (c3+c1y)— (044'62#)]
ear evolution equations (NLEE) plays an important role to 8 v
examine the internal mechanism of sophisticated nonlinear
physical phenomena. Most of the physical phenomena, in2"
cluding plasma physics, quantum mechanics, fluid mechan- i id
ics, propagation of shallow-water waves, chemical kinemat- wz = Az(7)e"” + Bay(y)e™
ics, optical fibers, electricity, and magnetism are modeled by + Cy(7)e® + Dy(y)e %, (67)
NLEEs. The presence of wave solution displays a consider-
ably higher rate of recurrence in nature. However, nonlineaj, hare

cases are challenging, and they are not easy to control since

change of the systems. Therefore, advanced nonlinear tech- As(y) =—

the nonlinearity of the mechanisms may cause an unexpected 2% {
8
nigues have been developed by many authors to compute the ) 7
exact solutions of NLEEs. 21 [ 1 (ca —cat)
In this section, we recall the fundamental steps of the Ba(7) = 8 {24(61 —C34) Hi ~ '

traveling wave hypothesis approach. Thus we aim to obtain N
exact traveling wave solutions of the Laplacian-like formal Co(y) = 21 [2}1(01 s )+ (c2 + 64,+)] ’
equations given by Egs. (53,54) for some special cincum- 8 ' 2
stances. We also provide numerical simulations to support 1

. 21 1 (02 + C4.-‘,—)
analytic outcomes. Dsy(v) = 5 24(c1 + 3 ) — ——— .

For simplicity, let assume that electromagnetic waves v
along Fhe umfor_m optical f|b_er satisfy the following nonlinear Here it is also considered that
evolution equation system induced by the Egs. (53,54)
O’E"(n,b) _O°E"(n,b) _ o, b cie = ¢i(V2 £ 1) andg, = 217
on? - ob2 =E (na b) +E (TL, b)7 ik Z( ) (b’\/ ’Y(b
0’E’(n,b)  0’Eb(n,b) n b

oz o B (b)) —Enb). (83) 7 Conclusion
We consider the given below traveling wave transformation
for the Eq. (63) We have examined the geometric evolution of the electro-

n magnetic waves carried by the light propagating along with
E"(n,0) = wi(¢), E"(n,b) =wa(9), the uniform optical fiber in Minkowski space. We firstly re-
é=n—Qb, (64) call a classical method to find the geometric phase of the
propagated light along with the fiber in Minkowski space. By
using this straightforward approach, we define two novel ge-
ometric phases associated with the evolution of the polariza-

where @) describes the speed of the wave. If we plug the
Eq. (64) into the Eqg. (63) then it is obtained that

7w'1/(¢) — w1 (8) — wa(g) =0, tion vegtorslln the normal a_nd blnprmal d|rept|ons _along with
04 the optical fiber. We also give their connections with parallel
1, transportation laws in Minkowski space. Then we consider
S22 (¢) — wi(¢) +wa2(g) = 0. (65)  evolution equations of the electric field and magnetic field

> vectors along the optical fiber governed by the Maxwellian
wherey = 1/1/1 — Q. If we further solve the Eq. (65) by equations. Hence we obtain formal definitions of the time

the Mathematica, we compute that evolution of the unit Frenet-Serret vectqrs , @, b ) and
wy = A1 (7)€’ + By(y)e associated geometric quantities. Once the evolution equa-
tions of quantum or non-quantum systems are described one
+C1(v)e” + Di(y)e %, (66)  knows that many interesting soliton equations can be related
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to these evolution systems. This fact also holds not only in thas inextensibility conditions of Maxwellian evolution equa-
ordinary space but also in other spacetime structures, includions, creating Maxwellian envelope surface, etc.

ing ordinary space, De-Sitter space, anti De-Sitter space, etc.
For further research, we aim to connect Maxwellian evqu-A
tion equations with well-known completely integrable equa-

servations and obtained results propose possible applicatiop$ our manuscript and their many insightful comments and
and new research areas also in pure geometric research sughygestions.
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