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The aim of this paper is to investigate the description of theq-deformed multiple-trapping equation for charge carrier transport in amorphous
semiconductors. We first modify the multiple-trapping model of charge carriers in amorphous semiconductors from time-of-flight transient
photo-current in the framework of theq-derivative formalism, and then we construct our simulated current by using an approach based
on the Laplace method. It is implemented in a program proposed recently by [14] which allows us to construct a current using the Padé
approximation expansion. Furthermore, we study the influence of the parameterq of theq-calculus formalism on the drift mobility.
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1. Introduction

Quantum groups and quantum algebras have attracted much
attention of physicists and mathematicians recently. There
had been a great deal of interest in this field, especially af-
ter the introduction of theq-deformed harmonic oscillator.
Quantum groups and quantum algebras have found unex-
pected applications in theoretical physics [1]. From the math-
ematical point of view they areq−deformations of universal
enveloping algebras of the corresponding Lie algebras, being
also concrete examples of Hopf algebras. When the deforma-
tion parameterq is set equal to 1, we recover usual Lie alge-
bras. The realization of the quantum algebra SU(2) in terms
of the q-analogue of the quantum harmonic oscillator [2, 3]
has initiated much work on this topic [4–6]. Biedenharn and
Macfarlane [2, 3] have studied theq-deformed harmonic os-
cillator based on an algebra ofq-deformed creation and anni-
hilation operators. They have found the spectrum and eigen-
values of such a harmonic oscillator under the assumption
that there is a state with a lowest energy eigenvalue.

In the last few years,q−deformations have become a
topic of great interest and various applications have been
found in several branches of physics, such asq−deformation
of the harmonic oscillator,q−deformed Morse oscilla-
tor, classical and quantumq−deformed physical systems,
Jaynes-Cummings model and the deformed-oscillator alge-
bra, q−deformed supersymmetric quantum mechanics, for
some modifiedq-deformed potentials, on the thermostatis-
tic properties of aq-deformed ideal Fermi gas,q−deformed
Tamm-Dancoff oscillators,q-deformed fermionic oscillator
algebra, and thermodynamics, and finally on the fermionic
q−deformation and its connection to thermal effective mass
of a quasiparticle (see Ref. [7] and references therein).

The displacement of charge through a dielectric mate-
rial plays an essential role in a wide variety of electronics or
imaging devices. A detailed understanding on the process dy-
namics can provide considerable information concerning the
material’s electronic structure. Experimentally, the time rate
of displacement of charge, as well as the efficiency of their
generation by light or energetic electrons, has been studied
using a time-of-flight technique (for more detail about this
technique see Refs. [8-11]).

In TOF measurements, a semiconductor thin film is sand-
wiched between electrodes and at least one of the electrodes
is blocking for carrier injection, and through one of the elec-
trodes a short light pulse of strongly absorbed light excites a
thin layer of electron-hole pairs. Depending on the polarity
of an applied electric field, either holes or electrons are drawn
into the bulk. The carriers reach the opposite electrode in a
transit timetr, which is easily identified as either a rapid drop
in the transient photo-current in case of nondispersive trans-
port or an inflection point in the double logarithmic plot of
the transient photo-current in case of dispersive transport. In
addition, a dispersive transport is the result of a broad distri-
bution of release times from localized states. This distribu-
tion can arise from a sped of binding energies of traps (MT)
or from a distribution of hopping rates among iso-energetic
localized states. If it arises from hopping, dispersion occurs
only in the presence of an electric field. This is because, as
pointed out by Schmidlin and Kastner [8, 9], the occupation
of the various states cannot change with time in the absence
of the field since they are already in thermal equilibrium.
When the field is turned on, the states are no longer in equi-
librium because their energies are altered, and the dispersion
begins. For these reasons, the (TOF) measurement method is
a useful technique to evaluate transit time for mobile objects
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and is often used for investigating the charge carrier transport
properties in various condensed materials including inorganic
and organic semiconductors. The resulting transient current
provides us with not only transit time but also information on
dynamical events in charge transport through a sample, such
as trapping and releasing of carriers in trap states, carrier dif-
fusion, and percolation.

Schmidlin and Noolandi [10, 11] proposed the multiple-
trapping model (MTM) to describe such dynamic events of
charge carriers in a sample with conventional sets of coupled
kinetic equations for trapping and thermally releasing rates.
This method can reproduce the experimental current signal
I (t), if a subset of trapping- and releasing-rate parameters
are suitably assumed. Thus, the MTM has been widely and
successfully used to analyze transient-current decays not only
in inorganic but also in various organic semiconductors. The
films include amorphous inorganic or organic semiconduc-
tors, with adequate supposition of trapping and releasing pa-
rameters in the form of continuous distribution of trap states
such as an exponential distributione−E/kBT , a Gaussian dis-
tribution or other shapes of trap distribution. However, this
method is applicable only when a shape of the trap distribu-
tion is appropriately taken to describe the distribution of lo-
calized states playing the major role in trapping events [12].

Naito et al., [13–16] have proposed a spectroscopic
method for extracting localized-state distributions from an
analysis of transient photo-current measured with transient
photo-conductivity or the TOF technique using the Laplace
transform, within a multiple-trapping framework and by
means of appropriate approximations. Using a method based
on the Laplace transform method, has a number of advan-
tages when compared with other methods: (i) the localized-
state distributions in materials exhibiting either nondispersive
or dispersive transport are extracted, the analysis is compu-
tationally straightforward and rapid, and (ii) the localized-
state distributions are extracted from both pre- and post-
monomolecular recombination regimes of transient photo-
conductivity or from both pre- and post-transit time regimes
of TOF photo-current transient, which hence leads to the
measurement of a wider range of localized-state distributions.

After all this brief description, we are ready to expose the
objectives of our paper: encouraged by the fact that theq-
deformed formalism has interesting and promising results in
physics (see [17] and references therein), we are in measure
to do the following tasks (i) rewriting the (MTM) equations
in the framework of theq-deformed formalism, and (ii) then
construct theoretically the deformed simulated currents: this
construction is given by using a program based on the Padé
approximation. This program allows us to obtain these cur-
rents [18]. In all calculations, the electric field has the fol-
lowing form [19,20]

ξ (x) = k1 − k2x. (1)

So far, the MTM equations with this type of the electric field
have not been studied in the literature. From Eq. (1), we no-
tice the following: (i)ξ (x) = −dV /dx can also be consid-

ered as an external force associated with the potentialV (x),
(ii) k2 = 0 corresponds to the important case of external con-
stant force, and (iii) finallyk1 = 0, corresponds to the so-
called Uhlenbeck-Ornstein process. The Uhlenbeck-Ornstein
process describes the stochastic evolution of particles under
the influence of friction. This process is stationary, Gaussian,
and Markov, which makes it a good candidate to represent
stationary random noise [19,20].

Thus, in order to realize the goals of this paper, we first
study the usual case,i.e., without introducing any deforma-
tion. Then, we consider and discuss the problem in the frame-
work of q-calculus.

This paper is organized as follows: after an introduction,
we treat analytically the TOF measurements with the mul-
tiple trapping model (MTM) in Sec. 2. Then, in Sec. 3 we
extend and study the (MTM) in the framework ofq-calculus
formalism. The paper is ended by a conclusion provided in
Sec. 4.

2. Analytical treatment of the tof measure-
ments with the multiple trapping model
(MTM)

2.1. Solutions of (MTM) equations via the Laplace
transform (LT)

The continuity equations which define the multiple-trapping
problem are first formulated in the familiar context of an elec-
tronic carrier moving through extended states with localized
gap states acting as trays. It is then shown that the same equa-
tions apply to any mobile entity which simply stops and starts
at random from a distribution of resting places. The proba-
bility of generation per unit volume per unit time is denoted
gν (x, t) = p0δ (t) δ (x). Subsequent to generation, the hole
drifts (under the influence of anx-directed electrostatic force
eF , wheree is the fundamental electronic charge) toward a
substrate atx = L. At a point x, where the hole may be
captured and released from a trap, the appropriate continuity
equations may be written [9–11]

∂p (x, t)
∂t

= −
m∑

i

∂pi (x, t)
∂t

+ p0δ (t) δ (x)− ∂fp

∂x
, (2)

∂pi (x, t)
∂t

= ωip (x, t)− γipi (x, t) , (3)

wherex is the distance from the illuminated surface,p(x, t)
andpi(x, t) are the local populations of the transport states
and trapi, andp0 is the injected free carrier density per the
unit area. The delta functions define the initial condition for
(TOF) experiment. The local flux of mobile holes may be
written

fp = ξ (x) p (x, t) , (4)
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whereξ (x) is the electric field. The simplest form that can
be given for this function is

ξ (x) = k1 − k2x, (k2 ≥ 0) . (5)

Now, using Eqs. (4) and (5), we obtain

∂p (x, t)
∂t

= −
m∑

i

∂pi (x, t)
∂t

+ k2p

− (k1 − k2x)
∂p (x, t)

∂x
+ p0δ (t) δ (x) , (6)

∂pi (x, t)
∂t

= ωip (x, t)− γipi (x, t) . (7)

The delta function in Eq. (6) defines the optical excitation for
the TOF experiment. These equations can be solved using
Laplace transforms under the initial and boundary conditions
of p(x, 0) = 0 andp(0, t) = 0.

The Laplace transform ofp(x, t) is defined as

p(x, s) =

∞∫

0

p (x, t) e−stdt. (8)

Using this definition, we obtain

(k1 − k2x)
∂p(x, s)

∂x
+ a′ (s) p(x, s) = p0δ (x) (9)

with

a′ (s) = s +
m∑

i

sωi

s + γi
− k2

= s + s

Ef∫

0

σνg (E)

s + νe
−E

kBT

dE

︸ ︷︷ ︸
a(s)

−k2. (10)

Now, the general solutions of (9) are

p(x, s) = p0

(1− k2
k1

x)
a(s)
k2

k1 − k2x
. (11)

For a TOF experiment, the photo-current is given by [9–11]

I(t) =
e

L

L∫

0

(k1 − k2x) p (x, t) dx, (12)

whiche is the charge of a carrier: this equation is transformed
into

I (s) =
e

L

L∫

0

(k1 − k2x) p (x, s) dx

=
ep0

L

L∫

0

(1− k2

k1
x)

a(s)
k2 dx

=
ep0k1

L

{
1−

(
1− k2

k1
L

) a(s)
k2

+1
}

a(s) + k2
, (13)

with k1 = µ0F , 0 < k2 < k1/L = µ0F/L, andt0 = L/k1

is the transit time of untrapped carrier. With the following
substitutionsα = k2L/k1 < 1, Eq. (13) is rewritten, with
the new parameterα, as follows

I (s) =
ep0k1

L

{
1− (1− α)

a(s)t0
αk1

+1

}

a(s) + α
t0

, (14)

where the parameterα contains the influence of both param-
etersk1 andk2.

In the limit case, wherek2 → 0 (case of external constant
force), and by using thatax = exlna, we have

(
1− k2

k1
x

) a(s)
k2

= e
a(s)
k2

ln
(
1− k2

k1
x
)
' e−

a(s)x
k1 = e−

a(s)t0x
L

(
1− k2L

k1

) a(s)
k2

+1

= e

(
1+

a(s)
k2

)
ln

(
1− k2L

k1

)

≈ e−
k2L
k1 e−

a(s)
k1

L = e−a(s)t0 , (15)

and consequently, both (11) and (14) become

p (x, s) =
p0

k1
e−

a(s)t0
L x, (16)

I (s) =
ep0

t0a (s)

(
1− e−a(s)t0

)
. (17)

Therefore, we recover the usual form of charges and cur-
rents [10,11].

2.2. Results and discussion

In order to construct a current numerically, we proceeded
with the following steps: as well-known, the inverse Laplace
of a function is given by

I (t) =
1

2πi

c+i∞∫

c−i∞

I (s) estdt, (18)

which I (s) is defined by Eq. (13). When we use the follow-
ing change of variables,z = st, anddz = sdt, the integral
becomes

I (t) =
1

2πit

c′+i∞∫

c′−i∞

I
(z

t

)
ezdz. (19)

To calculate the last integral we use the method exposed
in [18]. So, according to Eq. (19), the computed current can
be obtained as follows: (i) Firstly, we express the function
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ez in its Pad́e approximation expansion: Padé approxima-
tion of a function is somewhat similar to a Taylor series, ex-
cept that the expansion is a ratio of two polynomials. (ii)
Secondly, we apply the Residue theorem to obtain the de-
sirable function,i.e., the computed currentI(t). Thus, in
our case, we calculated the inverse Laplace transform nu-
merically, using the Padé approximation (a rational approxi-
mation with polynomials of 8-degree). The physical quan-

tities used in the computation wereσνth = 10−7 cm3/s,
ν = 1012 s−1, T = 300 K, and g (E) = 1021e−(E/kbT0)

with kb = 8.625× 10−5 eVK−1 is the Boltzmann constant.
Now, we are ready to show and discuss all the results

found by the program used to obtain our simulated currents.
Figure 1 shows the normalized photo-currents vs times in

the (log-log) scale for different values of parametersk1 and
k2 or α = k2L/k1.

FIGURE 1. a) For different values ofT0. b) For fixedα andT0 < T . c) For different values ofα whereT0 > T . d) For different values ofα
whereT0 < T . e) For fixed value ofα andT0 > T . f) For fixed value ofα and different values of Field. The normalized photo-currentsvs
times in the temperatureT = 300 K.

Rev. Mex. F́ıs. 66 (5) 643–655



SOLUTIONS OFQ-DEFORMED MULTIPLE-TRAPPING MODEL FOR CHARGE CARRIER TRANSPORT FROM TIME-OF-FLIGHT . . . 647

In Fig. 1a), we present the normalized currents for fixed
valueα = 0.5 and for various characteristic temperaturesT0.
It is clearly seen that the transient photo-current decreases
with time. For non-dispersive transport, withT0 = 250 K,
the transit time can be obtained at the intersection of the tran-
sient photo-current with the time-axis. Similar results are ob-
tained for dispersive transient photo-current. Now, for all the
temperaturesT0 < 300 K, as shown in Fig. 1b), we observe
that all the curves have typically the same behavior in pre-
and post-transient regime.

Figures 1c) and 1d) depict the behavior of the currents
in both T < T0 andT > T0 interval of temperatures, and
that for various values ofα: in this case, we specified two
regimes: in the region whereT0 > T , all the curves in both
pre- and post transient regime are the same. In the other hand,
whereT0 < T , these curves show that the form of the cur-
rents in the pre-transient regime are identical contrarily to the
case of the post-regime where the difference becomes clear.

Figures 1e) and 1f) illustrate the current transients at vari-
ous values of applied electric fields for a fixed value of the pa-
rameterα. An interesting observation pointed out in Fig. 1f)
is that the inflection point is affected by the applied field. The
transit time is much shorter than the mono-molecular recom-
bination lifetime. In this case, the inflection points shift to-
ward a shorter time regime by increasing the applied electric
field. This means that the inflection point is due to the transit
time. From these results, we can experimentally distinguish
whether or not the inflection point is the charge carrier transit
time: if the inflection point becomes shorter with an applied
electric field, then the inflection point is charge carrier transit
time.

3. Solutions of a multiple-trapping equations
in the framework of q-deformed formalism

We aim in this section to discuss in the frame work of
q-calculus the problem described by continuity equations
Eqs. (2) and (3). We present in the Appendix A a survey
of q-calculus algebraic properties.

3.1. q-derivative and q-integral

Theq-derivative, in the framework of theq-calculus formal-
ism, is defined as

Dqf (x) ≡ lim
x→y

f (x)− f (1y)
xªq y

= {1 + (1− q) q} df (x)
dx

. (20)

The development of this framework ofq-deformations in-
spired the definition of deformed expressions for the loga-
rithm and exponential functions, namely, theq-logarithm and
theq-exponential (q-exponential Tsallis [19]), first proposed

as

lnq x =
x1−q − 1

1− q
, x > 0, (21)

eq (x) = {1 + (1− q)x}
1

1−q

+ , (x, q) ∈ R (22)

where[A]+ ≡ max {A; 0} (1 + (1− q)x > 0). Both equa-
tions can be rewritten as

lnq x =

{
x1−q−1

1−q q 6= 1, x > 0
ln x q = 1,

(23)

eq (x) =

{
{1 + (1− q)x} 1

1−q q 6= 1, (x, q) ∈ R,

e (x) q = 1,
(24)

where both equations are restricted to the following condition
1 + (1− q)x 6= 0. Also, we have the following well-known
relations:

lnq (xy) = lnq x + lnq y + (1− q) lnq x lnq y, (25)

eq (x) eq (y) = eq (x + y + (1− q)xy)

≡ eq (x⊕ y) , (26)

where (see Appendix A)

x⊕ y = x + y + (1− q)xy. (27)

Theq-derivative obeys

• Leibniz rule

Dq {f (x) g (x)} = Dq {f (x)} g (x)

+ f (x)Dq {g (x)} , (28)

• the chain rule

Dq {f (g (x))} =
df

dg
Dq {g} . (29)

The correspondingq-integral is given by
∫

q

f (x) dqx =
∫

f (x)
1 + (1− q)x

dx, (30)

with

dqx = lim
x→y

xªq y =
1

1 + (1− q)x
dx. (31)

3.2. Solutions

Now, when introducing theq-derivative formula, Eqs. (2)
and (3) become

∂p (x, t)
∂t

=−
m∑

i

∂pi (x, t)
∂t

+p0δ (t) δ (x)−Dqfp, (32)

∂pi (x, t)
∂t

= ωip (x, t)− γipi (x, t) , (33)
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with

Dqf (x) = {1 + (1− q)x} df (x)
dx

, (34)

and here

fp (x) = (k1 − k2x) p (x, t) . (35)

Using Eqs. (34) and (35), Eq. (32) is transformed into

∂p (x, t)
∂t

= −
m∑

i

∂pi (x, t)
∂t

− {1 + (1− q)x}

×
(
−k2p (x, t) + (k1 − k2x)

∂p (x, t)
∂x

)

+ p0δ (t) δ (x) . (36)

By using the Laplace transform method, Eq. (36) reads as

{1 + (1− q)x} (k1 − k2x)
∂p(x, s)

∂x
− {a (s)

− k2 {1 + (1− q) x}}p (x, t) = p0δ (x) . (37)

The solutions of Eq. (37) are

p(x, s) =
p0k

− a(s)
k2+(1−q)k1

1 exp
(

a(s) ln
k1−k2x

1+(1−q)x

k2+(1−q)k1

)

k1 − k2x
. (38)

In the limit case, whereq →, 1, we recover the Eq. (16).
The q-deformed Laplace of current has the following

form

Iq (s) =
e

L

L∫

0

(k1 − k2x) p (x, s) dqx

=
e

L

L∫

0

(k1 − k2x) p (x, s)
1 + (1− q)x

dx. (39)

Putting Eq. (38) into Eq. (39) leads to

Iq (s) =
ep0

L

×
L∫

0

k
− a(s)

k2+(1−q)k1
1 exp

(
a(s) ln

k1−k2x

1+(1−q)x

k2+(1−q)k1

)

(1 + (1− q) x)
dx. (40)

The general solution of this integral is

Iq (s) = Aq (s) [Bq (s) 2F1 (a1, b1, c1, d1)

+ Cq (s) 2F1 (a1, b1, c1, d2)], (41)

where

Aq (s) =
−ep0k

− a(s)
k2+(1−q)k1

1

La (s)

×
(

(1 + (1− q) L) (1− q)2

(k2 + (1− q) k1)
2

)− k1+k2+a(s)
k2+(1−q)k1

, (42)

Bq (s) = −
(

1− q

k2 + (1− q) k1

) k1q

k2+(1−q)k1

×
(

(1 + (1− q)L) (1− q)
k2 + (1− q) k1

)− k1+k2+a(s)
k2+(1−q)k1

, (43)

Cq (s) = (−1 + (−1 + q) L)
(

1− q

k2 + (1− q) k1

) k1+k2+a(s)
k2+(1−q)k1

×
(

(1 + (1− q)L) (1− q)
k2 + (1− q) k1

) k1q

k2+(1−q)k1

, (44)

with

a1 = b1 = − a (s)
k2 + (1− q) k1

, (45)

c1 = 1− a (s)
k2 + (1− q) k1

, d1 =
k2

k2 + (1− q) k1
,

d2 =
k2 (1 + (1− q) L)
k2 + (1− q) k1

, (46)

and2F1 is the hypergeometric function.
In this stage, an important remark can be made: following

these equations, we observe that obtaining the exact form of
currents is a very hard task. To overcome this problem, seek-
ing simplicity, we will concentrate only on the case where
k2 = 0 (constant electric field). So, the form of the currents
I (s) as well as the chargesp (x, s) reduced to the following
relations:

I (s) =
ep0k1

La (s)

(
1− eq (L)−

a(s)
k1

)
, (47)

p (x, s) =
p0

k1
eq (x)−

a(s)
k1 , (48)

with

eq (L) = {1 + (1− q)L} 1
1−q . (49)

In the limit case, whereeq (x)q→1 = exp (x), we recover
the desired relations of currents and charges as described by
Eqs. (16) and (17).

Now, before commenting on our results, we can note that
the linear form of the electric field can be considered as a
deformation whose parameter isk2/k1. Starting with the fol-
lowing equation

p(x, s) =
p0

k1 − k2x

(
1− k2

k1
x

) a(s)
k2

. (50)
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Setting−(k2/k1) = 1 − q or q = 1 + (k2/k1), Eq. (50) is
transformed into

pq(x, s) =
p0

k1 − k2x

[
(1 + (1− q)x)

1
1−q

]
− a(s)

k1 ,

=
p0

k1

(
1

1+ (1−q)x

) [
(1+ (1−q)x)

1
1−q

]
− a(s)

L t0 ,

=
p0

k1

(
1

1 + (1− q)x

)
eq (x)−

a(s)
L t0 . (51)

FIGURA 2. a) For different values ofq and withT0 < T . b) For
different values ofq and withT0 > T . c) For fixed value ofq and
in both regionsT < T0 andT > T0. Theq-deformed normalized
photo-currentsvs times.

Thus, the form of the current is changed to

I (s)=
ep0k1

L

{
1−

(
1−k2

k1
L

) a(s)
k2

+1
}

a(s) + k2

=
ep0k1

L

{
1− (1+ (1−q)L) (1+ (1−q) L)

a(s)
k2

}

a(s)+k2

=
ep0k1

L (a(s)+k2)

{
1− (1+ (1−q)L) eq (L)−

a(s)
k1

}
, (52)

or

I (s)=
ep0k1

L (a(s)+k2)

{
1−

(
1−k2

k1
L

)
eq (L)−

a(s)t0
L

}
. (53)

In the limit case, wherek2 → 0 (the constant electric field),
we recover well Eqs. (11) and (13).

Thus, the linear form of the electric field chosen here
Eq. (1) can be considered as a deformation with the parameter
α. This remark allows us to try to study the (MTM) equations
in the framework ofq-calculus formalism.

Now, in the framework of theq-calculus formalism, we
are ready to discuss the results concerning calculation of
normalized currents in different choices of bothT0 andF .
All the results are obtained by using the same program as
above [18].

3.3. Results and discussions

Figure 2, obtained using the program developed in [18],
shows the normalized currents vs time for various values of
the parameterq in both regions of the temperaturesT > T0

andT < T0. In all the curves, the value of the electric field
is fixed.

Figure 2a) depicts the variation of the current vs time,
whereT0 = 290 K andF = 4 × 104 Vcm−1. Two remarks,
in both intervals of temperatures, can be made here:

• In the case whereT0 < T

– all the curves in the per-transient regime coin-
cide whatever the valueq, contrarily in the post-
transient regime where the difference becomes
clear,

– the deflection point (transit timetr), in both pre-
and post-transient regime, increases whenq in-
creases until the usul limit whenq = 1,

– this time, for fixed value ofq, decreases when the
electric fieldF increases (see Fig. 3).

• Now, in the other case whereT0 > T

– All the curves, in both pre and post-transient
regime, become very smooth compared to the
case presented in Fig. 2a),

– the transit time, in both pre- and post-transient
regime, increases whenq increases, but their val-
ues are too big compared to the values showed in
Fig. 2a).
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FIGURE 3. The normalized photo-currentsvstimes for different values of electric field: hereq = 0.2.

As we know, the TOF measurements allow us to calculate
a thermally activated drift mobility for both holes and elec-
trons [21-26]. In addition, the transient hole transport at low
temperaturesT < 180 K obey the stochastic transport for-
malism, whereas aboveT ∼ 200 K, it seems following the
conventional (Gaussian) transport concepts, evincing a well-
defined transit timetr in the TOF signal (see Ref. [23] and
references therein). In addition, many authors have reported
field-dependent mobility even around room temperatures, in
contrast to the other works which indicated constant mobility
over the temperatures down to 250 K [23].

The carrier drift mobilities obtained from the transit times
tr were extremely low and strongly field-dependent and the
transients were obtained under nearly space-charge- limited
conditions [21]. Furthermore, although the shapes of the pho-
tocurrents above∼ 200K show dispersion which diminishes
with increasing temperature the TOF drift mobility,

µd =
L

trF
, (54)

displays no thickness dependence [23, 24]. Note here that
the time transittr is easily identified as an inflection point in
the double logarithmic plot of the simulated transient photo-
currents. In Ref. [21], Gill proposed that the observed field
and temperature dependences can be incorporated into an em-
pirical relation for the hole or electron mobility of the form

µd = µ0e
βF

1
2

kBT , (55)

whereµ0 is the zero-field drift mobility andβ is the well-
know the Poole-Frankel coefficient.

After this brief discussion about the drift mobility, our
principal goal, is to study the influence of the parameterq on
the drift mobility. In addition, the Poole-Frankel coefficient
will be obtained, for different values ofq, from Eq. (55). To
do this, we determine firstly the timestr from all the curves
of our simulated photocurrents, and this for different applied
electric fieldF (see Fig. 3). Using Eq. (55), we easily cal-
culate the drift mobility vs the electric field by varying the
values of the temperatureT and the parameterq (see Fig. 4).

In Fig. 3, we show the normalized currents versus a time
whereq = 0.2. The same thing can be done for specific
choices such asq = 0.5, 0.7 and0.9. After choosing the time
tr, for each values of temperaturesT = 192, 208, 227, and
238 K, we calculate the values of the drift mobility, for each
value ofq.

In order to verify the validity of Eq. (55), we have con-
structed Fig. 4. This Figure shows the field dependence of
the drift mobility represented aslog µ versusF 1/2. It can be
seen that the drift mobility seems to follow Eq. (55).

These Figures show a linear form oflog µd versusF 1/2

for different values of the parameterq. The slopes of these fit
allow us to determine the values of the Poole-Frenkel coef-
ficient βpf . An important remark about the Poole-Frenkel
model can be made here. The field and temperature de-
pendence expressed in Eq. (55) is similar to the observed
behavior of the conductivity in some insulating solids. These
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FIGURE 4. a)T = 192 K. b)T = 208 K. c) T = 227 K. d) T = 238 K. Temperature dependence of the drift mobility with electric field for
q = 0.2: experiment data means the currents plotted in Fig. 3.

results have been explained using the Poole-Frenkel mode in
which the Coulomb potential near a charged localized state is
modified by the applied field so as to increase the free-carrier
density at high fields. More precisely, the essence the Poole-
Frenkel effect is the field-assisted lowering of the coulombic
potential barrier between carriers at impurity levels and the
edge of the conduction or valence bands. When a carrier is
trapped at a center, it is unable to contribute to the conduc-
tivity until it overcomes a potential barrier and is promoted
into one of the free bands. In the presence of a high electric
field the potential is reduced by an amounteFx where e is
the electronic charge,F is the applied field andx is the dis-
tance from the center. Now, by assuming trap-controlled drift
mobility, the Poole-Frenkel model can be applied to drift-
mobility results [22,27,28].

The theoretical valuesβpf are determined by the follow-
ing relation [22-26]

βpf =
(

e3

πε0εr

) 1
2

, (56)

whereε0 is the permittivity of free space,εr is the relative
permittivity of the dielectric and e is the electronic charge.

The values of the coefficientβPF and the relative dielec-
tric constantsεr are shown in Table I, forL = 50 µm at var-
ious temperatures and parameterT andq respectively. The
range of the temperatures areT = 192 K, 208 K, 227 K, and

238 K, where the characteristic temperatureT0 = 300 K.
From this table, we can see that [29]

• the estimate values ofβPF are about of10−5 , and are
approximatively the same as those obtained in the liter-
ature (see Table II). In addition, these values agree re-
markably with that calculated for the one-dimensional
case in [22–24],

βPF = 2.84× 10−5eV
(
Vm−1

)− 1
2 (57)

• The values of relative dielectric constant for Poole-
Frenkel coefficient are in the range 4.8-12.

Finally, an important point can be made about the pa-
rameter of deformationq which is the central quantity ofq-
calculus formalism: According to the recent works [30–33],
this parameter can play a role of fitting the experimental re-
sults. To better understand this, we can mention the work of
Guha and Prasanta [34]: the authors have applied the theory
of q-deformed (Tsallis statistics) to describe specific heat of
solid by using the Einsteins model which is well-known in
the theory of physics solid state. As we know, in the ordinary
physics of solid state, the Einstein model of the solid pre-
dicts the heat capacity accurately at high temperatures which
is equivalent to Dulong-Petit law. Nevertheless, contrarily to
the Debye model, the heat capacity noticeably deviates from
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TABLE I. The estimate of the Poole-Frankel coefficientsβPF at some values of the temperatures and the parameterq

(a) q = 0.2 (b) q = 0.5

T (K) βpf

(
10−5eV

(
Vm−1

)− 1
2
)

εr T (K) βpf

(
10−5eV

(
Vm−1

)− 1
2
)

εr

192 2.55 9 192 2.55 8.63

208 2.4 10 208 2.40 10.81

227 2.3 11 227 2.30 10.64

238 2.35 10.5 238 2.35 11.17

(c) q = 0.7 (d) q = 0.9

192 2.53 9 192 2.57 8.81

208 2.43 9.86 208 2.35 10.55

227 2.15 12.53 227 2.14 12.70

238 2.21 11.87 238 2.12 13

TABLE II. Experimental values of some parameters.

References βPF

(
10−5eV

(
Vm−1

)− 1
2
)

Relative permittivityεr estimated

Gill [22] 2.72 7.8

Marshallet al [23] 2.8 7.43

Kasapet al [24] 2.84 7.22

Benkhediret al [26] 2.6 8.61

experimental values at low temperatures. In this context, the
authors have been successful in solving this disagreement
which appears at low temperature. They have studied the
temperature fluctuation effect via the fluctuation in the defor-
mation parameterq. As a result, they found that, at low tem-
perature, the Einstein curve of the specific heat in the Tsal-
lis scenario exactly lies on the experimental data points and
matches with the Debye’s curve. In addition, they claim that
a unique value of the Einstein temperatureθE , along with a
temperature-dependent deformation parameterq (T ), can de-
scribe the phenomenon of specific heat of solidi.e. the theory
is equivalent to Debye’s theory with a temperature-dependent
θD.

In this direction, we can better understand the princi-
pal aim of our contribution to this paper. Despite the non-
existence of direct experimental verification of our model,
we can claim that our approach,i.e., the introduction of the
q-calculus formalism, can improve our understanding on the
physical behavior of charge carriers in amorphous semicon-
ductors.

4. Conclusion

In this paper, we analyze multiple-trapping model (MTM) for
charge carrier transport from time-of-flight transient (TOF)
photo-current in amorphous semiconductors in the general-
ized non-extensive scenario (Tsallis statistics). This gener-
alized statistical techniques (in Tsallis statisticsq being the
deformation parameter) have been applied to a wide range
of complex systems. In our case, we have first discussed

the solutions of the (MTM) equations with the existence of
a linear form of an electrical field. The normalized cur-
rents,I (s)/I (0), have been obtained by using a program
that we have developed in order to calculate the theoretical
currents. With this program, a good agreement between the
experimental and theoretical currents have been found (see
Ref. [14]). Next, we considered the (MTM) equations in the
framework of theq-calculus, the influence of the parameterq
in the curves of the current have been well observed. These
currents were obtained also by using the same program that
has used in the first case. Moreover, we studied the influence
of the parameterq of the q-calculus formalism on the drift
mobility. It is shown that at low temperatures the drift mo-
bility may be described by an empirical expression with the
following form µd = µ0e

β
√

F/kbT . This form holds too in
our case. Finally, the well-knownβpf , called Poole-Frankel
coefficient, are determined.

Appendix

A. q-calculus,q-product and q-sum

Here, we briefly describe some algebraic properties ofq-
product andq-sum inq-calculus [19].

A.1 q-product

The definition of theq-product between two numbers is

x⊗q y =
(
x1−q + y1−q − 1

) 1
1−q

+
, (x >, y > 0) (A.1)

Rev. Mex. F́ıs. 66 (5) 643–655



SOLUTIONS OFQ-DEFORMED MULTIPLE-TRAPPING MODEL FOR CHARGE CARRIER TRANSPORT FROM TIME-OF-FLIGHT . . . 653

or, equivalently,

x⊗q y ≡ elnq x+lnq y
q . (A.2)

Now, let us list some of its main properties:

• We recover the standard sum as a particular instance
(q = 1), i.e.,

x⊗1 y = xy; (A.3)

• Commutative

x⊗q y = y ⊗q x (A.4)

• Additive underq-logarithm (hereafter referred to as ex-
tensive),i.e.,

lnq (x⊗q y) = lnq x + lnq y; (A.5)

• Associative

x⊗q (y ⊗q z) = (x⊗q y)⊗q z = x⊗q y ⊗q z

=
(
x1−q + y1−q + z1−q − 2

) 1
1−q ; (A.6)

• The number one is the neutral element of theq-product

x⊗q 1 = x. (A.7)

• It has a (2 - q)-duality/inverse property,i.e.,

1
(x⊗q y)

=
(

1
x

)
⊗2−q

(
1
y

)
; (A.8)

• It admits zero under certain conditions, more precisely,

x⊗q 0 =

{
0 if (q≥1 andx≥0) or if (q < 1 and0≤x≤1),(
x1−q − 1

) 1
1−q if q < 1 andx > 1

(A.9)

• It satisfies

x⊗ 1
q

y =
(
x

1
q ⊗2−q y

1
q

)q

(A.10)

• By q-multiplyingn equal factors, we can define thenth
q-power as follows:

x⊗
n
q = x⊗q x⊗q . . .⊗q x

=
[
nx1−q − (1− q)

] 1
1−q . (A.11)

A.2 q-sum

Analogously to theq-product, we can define theq-sum as

x⊕q y = x + y + (1− q)xy (A.12)

This q-sum has the following main properties:

• We recover the standard sum as a particular instance
(q = 1), i.e.,

x⊕1 y = x + y (A.13)

• It is multiplicative underq-exponential,i.e.,

ex⊕qy = ex
qey

q (A.14)

• Commutative

x⊕q y = y ⊕q x (A.15)

• Associative

x⊕q (y ⊕q z) = (x⊕q y)⊕q z = x⊕qy⊕qz

= x + y + z + (1− q) (xy + yz + xz)

+ (1− q)2 xyz; (A.16)

• It satisfies the following generalization of the distribu-
tive property of standard sum and product,i.e., of
a(x + y) = ax + ay:

a(x⊕q y) = (ax)⊕ q+a−1
a

(ay) . (A.17)

• The neutral element of theq-sum is zero,

x⊕q 0 = x. (A.18)

We can define the opposite (or inverse additive) ofx (calling
it ªqx) as the element that, whenq-summed withx, yields
the neutral element:x⊕q (ªqx) = 0. So, we have

ªqx =
−x

1 + (1− q)x
, x 6= − 1

1− q
. (A.19)

So, from the last relation we can obtain that

xªq y = x⊕q (ªqy)

=
x− y

1 + (1− q) y
, y 6= − 1

1− q
. (A.20)

Theq-difference obeys:
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• xªq y = ªqy⊕qx,

• xªq (y ªq z) = (xªq y)ªq z,

• buta (xªq y) 6= axªq ay.

Interesting cross properties emerge from theq-
generalizations of the product and of the sum, for instance

lnq (xy) = lnq x⊕ lnq y, (A.21)

lnq (x⊗q y) = lnq x + lnq y, (A.22)

and, consistently,

ex+y
q = ex

q ⊗ ey
q , (A.23)

ex⊕qy
q = ex

qey
q . (A.24)

While both theq-sum and theq-product are mathematically
interesting structures, they play a quite different role within
the deep structure of the non-extensive theory. Theq-product
reflects an essential property, namely, the extensivity of the
entropy in the presence of special global correlations. Theq-
sum instead only reflects how the entropies would compose
if the subsystems were independent, even if we know that in
such a case we only actually needq = 1.
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