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In this study, we have investigated the structural, electronic, and magnetic properties of;Ma@VRp compound. We have performed

our calculations by the use of first-principle methods based on spin-polarized density functional theory, where the electronic exchange-
correlation potential is treated by the generalized gradient approximation GGA- PBEsol coupled with the improved TB-mBJ approach. The
calculated structural parameters of RlaVFs are in good agreement with the available experimental data,N&bF; exhibits a half-

metallic ferromagnetic feature with a spin polarization of 100% at the Fermi level and a direct large half-metallic gap of 3.582 eV. The total
magnetic moments are . This material is half-metallic ferromagnets, and it can be potential candidates for spintronics applications at a
higher temperature.
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1. Introduction a half-metallic gagi 75, = 1.98 eV [10]. A. Rafiet al. stud-
ied the perovskite selenide and tellurite compounds CgSeO

CoTeQ;, NiSeQ;, and NiTeQ [11]. The half-Heusler Alloy

Spintronics is the investigation of the fundamental spin of thq\/lgCaB has been investigated by A. Abada [12], with a value
electron and its combined magnetic moment, adding to its e G 11ar Of about 0.305 eV ' '

sential electronic charge, in solid-state devices [1]. Further- . . . .

more, to charge state, electron spins are used as a further de- Th's aim of this wprk Is to predlgt the struptural, elec-
gree of freedom, with employment in the performance of datéron'c' and _half-met_alllc ferromagnetic propertle_s of quater-
storage and transfer. Spintronic devices are almost frequentr' y _vanadmm ﬂuorn_je R“’ma\/'.:ﬁ‘ we have_useq n our cgl-
synthesized in dilute magnetic semiconductors (DMS), Per_ulatlon the generalized gradient approximation functlongl
ovskite, and Heusler alloys and are of exceptional attractiorfGGA'PBESOl) [13] and Becke-Johnson exchange potential

in the field of quantum computing and neuromorphic comput 14] W.'th Tran-Blaha modified Bgckg—Johnson (TB-mBJ)
ing [2]. Spintronics is a field of study in which, researcherspOtentIaI [15] based on fuII-potenUgI I!nea_mzed_au_gmented
are looking for materials to ameliorate the accomplishmenplame'\’vave (FP-LAPW) method within first-principle ap-
of their electronic and magnetic properties and get a larg roaches of gpm—pola_rlzed density functional theory (SP-
half-ferromagnetic (HM) gap(@ 1/). The HMi.e., spin-flip FT) .[16]. This article is redacted as follows: In Sec. 2, we
excitation, gap is identified to be the least possible energ escribe the method of the calculation. In Seq. 3, we demon-
with respect to the Fermi level of the majority (minority) trate the deta_lls of the coIIect_ed results_ and discuss the struc-
spin between the minimal energy of the conduction band%ural’ electronic, gnd magnetic propertles of thQMVFG

and the absolute value of maximum energy of the Valencgompound. Section 4 summarizes the key findings of our
bands [3,4]. Last decade, several experimental and theoreffi"ent research.

cal research have been developed for this purpose. Recently,

multiple works have treated the magnetic properties of the

binary semiconductor I1I-V and II-VI doped by transition el- 2. Computational method

ements, Mn-doped InSb [5], Cr doped InSb [6], V doped GaP

[7], Co-doped ZnS and (Al, Co) co-doped [8], and Mn-dopedin this study, we have utilized the FP-LAPW method based
ZnO [9]. Shabiret al. studied the double perovskites sys- on SP-DFT [16] as realized in the WIEN2K software [17,18]
tem BgaCoUQ; and report half-metallic comportment, with to predict the structural, electronic, and magnetic properties
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TABLE I. Rb, Na, V and F atoms positions.

Atoms Position
X Y z
Rb Atom 1 0.250 0.250 0.250
Atom 2 0.750 0.750 0.750
Na Atom 1 0.500 0.500 0.500
Atom 1 0.000 0.000 0.000
F Atom 1 0.230 0.000 0.000
Atom 2 0.770 0.000 0.000
Atom 3 0.000 0.230 0.000
Atom 4 0.000 0.770 0.000
Atom 5 0.000 0.000 0.230
Atom 6 0.000 0.000 0.770

ride RbbNaVF; crystallizes in the cubic NaCl (B1) structure

. . with a space group of (FBm) (no. 225). Figure 1 and Ta-
FIGURE 1. Crystal structure of quaternary vanadium fluoride ble | exhibit the crystal structure and the Rb, Na, V, and F
Rb;NaVFs. atoms positions of RiNaVFg, respectively. We have opti-
mized the RBNaVFg, with and without spin-polarized calcu-
lations. We have computed the total energies corresponding
%0 the unit cell volumes and fitted to the Birch-Murnaghan'’s

of quaternary vanadium fluoride RaVFs;. The structural
properties are predicted by applying the GGA-PBEsol [13],

while the electronic structures and magnetic properties ar . . -
calculated with GGA-PBEsol along with TB-mBJ exchangeequat'on of state (EOS) [21] to verify the phase s_tab|I|ty of
the compound. And evaluate the structural properties such as

tri)g:]egg?;}r:r;:gszzsttﬁglﬁgihg\zg;:Ah_%s_(eln(t}f(lizililg\;\ﬂggpcl:;:‘;uIa—the equilibrium lattice constant, bulk modulusB and the
wave cut-off, and RMT is the smallest of all atomic sphere
radii). The Fourier expanded charge density was limited at Non Ferromagnetic curve|Rb,NaVF,
Gmax = 12 (Ryd)'/2, thel—expansion of the non-spherical 15335.48 - Ferromagnetic curve
potential and charge density was performed uf,tg = 10.

The cut-off energy is set to -7 Ryd to separate the core from _ 15335501
valence states. The muffin-tin radii (MT) for Rb, Na, V and &
F to be 2.50, 1.98, 1.78 and 1.69 atomic units (a.u.), respec-g
tively. The iteration process is repeated until the calculated g -15335.54 4
total energy and charge of the crystal converge to less thar
0.0001 Ryd and 0.001e, respectively.

-15335.58 - \/
3. Results and discussion -15335.60 -
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850 900 950 1000 1050 1100 1150

-15335.46

-15335.52 4

-15335.56

3.1. Stability and structural properties
Volume (a.u®)

In 1966, R. Hoppe studied the crystallography of the com-Ficure 2. Volume optimization curve of quaternary vanadium flu-
pound RBNaVFg [19,20]. The quaternary vanadium fluo- oride ReNaVFs.

TABLE Il. Calculated lattice constant), bulk modulus (3), pressure derivativdd’, minimum equilibrium energy,, and equilibrium
volumeV, of Rb;NaVFs.

a(A) B (GPa) B’ EnergyE, (Ry) VolumeV, (a.lf) character
8.4499, 8.46 [19,20] 69.4580 5.2094 -15335.605695 1017.8553 Ferromagnetic
8.4339, 8.46 [19,20] 70.7549 4.6757 -15335.536252 1012.1034 Non-magnetic
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bulk modulus pressure derivativ#, the inspected structural gap Guayr) and the half-metallic gapGruas), Gumr
constants of RENaVF; are recapitulated in Table Il, our re- is the energy difference between the valence-band maxi-
sults are in good agreement with the obtainable theoreticahum (VBM) and conduction-band minimunCga,) [4].

and experimental data. By comparing the two curves, it is obRb;NaVFs compound has a direct half-metallic ferromag-
vious that the ferromagnetic curve is below the non-magneticetic gap af” — I" of 7.837 eV and large half-metallic gap
curve, which indicates that the RBaVFs structure is stable atI’ —I" high-symmetry point of 3.582 eV. The non-zero val-
in ferromagnetic phase. The energy verses volume curves ates of the half-metallic gap for RhaVF; demonstrate it to

shown in the Fig. 2. be true half-metallic ferromagnets and making it promising
materials for employment in spintronic applications.
3.2. Electronic, magnetic properties and half-metallic To know the origin of the ferromagnetic and the half-
comportment metallic behavior, we have calculated the densities of states

In this section, we have predicted the electronic band struc(—DOS.). around the Fermi level (EF). Fig. 5 shows the total
. .. densities of states of RhlaVFs, Rb, Na, V, and F atoms. We

ture, total (TDOS), and partial (PDOD) densities of states” . . . .

for Rb,NaVFs, using GGA-PBEsol [13] accompanying with notice that the total density of states (TDOS) is symmetrical

(TB-mBJ) of Tran-Blaha modified Becke-Johnson approxi-

mation [14,22]. Figures 3 and 4 exhibit the band structure 0 - T

of Rb,NaVF; for spin-up and spin-down, respectively. It is 1 Spin-ue

apparent in Fig. 3 that the highest valence band is above the 30 - ‘

Total|Rb,NaVF

—

Fermi level, hence the metallic behavior of the structure. For

—F
Na
—V
Fig. 4, we mark two gaps, the half-metallic ferromagnetic % 204 : Rb
10 g 10
— ‘
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FIGURE 6. Spin-polarized partial densities of states (PDOS) of
FIGURE 4. Spin-down band structure obtained with TB-mBJ for Rb:NaVFs. The Fermi level is set to zero. (vertical dotted red
Rb:NaVF. line)
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TaBLE Ill. Calculated total and local magnetic moments of the relevant Rb, Na, V, and F atoms and in the interstitial sites (in Bohr magneton
1B) for Rb;NaVFs.

Compound Total/B) Rb (uB) Na (uB) V (uB) F (uB) Interstitial (uB)
Rb;NaVFs 2.00001 0.00018 0.00009 1.71792 0.00495 0.25194

TABLE V. Calculatedp — d exchange splitting\? (pd) = E} — E] andAS(pd) = E* — E!, and exchange constam&a and Ny 3 for
Rb;NaVFs.

Compound A% (pd) (eV) AY(pd) (V) Noa NoB
Rb;NaVFs 3.584 0.013 41.724 0.151

except at Fermi level (0 eV) for spin-up and 3.618 eV forexchange constanfg,« (conduction band) and the— d ex-
spin-down. The total densities of states are dominated by Rbhange constan¥,3 (valence band).

between the energy from -11.102 and -10.694 eV, and at en- Both Nyja and Ny 3 parameters are calculated employing
ergy more than 8 eV. While the F dominates at an energyhe mean-field theory whose expression is as follows [24,25]:

between -6.476 and -4.190 eV. Moreover, V dominates the AE,
peaks, which are at the energies 0, 3.618, and 4.380 eV. The Noa = m, (2)
half-metallic nature can be seen in the channel spin-down.
To comprehend the source of the half-metallic gap and the _AE,

. . . N()ﬁ - 9 (3)
half-metallic ferromagnetic gap we have plotted the partial x(s)

densities of states. Figure 6 represent the partial densiti§Share A, — E! — ET is the conduction band-edge spin-
of states of RbNaVF;, the p_ike located at the 0 eV (Fermi splitting andAEUcz E{_ E] is the valence band-edge spin-
level) and 3.618 eV are mainly formed by tBQ —t2g (V) splitting of Rb,NaVFs at high symmetry poink. (s) is the
and 2p (F) states. The TDOS of f¥aVF; depicted asym- ¢ ota] magnetic moment per vanadium atom arid the
metrical states of spin-up and spin-down due t0 SteRGd ;o centration of V in the structure. Table IV exhibits the cal-
hybridization between thep (O) and3d — 12g (V) states o aed, — 4 exchange splitting and exchange parameters.
around the Fermi level for the majority-spin direction. This 1,5 ositiveN, o constant indicates the ferromagnetic cou-
hybridization occurs mainly at the top _Of the majorlty-spln pling between th&d states of V and conduction bands. Also,
valence bands and crosses the Fermi level, leading to thge have calculated an important property of spin-polarized
.met.alhc nature for Ry\IaVH; comppunds, W|th_sp|n polar- materials, thed? (pd) and A< (pd) parameters, which deter-
ization of 100% by using the following expression [23]: mines the attraction character in the RaVF;. However,
N 1 (Ep)— N | (Er) the positivity A? (pd) of Rb;NaVFs structure means that the
p= x 100%, potential of minority spin is effective compared to the major-
100% () ial of minori in is effecti d to th j
NT(Er)+N | (Ep) ity spin [26,27].

whereP is the spin polarizationN 1 (Er) andN | (Er)

are the densities of states of the majority spin and minorityd. Conclusion

spin around the Fermi level, respectively. Table Il display

the total and local magnetic moments ofRlaVF;. Toin-  We have theoretically calculated the structural, electronic,
terpret the implications of the— d interchange phenomenon and magnetic properties of the cubic Rb2NaVF6 system, us-
on the magnetic behavior, we have calculated the total and long the density functional theory and it is concluded that:

cal magnetic moments of the Rb, Na, V, and F atoms as well
as the interstitial sites. The results exhibit the total magnetic
moment for the RENaVF; compound was around B, usu-

e The lattice constant is in good agreement with the ob-
tainable experimental data.

ally caused by the V atoms’ the local magnetic momeait. e Rb,NaVF; is metallic for the majority spin states
(V) majority-spin states, which are partially occupied with while semiconducting for the minority spin state with
three electrons, resulting in a total magnetic momentoB2 a direct large half-metallic gap of 3.582 eV.

Otherwise, the calculated magnetic moment of the V atom is
reduced to 1.71792B and minor local magnetic moments
are induced at Rb, Na, F, and interstitial sites overdue to the

e Rb,NaVF; exhibits 100% spin polarization at the
Fermi level (EF).

p — d exchange interaction betweeén (F) and3d — t2¢g(V) e The RipNaVF; compound can be used in spintronic
states. Important parameters established on band structures  applications and can operate at a higher temperature
such agp — d exchange splitting have also been calculated, due to its half-metallic properties and with a wide
A¢(pd) = E} — El andA¢(pd) = E} — E] and thes — d bandgap.
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