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Correspondence between formulations of Avrami and Gompertz
equations for untreated tumor growth kinetics
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The classical and modified equations of Kolmogorov-Johnson-Mehl-Avrami are compared with the equations of conventional Gompertz and
Montijano-Bergues-Bory-Gompertz, in the frame of growth kinetics of tumors. For this, different analytical and numerical criteria are used
to demonstrate the similarity between them, in particular the distance of Hausdorff. The results show that these equations are similar from
the mathematical point of view, and the parameters of the Gompertz equation are explicitly related to those of the Avrami equation. It is
concluded that Modified Kolmogorov-Johnson-Mehl-Avrami and Montijano-Bergues-Bory-Gompertz equations can be used to describe the
growth kinetics of unperturbed tumors.
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1. Introduction

The classical Kolmogorov-Johnson-Mehl-Avrami (KJMA)
and modified Kolmogorov-Johnson-Mehl-Avrami (mKJMA)
equations are used firstly to fit experimental data of untreated
Sa-37 fibrosarcoma tumor that grows in BALB/c/Cenp mice
and agree with the Gompertz and Logistics conventional
equations [1]. Recently, it has been proposed a new equa-
tion to describe data of the unperturbed Ehrlich and Sa-37
fibrosarcoma tumors based on the conventional Gompertz
(CG) equation, named Montijano-Bergues-Bory-Gompertz
(MBBG) equation (we refer the reader to see equations (8)
and (9) in [2]).

The parameters of the CG equation are related to biolog-
ical processes and the tumor fractal properties. The parame-

ters of Avrami formulations (KJMA and mKJMA) have been
associated with structural changes; diffusion, heterogeneity,
and anisotropy processes; fractal, mechanical and electrical
properties. The MBBG equation links explicitly the param-
eters of the CG equation with fractal dimensions of the tu-
mor mass and its contour. The correspondence among these
models guarantees that they may be indistinctly used to fit
untreated tumor growth kinetics (TGK), and reveals cancer
intrinsic findings. Additionally, this correspondence allows
to explicitly relate parameters of each model. The later may
reveal if the parameters of the CG equation are merely related
to biological processes or other physical processes. There-
fore, this study aims is to demonstrate the correspondence
between these four Avrami and Gompertz formulations for
TGK. Relationships between the coefficients of the KJMA
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and mKJMA equations and those of the CG and MBBG equa-
tions are reported.

2. Models

To demonstrate the correspondence between Avrami and
Gompertz formulations, KJMA Eq. (1), mKJMA Eq. (2), CG
Eq. (3) and MBBG Eq. (4) are used in this study.

p(t) = 1− e−(Kt)n

, (1)

p(t) = 1− [1 + (λ− 1)(Kt)n]−1/(λ−1), (2)

V (t) = V0e
α
β (1−e−βt), (3)

V (t) = Vobs

(
V0

Vobs

)e−βt

e
α
β (1−e−βt). (4)

Herep(t) represents the fraction of cancer cells that pass to
the solid tumor phase at timet andK, n andλ parameters
are tumor growth rate, Avrami coefficient, and impingement
mechanisms, respectively. ParametersV0, Vobs, andV (t) rep-
resent the initial tumor volume att = 0, the tumor volume
observed for its latency time, and the tumor volume at each
instant of timet, respectively. The parameterα is interpreted
as tumor growth rate, andβ has been connected with endoge-
nous anti-angiogenesis mechanisms [1].

2.1. Correspondence between Avrami and Gompertz
formulations

To establish the correspondence between Avrami and Gom-
pertz formulations we must make a linear transformation to
V (t), becomingq(t), so that it takes values between 0 and
1, asp(t) does. This may be argued because KJMA and
mKJMA are normalized between 0 and 1, as reported in [1].
Then,q(t) may be defined as

q(t) =
V (t)− V0

V (∞)− V0
,

whereV (t) may be any of two Gompertz formulations (CG
and MBBG), andV (∞) means mathematically the tumor
volume as the timet goes to infinity. By bio-ethical aspects,
V (∞) coincides with the tumor volume that does not exceed
10% of the bodyweight [1–3].

The linear transformation performed guarantees thatp(t)
andq(t) have the same domain[0,∞) and the same set im-
age [0, 1]. So, it is possible to find some relationship be-
tween the parameters of these models so that their respec-
tive growth curves do not differ significantly. To measure the
distance between the two curves, we will use the Hausdorff
distance. Letd(x, y) be a distance inR2 and consider the
graph of functionsp(t) andq(t) given by{(t, p(t)), t > 0}
and{(τ, q(τ)), τ > 0}. The Hausdorff distance is defined as

dH(p, q) = max{d1, d2}, (5)

where

d1 = supt>0 infτ>0 d((t, p(t)), (τ, q(τ))),

d2 = supτ>0 inft>0 d((t, p(t)), (τ, q(τ))).
(6)

Sincep(t) andq(t) have a point of inflection, to get close
functions, we can study the conditions on the parameters of
the functions for which they have the same inflection point,
that is, at the same timeτ p(τ) = q(τ) and for both functions,
the second derivative vanishes att = τ . For CG equation we
have

d2

dt2
q(t) = 0 ⇒ t = τ =

1
β

log
(

α

β

)
,

q′(τ) =
βeα/β−1

eα/β − 1
, q(τ) =

−1 + eα/β−1

eα/β − 1
,

while for MBBG equation

d2

dt2
q(t)=0 ⇒ t=τ=

1
β

log
(

α

β
− log

( V0

Vobs

))
, q(τ) =

−V0 + e
α/β+ α

−α+β log(V0/Vobs) Vobs

(
V0
Vobs

) β
α−β log(V0/Vobs)

Vobseα/β − V0
,

q′(τ) =
βe

α/β+ α
−α+β log(V0/Vobs) Vobs

(
V0
Vobs

) β
α−β log(V0/Vobs)

Vobseα/β − V0
.

Given fixed values ofα, β (andv0, vobs) we obtainτ , q(τ)
andq′(τ). It is required for KJMA to find values ofK andn
that makep(τ) = q(τ) andp(t) also has a point of inflexion
at τ . This implies that

d2

dt2
p(t) = 0 ⇒ t = τ =

1
K

(
n− 1

n

)1/n

, (7)

p(τ) = 1− e−1+1/n = q(τ), (8)

Eq. (8) and Eq. (7) give

n =
1

1 + log(1− q(τ))
, K =

1
τ

(
n− 1

n

)(n−1)/n

. (9)
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As 0 < q(τ) < 1, it follows thatn > 0 only if 1 − q(τ) <
1/e, and in this case,n > 1.

As mKJMA equation has three parameters, it is assumed
thatp(t) andq(t) have a point of inflection at timeτ such that
p(τ) = q(τ) andp′(τ) = q′(τ) at same timeτ . Note thatτ ,
q(τ), andq′(τ) can be expressed in terms ofα, β, v0, and
vobs parameters. Thus,

d2

dt2
p(t) = 0 ⇒ t = τ =

1
K

(
n− 1

n + λ− 1

)1/n

,

p(τ) = 1−
(

nλ

n + λ− 1

)−1/(λ−1)

= q(τ), (10)

p′(τ) =
n− 1

λ

1
τ

(1− p(τ)) = q′(τ). (11)

From Eq. (11) and Eq. (10) we deduce respectively that

n = 1 + λ
τq′(τ)

1− q(τ)
,

nλ

n + λ− 1
= (1− q(τ)1−λ.

Substituting the value ofn in the second equation yields

1 + λ
τq′(τ)

1− q(τ)
− (1− q(τ) + τq′(τ))

(1− q(τ))λ
= 0, (12)

which constitutes a non-linear equation inλ of the form

f(λ) = a + bλ + cλ = 0

with a = 1/(1− q(τ) + τq′(τ)), b = τq′(τ)/(1− q(τ))(1−
q(τ) + τq′(τ))) andc = 1/(1− q(τ)).

Since0 ≤ q(t) < 1 and q′(t) > 0, then c > 1 and
b > 0. This implies thatf(λ) tends to−∞ whenλ tends
to ±∞. Besidesf ′(λ) has a single root (corresponding to a
maximum off andf(1) = 0. f(λ) has exactly two roots on
λ. If b − c log(c) > 0, another root off is greater than 1.
Otherwise, the other root would be less than 1.

Givenα, β, vobs andv0 (or α, β andv0) such that

τq′(τ)
(1− q(τ))(1− q(τ) + τq′(τ)))

> − log(1− q(τ))
1− q(τ)

,

then there exist values ofn, λ andK given byλ solution of
Eq. (12) greater than 1,

n = 1 + λ
τq′(τ)

1− q(τ)
, K =

1
τ

(
n− 1

n + λ− 1

)1/n

. (13)

The above remarks reveal some fine aspects of this anal-
ysis. First, the condition thatp(t) andq(t) have an inflection
point at the same valueτ is very restrictive. Second, given
q(t), it is not always possible to find a functionp(t) that meets
the above conditions. Third, the functionp(t) obtained under
the above requirements does not have to be closer enough to
the given functionq(t). These difficulties disappear entirely
if we search for the parameters that make minimum the Haus-
dorff distanceminn,K,λ dH(p, q). In this case, the values of
these parameters cannot be calculated analytically but be so
numerically.

2.2. Simulations

For simulations,α = 1.2 days−1, β = 0.2 days−1, v0 =
0.05 cm3 andvobs = 0.015 cm3 are used [2]. A computer
program is implemented in the MatlabR software (version
R2012b 64-bit, Institute for Research in Mathematics and
Applications, University of Zaragoza) to calculate numeri-
cally the values ofn,K andλ.

3. Results

Figures 1a) and 1b) show the comparison between MBBG
(in red color) and KJMA (in black color) functions. Fig-
ure 1a) reveals that there is a small difference between these
two functions for the value ofdH(p, q) obtained from the val-
ues ofn andK with the use of Eq. (9), as shown in Table I.
Nevertheless, both functions coincide whendH(p, q) is min-
imal, see Fig 1b), a condition that is reached for the values
of n andK displayed in Table I. Besides Figs. 1c) and 1d)
reveal that there is a good agreement between MBBG (in red
color) and mKJMA (in black color) functions. Figure 1c)
is obtained for values ofn,K andλ obtained from Eq. (13)
(Table I). These two functions are practically identical when
dH(p, q) is minimized (Fig. 1d)), resultingn,K andλ values
that are exhibited in Table I.

Results of Fig. 1 and Table I are valid for the values of
α, β and Vobs fix in MBBG equation. Nevertheless, they
can be numerically validated for any permissible value of
each of these four parameters. Therefore, range of values
of α ∈ [0.1, 4], β ∈ [0.1, 1] andVobs ∈ [0.01, 0.1] are also
used in this study. The most unfavorable case occurs for the
maximum value of the minimum distance ofdH(p, q) [4, 5],
given by

TABLE I. Hausdorff distances between the curves. Hausdorff distances between the MGE curve given by the parametersα = 4.0 days−1,
β = 0.1 days−1, v0 = 0.05 cm3, vobs = 0.15 cm3 and the corresponding KJMA and mKJMA curves.

Curve dH (cm3) n K (days−1) λ

KJMA from (9) 0.07179 1.84450 0.07136 –

KJMA with minimumdH distance 0.02585 2.20672 0.07139 –

mKJMA from (13) 0.01423 2.87823 0.08199 1.64668

mKJMA with minimumdH distance 0.00265 2.74564 0.07954 1.45667
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FIGURE 1. a) KJMA and MBBG equations according to Eq. (9). b) KJMA and MBBG equations with minimal Hausdorff distance.
c) mKJMA and MBBG equations according to Eq. (13). d) mKJMA and MBBG equations with minimal Hausdorff distance. MBBG
equation is identified in red color whereas both Avrami equations are displayed in black color. Simulations are made forα = 1.2days−1,
β = 0.2 days−1, v0 = 0.05 cm3 andvobs = 0.15 cm3

max
α,β,V0,Vobs

min
λ,K,n

dH(p, q).

This maximum value isdH(p, q) = 0.00975 cm3, ob-
tained for α = 4.0 days−1, β = 0.1 days−1, V0 =
0.05 cm3, Vobs = 0.15 cm3, λ = 2.468, K =
0.0875 days−1 andn = 2.689.

4. Discussion

Numerical results confirm the fractal nature of the Gompertz
and Avrami formulations, as in [2, 7]. Besides these results
demonstrate the existence of a good correspondence between
them, and their parameters are closely related, unprecedented
in the literature. Despite this, the KJMA equation cannot be
used in the experiment becausedH > 0.05 cm3 (minimum
mensurable volume), the value from which there are signifi-
cant differences for the tumor volume, in agreement with the
experiment [1].

Simulations demonstrate thatdH(p, q) increases when
the ratioα/β increases so that the most unfavorable case is
obtained whenα is maximum andβ is minimum, meaning
that TGK is an exponential and not a sigmoid, in contrast

with the experiment [1–3,6] studies. From biological point of
view, this means that the solid tumor grows instantaneously,
and its size would be very large respect to organism size, an
aspect not observed in preclinical and clinical studies. For
this extreme case, the variation ofdH(p, q) is not affected
whenVobs is varied in the range above-mentioned.

The results of this study reveal for the first time in
the literature that: 1) there is a close relationship among
n, K, λ, α, β, Vobs/nobs, cell loss mechanisms, the mass
and the contour fractal dimensions of the tumor, indicating
that n,K andλ depend on the tumor fractal dimension. 2)
α andβ kinetic parameters are not biological in nature but
they and TGK are governed by tumor mechanical properties
(i.e., Young modulus), heterogeneity, anisotropy, heteroge-
neous nucleation mechanisms, change of geometry and dy-
namic structural transformations that happen during the tu-
mor growth. This may suggest thatα andβ kinetic param-
eters, angiogenesis process, heterogeneity, anisotropy, hard-
ness, irregular shape and edge, cell multiplication, metastasis,
tumor evasion mechanisms to the immune system, cell loss
mechanisms and other biological parameters involved dur-
ing formation and growth of a tumor emerge depending on
how the electrical and mechanical properties of the tumor are
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changing in time. All these aspects may be interrelated tak-
ing into account the results of [1,2]. The parametersn, K and
lambda in mKJMA are related with tumor structural changes
when this equation is used to describe Ehrlich and fibrosar-
coma Sa-37 TGK [1]. Besides it is explicitly demonstrated
that the parameters alpha and beta in the MBBG equation de-
pend onVobs/nobs, cell loss mechanisms, the mass, and the
contour fractal dimensions of the tumor (we refer the reader
to see Eqs. (9) for alpha and beta in [2]). As a result of these
associations among the parameters of MBBG with KJMA
and mKJMA, these non-linear and complex processes may
partially explain why current targeted cancer therapies have
not given the expected objective response (cancer complete
cure or its conversion into a chronic disease), in agreement
with [1,2,7–11].

Many experimental studies have been demonstrated that
the Gompertz model is more feasible to fit the tumor growth
kinetics. This finding has been proved in different tumor his-
tological varieties and host types [12–15]. That is why, we
do not use the Logistic equation in this study. Nevertheless,
Avrami coefficients may be related to those of other Gom-
pertz formulations following the ideas of this study. For this,
we must previously demonstrate that these formulations ade-
quately fit the experimental data that follow a sigmoidal be-
havior. In principle, the results of this study may be extended
to any biological systems (for example, microorganisms) or

non-biological system (for example, crystals), whose growth
kinetics are sigmoid.

It is expected thatn,K, λ, α andβ parameters and the
mass and contour fractal dimensions of the tumor involve
during the entire TGK are not constant in time but depend on
it. A further study is required to establish the temporal depen-
dence of each of these parameters. This may be transcendent
for chemotherapy and immunotherapy. Additionally, this
study and [1,2] add new contributions towards a better under-
standing of TGK and provides the basis to propose a person-
alized physical therapy addressed to the mechanical/electrical
properties of cancer. In conclusion, there exists a good cor-
respondence among mKJMA and MBBG equations from a
theoretical point and each parametern,K andλ of mKJMA
equation depend onα andβ parameters,Vobs/nobs, cell loss
mechanisms as well as the mass and the contour fractal di-
mensions of the tumor involved in the MBBG equation.
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