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The aim of this paper is to investigate the description ofgtlikeformed multiple-trapping equation for charge carrier transport in amorphous
semiconductors. We first modify the multiple-trapping model of charge carriers in amorphous semiconductors from time-of-flight transient
photo-current in the framework of thgderivative formalism, and then we construct our simulated current by using an approach based
on the Laplace method. It is implemented in a program proposed recently by [14] which allows us to construct a current usirgg the Pad
approximation expansion. Furthermore, we study the influence of the paranuétire ¢-calculus formalism on the drift mobility.
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1. Introduction The displacement of charge through a dielectric mate-
rial plays an essential role in a wide variety of electronics or

Quantum groups and quantum algebras have attracted mu#faging devices. A detailed understanding on the process dy-
attention of physicists and mathematicians recently. Ther@aMics can provide considerable information concerning the
had been a great deal of interest in this field, especially af_matgnal's electronic structure. Expenmentally, .the time ratg
ter the introduction of the-deformed harmonic oscillator. ©f displacement of charge, as well as the efficiency of their
Quantum groups and quantum algebras have found unege_neratlo_n by Ilght or energetlc electrons, has_been stuohed
pected applications in theoretical physics [1]. From the math!Sing & time-of-flight technique (for more detail about this
ematical point of view they are—deformations of universal t€chnique see Refs. [8-11]).
enveloping algebras of the corresponding Lie algebras, being |, ToF measurements, a semiconductor thin film is sand-
also concrete examples of Hopf algebras. When the deformggiched between electrodes and at least one of the electrodes
tion parametey is set equal to 1, we recover usual Lie alge-js p|ocking for carrier injection, and through one of the elec-
bras. The realization of the quantum algebra SU(2) in termgqqes a short light pulse of strongly absorbed light excites a
of the g-analogue of the quantum harmonic oscillator [2, 3]thin |ayer of electron-hole pairs. Depending on the polarity
has initiated much work on this topic [4-6]. Biedenharn andyt 4y applied electric field, either holes or electrons are drawn
Macfarlane [2, 3] have studied tliedeformed harmonic 0s- jntq the bulk. The carriers reach the opposite electrode in a
cillator based on an algebra gideformed creation and anni-  ansit timer,., which is easily identified as either a rapid drop
hilation operators. They have found the spectrum and eigenp, the transient photo-current in case of nondispersive trans-
values of such a harmonic oscillator under the assumptioBqrt or an inflection point in the double logarithmic plot of
that there is a state with a lowest energy eigenvalue. the transient photo-current in case of dispersive transport. In
In the last few yearsg—deformations have become a addition, a dispersive transport is the result of a broad distri-
topic of great interest and various applications have beebution of release times from localized states. This distribu-
found in several branches of physics, sucly-adeformation tion can arise from a sped of binding energies of traps (MT)
of the harmonic oscillator,q—deformed Morse oscilla- or from a distribution of hopping rates among iso-energetic
tor, classical and quantump—deformed physical systems, localized states. If it arises from hopping, dispersion occurs
Jaynes-Cummings model and the deformed-oscillator algesnly in the presence of an electric field. This is because, as
bra, g—deformed supersymmetric quantum mechanics, fopointed out by Schmidlin and Kastner [8, 9], the occupation
some modifiedg-deformed potentials, on the thermostatis- of the various states cannot change with time in the absence
tic properties of a-deformed ideal Fermi gag—deformed of the field since they are already in thermal equilibrium.
Tamm-Dancoff oscillatorsg-deformed fermionic oscillator When the field is turned on, the states are no longer in equi-
algebra, and thermodynamics, and finally on the fermionidibrium because their energies are altered, and the dispersion
g—deformation and its connection to thermal effective masdegins. For these reasons, the (TOF) measurement method is
of a quasiparticle (see Ref. [7] and references therein). a useful technique to evaluate transit time for mobile objects
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and is often used for investigating the charge carrier transposrred as an external force associated with the pote¥itial),
properties in various condensed materials including inorganigii) k2 = 0 corresponds to the important case of external con-
and organic semiconductors. The resulting transient currergtant force, and (iii) finallyk; = 0, corresponds to the so-
provides us with not only transit time but also information on called Uhlenbeck-Ornstein process. The Uhlenbeck-Ornstein
dynamical events in charge transport through a sample, sugirocess describes the stochastic evolution of particles under
as trapping and releasing of carriers in trap states, carrier dithe influence of friction. This process is stationary, Gaussian,
fusion, and percolation. and Markov, which makes it a good candidate to represent
Schmidlin and Noolandi [10, 11] proposed the multiple- stationary random noise [19, 20].

trapping model (MTM) to describe such dynamic events of  Thus, in order to realize the goals of this paper, we first
charge carriers in a sample with conventional sets of couplegtudy the usual caseg., without introducing any deforma-
kinetic equations for trapping and thermally releasing ratestion. Then, we consider and discuss the problem in the frame-
This method can reproduce the experimental current signaork of ¢-calculus.

L(t), if a subset of trapping- and releasing-rate parameters Thjs paper is organized as follows: after an introduction,
are suitably assumed. Thus, the MTM has been widely angle treat analytically the TOF measurements with the mul-
successfully used to analyze transient-current decays not Onfiyje trapping model (MTM) in Sec. 2. Then, in Sec. 3 we
in inorganic but also in various organic semiconductors. Theytend and study the (MTM) in the framework gtalculus

films include amorphous inorganic or organic semiconductormalism. The paper is ended by a conclusion provided in
tors, with adequate supposition of trapping and releasing paggc_ 4.

rameters in the form of continuous distribution of trap states
such as an exponential distributien®/#27 | a Gaussian dis-
tribution or other shapes of trap distribution. However, this .
method is applicable only when a shape of the trap distribu-z' Analytlca‘_l treatment ,Of the tOf_ measure-
tion is appropriately taken to describe the distribution of lo- ~ Ments with the multiple trapping model
calized states playing the major role in trapping events [12].  (MTM)
Naito et al., [13-16] have proposed a spectroscopic
method for extracting localized-state distributions from an2.1. Solutions of (MTM) equations via the Laplace
analysis of transient photo-current measured with transient  transform (LT)
photo-conductivity or the TOF technique using the Laplace
transform, within a multiple-trapping framework and by The continuity equations which define the multiple-trapping
means of appropriate approximations. Using a method basegtoblem are first formulated in the familiar context of an elec-
on the Laplace transform method, has a number of advarironic carrier moving through extended states with localized
tages when compared with other methods: (i) the localizedgap states acting as trays. Itis then shown that the same equa-
state distributions in materials exhibiting either nondispersivdions apply to any mobile entity which simply stops and starts
or dispersive transport are extracted, the analysis is comp@t random from a distribution of resting places. The proba-
tationally straightforward and rapid, and (ii) the localized- bility of generation per unit volume per unit time is denoted
state distributions are extracted from both pre- and postg., (x,t) = pod (t) 0 (x). Subsequent to generation, the hole
monomolecular recombination regimes of transient photodrifts (under the influence of an-directed electrostatic force
conductivity or from both pre- and post-transit time regimesel’, wheree is the fundamental electronic charge) toward a
of TOF photo-current transient, which hence leads to thesubstrate atr = L. At a point x, where the hole may be
measurement of a wider range of localized-state distributions:aptured and released from a trap, the appropriate continuity
After all this brief description, we are ready to expose theequations may be written [9-11]
objectives of our paper: encouraged by the fact thatgthe

deformed formalism has interesting and promising results in ~ dp (z, t) " Op; (0, t) ofy
physics (see [17] and references therein), we are in measure ~ gr Z ot +1pod ()0 (2) — o @
to do the following tasks (i) rewriting the (MTM) equations

i - i i Opi (z,t

in the framework of the-deformed formalism, and (i) then pi (z,t) _ wip (2,1) — yips (2 1) 3)

construct theoretically the deformed simulated currents: this ot
construction is given by using a program based on the& Pad ) ) ) _
approximation. This program allows us to obtain these curWherez is the distance from the illuminated surfaggy, t)

rents [18]. In all calculations, the electric field has the fol-@ndpi(z,t) are the local populations of the transport states

lowing form [19, 20] and trapi, andpy is the injected free carrier density per the
unit area. The delta functions define the initial condition for
§(x) = k1 — ko (1)  (TOF) experiment. The local flux of mobile holes may be

So far, the MTM equations with this type of the electric field written

have not been studied in the literature. From Ej, \ye no-
tice the following: (i)¢ () = —dV /dx can also be consid- fp=E&(x)p(2,1), (4)
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where¢ () is the electric field. The simplest form that can with k; = poF ,0 < ky < k1/L = poF/L, andty = L/k;
be given for this function is is the transit time of untrapped carrier. With the following
€ (@) = k1 — ko, (ks > 0). ) substitutionsy = ko L/k; < 1, Eq. [13) is rewritten, with

the new parameter, as follows
Now, using Egs.4) and 5), we obtain

m a(s)tg
Op (x,t) Op; (z,1) {1 - a)akl+1}
= — 7 + k: ,
8t Z at 2P I(S) — PpOkl ’ (14)
L a(s) + &
Op (z,1) 0
— (k1 = ko) 0 +pod (1) 0 (), (6) where the parameter contains the influence of both param-
Op; (z,t) etersk; andk,.
T WP (@,) = vipi (2, 1) - (@) In the limit case, wheré, — 0 (case of external constant

force), and by using that® = e*"*, we have

The delta function in Eq.6) defines the optical excitation for
the TOF experiment. These equations can be solved using

Laplace transforms under the initial and boundary conditions (1 ko k3

of p(z,0) = 0andp(0,¢) = 0.
The Laplace transform gf(x, t) is defined as

(o}

pacs) = [pGat)e ®
0
Using this definition, we obtain

(s o) 25 (5) pl ) = pod () (9)

with

Ey
S/L@dE k. (10)
0

s+ verBT

a(s)
Now, the general solutions @) are
als)
(1 k2g)%

11
k‘l — k‘g.]? ( )

p(z,s) = po

_ R _ eak(;) 1n(17%m) ~ 6_% e a(sztom
k1
ale) 4
(1 _ k2L> 2 () m(1-E)
k1
~ e_%Le_a"(‘:)L = et (15)
and consequently, boti1) and (14) become
p(w,5) = Poe 57, (16)
k1
€Po _
I(s) = (1 o). 17
() =5y (1 (17)

Therefore, we recover the usual form of charges and cur-
rents [10,11].

2.2. Results and discussion

In order to construct a current numerically, we proceeded

For a TOF experiment, the photo-current is given by [9-11] with the following steps: as well-known, the inverse Laplace

L

/ (k1 — kox) p (z,t) du,

0

e

1(t) = =

(12)

whiche is the charge of a carrier: this equation is transformed

into

L Ky
als) g
{1 - (1 - %L) e }
_ epoka (13)
L a(s) + ko ’

of a function is given by

1 c+ico
I(t)=— I stdt
0= 55 | T@erd

(18)

which I (s) is defined by Eq.X3). When we use the follow-
ing change of variableg, = st, anddz = sdt, the integral
becomes

’ .
c +i100

I(t)= ﬁ / I (;) e*dz.

¢/ —ico

(19)

To calculate the last integral we use the method exposed
in [18]. So, according to Eq10), the computed current can
be obtained as follows: (i) Firstly, we express the function
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e in its Pad approximation expansion: Radpproxima- tities used in the computation were;;, = 10~7 cmd/s,
tion of a function is somewhat similar to a Taylor series, ex-v = 10'2 s™', T = 300 K, and g (E) = 10!~ (F/kTo)
cept that the expansion is a ratio of two polynomials. (i) with k;, = 8.625 x 10~° eVK~! is the Boltzmann constant.
Secondly, we apply the Residue theorem to obtain the de- Now, we are ready to show and discuss all the results
sirable function,i.e., the computed current(¢). Thus, in  found by the program used to obtain our simulated currents.
our case, we calculated the inverse Laplace transform nu- Figure 1 shows the normalized photo-currents vs times in
merically, using the Padapproximation (a rational approxi- the (log-log) scale for different values of parametersand
mation with polynomials of 8-degree). The physical quan-ks or o = koL /k;.
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FIGURE 1. a) For different values dfy. b) For fixeda andTy < T'. c) For different values ok whereT, > T'. d) For different values of
whereT, < T'. e) For fixed value ofx andT, > T'. f) For fixed value ol and different values of Field. The normalized photo-currests
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In Fig. 1a), we present the normalized currents for fixedas
valuea = 0.5 and for various characteristic temperatufrgs Ll _q
It is clearly seen that the transient photo-current decreases Ingz = ——a % >0, (22)
with time. For non-dispersive transport, wifly = 250 K, —4
the transit time can be obtained at the intersection of the tran- =
sient photo-current with the time-axis. Similar results are ob- c(@) ={l+(1-qa}p, @R (22)
tained for dispersive transient photo-current. Now, for all thewhere[A]; = max {4;0} (1 + (1 — ¢) z > 0). Both equa-
temperatured; < 300 K, as shown in Fig. 1b), we observe tions can be rewritten as
that all the curves have typically the same behavior in pre- R
and post-transient regime. moo—d 1-a ¢ #1,2>0 (23)
Figures 1c) and 1d) depict the behavior of the currents Inz q=1,
in bothT < Ty andT > Ty interval of temperatures, and L
that for various values of: in this case, we specified two () _ {{1 +(1—qglz}™7 q#1, (z,q) €R, (24)

regimes: in the region wherg, > T, all the curves in both e (x) qg=1,

pre- and post transient regime are the same. In the other hand ) _ _ "
whereT), < T, these curves show that the form of the cur- where both equations are restricted to thef(_)IIowmg condition
rents in the pre-transient regime are identical contrarily to thd + (1 — ¢) @ # 0. Also, we have the following well-known
case of the post-regime where the difference becomes cleafélations:

Figures 1e) and 1f) illustrate the current transients at vari-
ous values of applied electric fields for a fixed value of the pa-
rametero. An interesting observation pointed out in Fig. 1f)  eq (z)eq (y) = eq (x +y + (1 — q) zy)
is that the inflection point is affected by the applied field. The _
transit time is much shorter than the mono-molecular recom- =cq(z®y), (26)
bination lifetime. In this case, the inflection points shift to- yhere (see Appendix A)
ward a shorter time regime by increasing the applied electric
field. This means that the inflection point is due to the transit r@y=x+y+(1—-q)xy. (27)
time. From these results, we can experimentally distinguish o
whether or not the inflection point is the charge carrier transitl N ¢-derivative obeys
time: if the inflection point becomes shorter with an applied
electric field, then the inflection point is charge carrier transit

time. Dy {f () g(x)} = Dy {f (2)} g (x)
+f(2) Dg{g(2)}, (28)

Ing (zy) =Inger +Ingy+ (1 —¢)Ingzlngy, (25)

e Leibniz rule

3. Solutions of a multiple-trapping equations

in the framework of ¢-deformed formalism o the chain rule

df
We aim in this section to discuss in the frame work of Dy {f(g(x)} = @Dq {g}- (29)

g-calculus the problem described by continuity equations o o
Egs. @) and B). We present in the Appendix A a survey The corresponding-integral is given by

of g-calculus algebraic properties. ()
f(x)dex = /7@:, (30)
o . /q 4 1+(1-q)x
3.1. ¢-derivative and ¢-integral with
The g-derivative, in the framework of the-calculus formal- o _ 1
ism, is defined as dg = }13;9[; Ga¥ =7 +(1—gq) zdx' (31)
—f(1 3.2. Solutions
Do () = tim L@ =1 (0)
R TSy Now, when introducing the-derivative formula, Egs. 2)
df (x and B) become
={1+(1-9dq} fd;)- (20) )
Op(x,t) ™ Opi (z,1)
The development of this framework gfdeformations in- ot Z ot +pod (1) 8 (2) =Dg fp, (32)
spired the definition of deformed expressions for the loga-
rithm and exponential functions, namely, #ogarithm and Opi(2,8) _ o 33
the g-exponential {-exponential Tsallis [19]), first proposed ot wip (1) = 7ipi (,8), (33)
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with
D@ =01+ 0-ga T2 @
and here
i (&) =y — ko) p a.1). (@)
Using Eqs.(84) and B5), Eq. 32) is transformed into
E”§”>=—§imﬁ§”—wl+u—qM}
x (—kgp (2,1) + (k1 — ko) 8péﬁ’ t))
+pod ()6 (x). (36)

By using the Laplace transform method, E86)(reads as

op(z, s)

1+ (1— - -
{1+ (= )} (ks — ko) P22~ {a(s)
— ko {14+ (1 —q)a}tp(z,t) =pod (x).  (37)
The solutions of Eq.37) are
a(s) k1—kox
ThpTa-ak a(s)In r5a—4ys
pOkl kot o* eXP< kg-f-(lt((])k]) >
p(z,s) = . (38)

k‘1 — kgx

In the limit case, where —, 1, we recover the Eql16).

where

_ a(s)
ko+(1—q)ky

Aq (S) = 76p0k£a (S)

_ kitkota(s)

(A=) - g\ 0k -
(k2 +(1—q) k1)2 ,

kiq
1—g¢ FFa-ak
By(s)=—(——1
(%) (k2+(1—Q)/‘~‘1>
_kitkota(s)
x(ﬂ+<1@LM1@> o,
k2+(1—q)k1 ’

(43)

kitkota(s)

Cq(s)=(-1+(-14q)L) (M) SxeEnta

» ((1+(1q)L)(1q)>k2+mm7

ko+(1—q) k1 (44)
with
Gmby =) (45)
1 1 k2+(1*q)]€17
. a(s) B ko
a=1 kg"—(l—q)kl’ dl_k‘2+(1—q)k‘1’
_k(1+(1-q)L)
b2 = ko + (1 —q) ks (49)

and, F} is the hypergeometric function.
In this stage, an important remark can be made: following
these equations, we observe that obtaining the exact form of

The ¢-deformed Laplace of current has the following currents is a very hard task. To overcome this problem, seek-

form
L
e
I, (s) = 7 / (k1 — ko) p (z,5) dgx
0
L
L 1+(1—-q)x
0
Putting Eq. 88) into Eq. 39) leads to
€p
I (s) = TO
a(s) ki—kox
TR Ta-ok a(s) In =275
ik exp < T
dz. (40)

(1+(1—-q)z)

1
></
0

The general solution of this integral is

I, (s) = Ay (s)[Bq (s) 2F1 (a1,b1,¢1,d1)

+ Cy (s) 2F1 (a1, b1, ¢1,d2)], (41)

ing simplicity, we will concentrate only on the case where
k2 = 0 (constant electric field). So, the form of the currents
I (s) as well as the charges(«x, s) reduced to the following
relations:

epok1 o)
16) = Jag (Lmea@ ™), @
p(@,s) = Rey (2)7 5 (48)
k1
with
eq(L)= {1+ (1—q) L} 7. (49)

In the limit case, where, (z), ,, = exp(z), we recover
the desired relations of currents and charges as described by
Eqgs. @6) and (7).

Now, before commenting on our results, we can note that
the linear form of the electric field can be considered as a
deformation whose parameteris/k;. Starting with the fol-
lowing equation

a(s)

ka ) ™
o '

pla,s) = 20— (1 -

50
]4;1 — ]{igl‘ ( )
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Setting—(ka/k1) =1 —qorq =1+ (ko/k1), Eq. BO) is
transformed into

pq(x, S) =

ky
Po
k1
Po
k1

[+ (- gy ] T

— kQLE

(i) [0+ -]

(rags) @

a(s)
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FIGURA 2. a) For different values of and withTy < T'. b) For
different values of; and withT, > T'. c) For fixed value of; and
in both regionsI" < Ty andT > Ty. Theg-deformed normalized
photo-currentystimes.

Thus, the form of the current is changed to

a(s)
1- (1—’,%1:) Ehl
epok1 '
s)=

L a(s) + k2
1= (14+ (1—q) L) (1+ (1—q) L) %5
ool {17 (-0 D) (1 (-9 1)
L a(s)+ks
epok1 a(s)

s {0 00 e (07 F )L 62

or

1(s) :%ﬁkz) {1_ (1—:?L) eq (L)~ =7 } (53)

In the limit case, wheré, — 0 (the constant electric field),
we recover well Eqs/11) and (L3).

Thus, the linear form of the electric field chosen here
Eq. (1) can be considered as a deformation with the parameter
a. This remark allows us to try to study the (MTM) equations
in the framework of;-calculus formalism.

Now, in the framework of the-calculus formalism, we
are ready to discuss the results concerning calculation of
normalized currents in different choices of bdth and F'.

All the results are obtained by using the same program as
above [18].

3.3. Results and discussions

Figure 2, obtained using the program developed in [18],
shows the normalized currents vs time for various values of
the parameteq in both regions of the temperatur@s> Tj
andT < Ty. In all the curves, the value of the electric field
is fixed.

Figure 2a) depicts the variation of the current vs time,
whereT, = 290 K and F' = 4 x 10* Vem~!. Two remarks,
in both intervals of temperatures, can be made here:

e Inthe case wheré&, < T

— all the curves in the per-transient regime coin-
cide whatever the valug contrarily in the post-
transient regime where the difference becomes
clear,

— the deflection point (transit timg.), in both pre-
and post-transient regime, increases whean-
creases until the usul limit when= 1,

— this time, for fixed value of, decreases when the
electric fieldF' increases (see Fig. 3).

e Now, in the other case wheflg > T

— All the curves, in both pre and post-transient
regime, become very smooth compared to the
case presented in Fig. 2a),

— the transit time, in both pre- and post-transient
regime, increases wherincreases, but their val-
ues are too big compared to the values showed in
Fig. 2a).
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FIGURE 3. The normalized photo-currenstimes for different values of electric field: hege= 0.2.

As we know, the TOF measurements allow us to calculatevhere pi is the zero-field drift mobility ands is the well-
a thermally activated drift mobility for both holes and elec- know the Poole-Frankel coefficient.
trons [21-26]. In addition, the transient hole transport at low  After this brief discussion about the drift mobility, our
temperature§” < 180 K obey the stochastic transport for- principal goal, is to study the influence of the parameten
malism, whereas aboVvE ~ 200 K, it seems following the the drift mobility. In addition, the Poole-Frankel coefficient
conventional (Gaussian) transport concepts, evincing a wellwill be obtained, for different values af from Eq. 65). To
defined transit time,. in the TOF signal (see Ref. [23] and do this, we determine firstly the times from all the curves
references therein). In addition, many authors have reportedf our simulated photocurrents, and this for different applied
field-dependent mobility even around room temperatures, ielectric field 7' (see Fig. 3). Using Eq.56), we easily cal-
contrast to the other works which indicated constant mobilityculate the drift mobility vs the electric field by varying the
over the temperatures down to 250 K [23]. values of the temperatufié and the parameter(see Fig. 4).

The carrier drift mobilities obtained from the transittimes  In Fig. 3, we show the normalized currents versus a time
t, were extremely low and strongly field-dependent and thevhereq = 0.2. The same thing can be done for specific
transients were obtained under nearly space-charge- limitecthoices such ag= 0.5,0.7and0.9. After choosing the time
conditions [21]. Furthermore, although the shapes of the phat,, for each values of temperaturés= 192, 208, 227, and
tocurrents abover 200K show dispersion which diminishes 238 K, we calculate the values of the drift mobility, for each

with increasing temperature the TOF drift mobility, value ofg.
I In order to verify the validity of Eq./35), we have con-
Hd = 15 (54)  structed Fig. 4. This Figure shows the field dependence of

, _ the drift mobility represented dsg .« versusF''/2. It can be
displays no thickness dependence [23, 24]. Note here thzgteen that the drift mobility seems to follow E&5].

the time transit,. is easily identified as an inflection point in These Figures show a linear form lofs 1, versusF/2
the double logarithmic plot of the simulated transient photo-for different values of the parametgrThe slopes of these fit

currents. In Ref. [21], Gill proposed that the observed fieIdallow us to determine the values of the Poole-Frenkel coef-

and temperature dependences can be incorporated into an eﬁ&ientﬂ ;. An important remark about the Poole-Frenkel
pirical relation for the hole or electron mobility of the form model gan be made here. The field and temperature de-
1

r2 pendence expressed in EcG5) is similar to the observed
fd = poe "B, (35)  behavior of the conductivity in some insulating solids. These
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FIGURE 4. )T = 192 K. b)T' = 208 K. ¢) T" = 227 K. d) T = 238 K. Temperature dependence of the drift mobility with electric field for

g = 0.2: experiment data means the currents plotted in Fig. 3.

results have been explained using the Poole-Frenkel mode B88 K, where the characteristic temperatiise= 300 K.
which the Coulomb potential near a charged localized state is From this table, we can see that [29]

modified by the applied field so as to increase the free-carrier
density at high fields. More precisely, the essence the Poole-
Frenkel effect is the field-assisted lowering of the coulombic
potential barrier between carriers at impurity levels and the
edge of the conduction or valence bands. When a carrier is
trapped at a center, it is unable to contribute to the conduc-
tivity until it overcomes a potential barrier and is promoted
into one of the free bands. In the presence of a high electric
field the potential is reduced by an amoutitxz where e is

the electronic chargd;' is the applied field and is the dis-
tance from the center. Now, by assuming trap-controlled drift
mobility, the Poole-Frenkel model can be applied to drift-

¢ the estimate values ¢fp; are about ol0~® , and are
approximatively the same as those obtained in the liter-
ature (see Table II). In addition, these values agree re-
markably with that calculated for the one-dimensional
case in [22-24],

Bprp =2.84x10"%eV(Vm~') 2  (57)

e The values of relative dielectric constant for Poole-

Frenkel coefficient are in the range 4.8-12.

mobility results [22, 27, 28].
The theoretical values, s are determined by the follow-
ing relation [22-26]
) B

63
ﬂpf - <7reoer

whereg is the permittivity of free space;,. is the relative
permittivity of the dielectric and e is the electronic charge.

The values of the coefficientr » and the relative dielec-
tric constantg,. are shown in Table |, fof. = 50 um at var-
ious temperatures and parameleand g respectively. The
range of the temperatures de= 192 K, 208 K, 227 K, and

(56)

Finally, an important point can be made about the pa-
rameter of deformatiog which is the central quantity of-
calculus formalism: According to the recent works [30-33],
this parameter can play a role of fitting the experimental re-
sults. To better understand this, we can mention the work of
Guha and Prasanta [34]: the authors have applied the theory
of g-deformed (Tsallis statistics) to describe specific heat of
solid by using the Einsteins model which is well-known in
the theory of physics solid state. As we know, in the ordinary
physics of solid state, the Einstein model of the solid pre-
dicts the heat capacity accurately at high temperatures which
is equivalent to Dulong-Petit law. Nevertheless, contrarily to
the Debye model, the heat capacity noticeably deviates from
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TABLE |. The estimate of the Poole-Frankel coefficiefits- at some values of the temperatures and the parameter

@gq=02 (B)g=0.5

T (K) Byr (10-"ev (Vm—l)‘%) e T (K) By (10-"eV (Vm—l)‘%) r
192 2.55 9 192 2.55 8.63
208 2.4 10 208 2.40 10.81
227 2.3 11 227 2.30 10.64
238 2.35 10.5 238 2.35 11.17

(c)g=0.7 (d)yg=0.9

192 2.53 9 192 2.57 8.81
208 2.43 9.86 208 2.35 10.55
227 2.15 12.53 227 2.14 12.70
238 2.21 11.87 238 2.12 13

TaBLE Il. Experimental values of some parameters.

References Brr (10‘5ev (Vvm™) _%> Relative permittivitye, estimated
Gill [22] 2.72 7.8
Marshallet al[23] 2.8 7.43
Kasapet al[24] 2.84 7.22
Benkhediret al [26] 2.6 8.61

experimental values at low temperatures. In this context, théhe solutions of the (MTM) equations with the existence of
authors have been successful in solving this disagreemeat linear form of an electrical field. The normalized cur-
which appears at low temperature. They have studied theents, I (s)/I (0), have been obtained by using a program
temperature fluctuation effect via the fluctuation in the deforthat we have developed in order to calculate the theoretical
mation parametey. As a result, they found that, at low tem- currents. With this program, a good agreement between the
perature, the Einstein curve of the specific heat in the Tsalexperimental and theoretical currents have been found (see
lis scenario exactly lies on the experimental data points an&ef. [14]). Next, we considered the (MTM) equations in the
matches with the Debye’s curve. In addition, they claim thatframework of thej-calculus, the influence of the parameger

a unique value of the Einstein temperatdgg along with a  in the curves of the current have been well observed. These
temperature-dependent deformation paramgef@t), can de-  currents were obtained also by using the same program that
scribe the phenomenon of specific heat of sbéidthe theory  has used in the first case. Moreover, we studied the influence
is equivalent to Debye’s theory with a temperature-dependerdf the parametey of the g-calculus formalism on the drift

0p. mobility. It is shown that at low temperatures the drift mo-

In this direction, we can better understand the princi-bility may be described by an empirical expression with the
pal aim of our contribution to this paper. Despite the non-following form py; = #Oeﬁﬁ/m_ This form holds too in
existence of direct experimental verification of our model,our case. Finally, the well-knowg, ;, called Poole-Frankel
we can claim that our approacie., the introduction of the coefficient, are determined.
g-calculus formalism, can improve our understanding on the
physical behavior of charge carriers in amorphous semiconA

ductors. ppendix

A. g-calculus,g-product and ¢-sum

4. Conclusion . . . ,
Here, we briefly describe some algebraic propertieg-of

In this paper, we analyze multiple-trapping model (MTM) for Product and;-sum ing-calculus [19].
charge carrier transport from time-of-flight transient (TOF)

photo-current in amorphous semiconductors in the generaf-1 g-product

ized non-extensive scenario (Tsallis statistics). This gener- I .
alized statistical techniques (in Tsallis statisticbeing the The definition of the;-product between two numbers is
deformation parameter) have been applied to a wide range

_ 1—q 1—q 1%
of complex systems. In our case, we have first discussed” ©a ¥ = (& +y Dty (@>y>0) (AL

+
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or, equivalently, e Associative
= eMaotingy, A2

TOa=cq B2 e, (@2 = (e 1) B z=2 0,y 8, 2

Now, let us list some of its main properties:

1
. . = (xl_q 4yl e - 2) =7. (A.6)
e We recover the standard sum as a particular instance

(g=1),i.e,
e The number one is the neutral element of gqgroduct
T ®1y = TY; (A.3)
e Commutative TRl =1z (A7)
TRyY=YQ,x (A.4) L
I a e It has a (2 - g)-duality/inverse propertyg.,
¢ Additive underg-logarithm (hereafter referred to as ex-

. . 1 1 1
tensive),.e., o (x> ®2_q (y) ; (A.8)
Ing (2 ®q y) = Ingz + Ing y; (A.5) !

| e It admits zero under certain conditions, more precisely,

if (¢>landz>0) or if (q<land0<z<1),
0= 1 fe ( ) ( ) (A.9)
(z'79—1)"7 if g<landr>1
o It satisfies |
T®LY = (xé ®2-q yé)q (A.10) e Associative

HAS Py z)=(xP Dy 2 =2DyYDgz
e By ¢g-multiplying n equal factors, we can define thth 0 (U@ 2) = (e y) Sy V¥

g-power as follows: =z+y+z+(1—q) (zy+yz+z2)
n 2 .
1% =R T®,...Q, T +(1—q)" zyz; (A.16)
= [nml_q —(1-gq)] = (A.11) e |t satisfies the following generalization of the distribu-
tive property of standard sum and produck., of
A.2 g-sum a(z +y) = ax + ay:
Analogously to the-product, we can define thgsum as a(z ®qy) = (ax) Garas (ay). (A.17)
r@y=r+y+(1—qzy (A.12) e The neutral element of thesum is zero,
This g-sum has the following main properties: T®,0=2z. (A.18)
* \(Ne_ri;: oivee r the standard sum as a particular InStanC6\/e can define the opposite (or inverse additive) ¢€alling
4= 2 e it ©,x) as the element that, whepsummed withe, yields
c®ry=x+y (A.13) the neutral element: @, (S,z) = 0. So, we have
—T
e Itis multiplicative undeg-exponentialj.e., Oq = 1+(1—q)a’ TF - 1_ (A.19)
e*Pay = egel (A.14)  So, from the last relation we can obtain that
o Commutative ©6qy = 1®q (Sqy)
_ =y b
TD Y=y Dy T (A.15) —1+(1_q)y,y7é — (A.20)

The ¢-difference obeys:
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Oy = OuyYDyr,
* 26, (YSq2) = (T6qY) OS¢ 2,
e buta (z6,y) # axr 54 ay.

Interesting cross properties emerge from the
generalizations of the product and of the sum, for instance

Ing (zy) =Ingz @ Ingy, (A.21)
Ing (z ®,y) =Ingz +1Ingy, (A.22)
and, consistently,
egﬂ’ = e, ®ey, (A.23)
eg’@‘ly = egey. (A.24)

F. SERDOUK, A. BOUMALI, A. MAKHLOUF, AND M. L. BENKHEDIR

While both theg-sum and the-product are mathematically
interesting structures, they play a quite different role within
the deep structure of the non-extensive theory. g-peoduct
reflects an essential property, namely, the extensivity of the
entropy in the presence of special global correlations.gFhe
sum instead only reflects how the entropies would compose
if the subsystems were independent, even if we know that in
such a case we only actually nege- 1.
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