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In this paper, we investigate the influence of energy-dependent potentials on the thermodynamic properties of the Klein-Gordon oscillator
(KGO). With the obtained energy eigenvalues, all the thermal properties of the system have been calculated using the well-known Euler-
Maclaurin method. The investigation is extended to the study of the Superstatistics properties of the system. The probabilify @ensity
follows x? Superstatistics (Tsallis statistics or Gamma distribution) for the system. Under the approximation of the low-energy asymptotics
of Superstatistics, we calculated partition function and other thermal properties of the system. This approximation leads to a universal
parameteg for any Superstatistics, not only for Tsallis statistics. By using the desired partition function, all thermal properties have been
obtained in terms of this parameter. Also, the influence of the potentials on the thermal properties, via the parameetez|l discussed.
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1. Introduction ified scalar product arising in the energy-dependent Klein-
Gordon oscillator problem. The reasons are in two folds:
Wave equations such as Setinger, Klein-Gordon, and (j) firstly due to the importance of the Klein-Gordon oscil-
Dirac with energy-dependent potentials have been studieghtor and its numerous physical applications, and (ii) sec-
for a long time now. It can be seen in Klein-Gordon andondly motivated by the recent study on the effect of energy
Dirac equations that considering a particle in an external e|eCdependent potentials on the Shannon and Fisher quantities
tromagnetic field [1] arising from momentum-dependent in-in quantum information theory [6]. After studying the nor-
teractions and energy-dependent potentials, one can dedugfy| thermal properties, we will extend our treatment to study
the non-relativistic quantum mechanics, as shown by Greethe Superstatistics and its thermal properties of the system.
[2]. The presence of the energy-dependent potential in manyhe properties of these systems have become a topic of great
wave equations has several non-trivial implications becausgyterest in the last few years, and it has found many appli-
of the complex nature of the problems. For instance, theations in several branches of physics (see Ref. [7] and ref-
Klein-Gordon equation is the modification of the scalar prod-erences therein). It is known that Superstatistics is a branch
uct necessary to ensure the conservation of the norm (see agf statistical mechanics or statistical physics that is devoted
pendix A for details). to the study of non-linear and non-equilibrium systems. It is
Following the works of Sazdjian and Formanek [3, 4], we characterized by using the superposition of multiple statisti-
observed that the scalar product in the Klein-Gordon equacal models to achieve the desired non-linearity. In terms of
tion must be modified Concerning the usual definition to naVQ)rdinary statistical ideas, this is equiva|ent to Compounding
a conserved norm. This modification of the K|Ein-GO|'d0nthe distributions of random variables and it may be consid-
equation leads to some good behavior of the physical propered as a simple case of a doubly stochastic model. Besides
erties for the system. Many authors have investigated thi Superstatistics it is argued that a system where fluctuations
Schibdinger, Klein Gordon, and Dirac equation with energy- of temperature do exist, coarse-grained measurements of en-
dependent potentials. In recent times, Bounedlial., [5]  ergy performed over spatial and temporal scales are larger
studied the influence of energy-dependent potentials on thgan those defined by the correlation properties of the tem-
thermal properties of the one-dimensional harmonic oscillaperature will yield statistical distributions that can be written
tor using the Euler-Maclaurin approach. To the best of ouias a superposition of canonical distributions. More precisely,
knowledge, no relativistic case has been reported on the insyperstatistics is a superposition of different statistics such as
fluence of energy-dependent potentials on the thermal prordinary Boltzmann factor and the fluctuation of the intensive

erties of the one-dimensional harmonic oscillator. Tnerefor%arameter with inverse temperature. Therefore, Superstatis-
the main aim of this paper is to study the effects of the mod-
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tics describes a non-equilibrium system with stationary staterdinary statistical mechanics and generalized statistical me-
and intensive parameter fluctuations. Hfis the energy of chanics for superstatistical systems. Firstly, we will study the
a microstate, the Boltzmann factor in the Superstatistics igffect of the saturation of the spectrum on the thermodynamic

written as, properties for this oscillator in ordinary statistical mechanics,
7 and then extend the discussions to the case of generalized sta-
B(E) = /f (8)e=PFdp, (1) tistical mechanics for superstatistical systems. In both cases,
0 the dependence with the gamma parameter of the partition

where B (F) is a kind of effective Boltzmann factor for the function, and other thermal quantities such as free energy, to-
non-equilibrium system for the Superstatistics of the systental energy, entropy and specific heat have been determinate.
f (B) is the distribution functions=#¥ is the Boltzmann fac-  In our case, we have a choice of a functit®) following a

tor and E is the energy level for the systenB(FE) differs ~ Gamma distribution, which is defined by

significantly from the ordinary Boltzmann factor, which is o1
recovered wherf (5) = §(6 — By). From (1), we can recog- F(B) = 1 <ﬁ> e
nize that the generalized Boltzmann factor of Superstatistics oI (c)

Sy

¥ @

is given by the Laplace transform of the probability denSitywhere 6> 0, c > 1) are real parameters
f (B). Although there are many possibilities, certain criteria ' '

This choice is justified by the wider use of its distribution
must be fulfilled for physical relevant of the system: J y

in the literature. Now, by using the function, we will calcu-

e The probability functionf (3) must be a normalized late at first the generalized Boltzmann factB(,Z), and con-
probability density. It may, be a physically relevant sequently the partition function for the systefr(3). With
density from statistics, say Gaussian, uniform, chi-the partition function, all other thermodynamic properties, as
squared (Gamma distribution), log-normal. well as their dependence with the parametewwill be ob-

tained.

The paper is organized as follows. We study in Sec. 2, the
thermal properties of the oscillator for the case of the poten-
e The new statistics should reduce to BG-statistics iftials dependent on energy in the framework of the statistical

there are no fluctuations in intensive quantities at all. Mechanics. Then Sec. 3 is devoted to the formalism of Su-

) ) perstatistics. Section 4 will be brief a conclusion.
In this stage, two remarks seem pertinent: (a) although any

f(B) is possible in the Superstatistics approach, in prac- )

tice, one usually observes only a few relevant distributions2- 1€ thermal properties of the one-

(i) y2-Superstatistics (=Tsallis statistics), (i) inversé- dimensional Klein-Gordon oscillator with

Superstatistics, and (iii) log-normal Superstatistics. In our  energy-dependent potentials

case, we will focus only on2-Superstatistics or Gamma

distribution: this choice is justified by the wider use of this 2.1. The eigensolutions: review

distribution in the literature. As an example, in blinking

guantum dots, cosmic ray statistics, and various scatterin

processes in particle physics. Other recent applications of {p2 _ (E2 _ 1)}¢ -0 ©)

the Superstatistics are briefly reviewed by Refs. [8,9]. (b)

The applicability of this formalism impose that the Super-In the presence of the oscillator interactid), jecomes

statistics formalism can only be applied if you have sufficient

time scale separation in the complex system. Beck and Tsal- {(p+ix)(p—iz) - (B* 1)}y (2) =0, (4)

lis[10,11] show the existence of a mapped of the superstatis- .

tical non-equilibrium system onto an equilibrium system of o' explicitly,

ordinary statistical mechanics with an average inverse tem- P2 22 B2 1

peraturesy = (). (2 + 2)¢ (z,EB) = { 5
This mapped allows us to say that it is possible to carry

out ordinary statistical mechanics to the Superstatistics of a

non-equilibrium system with all the known formulas. Thus,

the second task of this work is to use the formalism of Su- , .

perstatistics to study the one-dimensional Klein-Gordon os:.r0 obtain Eq. 1), we make the subsitution, — p, +

. L . . 1 E in which th ram is is the energy-
cillator and calculate the Superstatistics properties of this osz-( +ab), ch the parametey s is the energy

cillator. This study, to the best of our knowledge, is new,deloendent term, then Ec)(represent an equation of a har-

novel, and has not been treated and discussed in the avayl ?ngsgli(t:iltlalitsogrlg c;\r;:r—]d;l?([a(;smn. S0, the corresponding
able literature. Finally, this paper will also study the effect of 9 9

the saturation of the spectrum on the thermodynamic proper- A o

ties of the one-dimensional Klein-Gordon oscillator for both Y (z, E) = C,Hy (\f)\x) exp (—2:1c ) , (6)

e Theintegral(;” f (8) e #¥dg3 must exist, and conse-
quently, the new statistics must be normalizable.

Ehe free Klein-Gordon equation (g = m = w = ¢ = 1) [6]

we write

Laiam) }wx,E). (5)

|~
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E*—2FE% —4n® —4n*yE+1=0, (7)  and (i) via the method used by the authors [5] which is well

. . L described in their work. Following this, Ec@)(becomes
with A = /1 +~FE , andC,, is the normalization constant g o

. ) N
and is calculated as follows
Z=Y e~ e PEm 4 Alllevels are
1 (1 + VE)% vy 1 -1 n=0 n=0
65 R i = > B S P B G —_—
©2nl 2y/1+~FE 2 I
N
HereHn is thg Hermite ponnomiaI_s. The EqY)(is an al- in saturations~ Z e BEn (10)
gebraic equation of degree 4, which has real and complex =

solutions. The complex solution does not have any physical

meaning except the real solutions. Therefore, some interes_tl_-h first t inT0)is th tributi £ all level til th
ing results can be extrapolated directly as follows: e first term inl{0) is the contribution of all levels until the

beginning of a saturation behavior in the spectrum of energy.
e the modified scalar product is the origin of the spec-The second one is the contribution of all saturation levels.

trum that exhibits saturation instead of growing in-  To evaluate the partition function, we use the Euler-

contribution of few levels

finitely, Maclaurin formula [13-18]
e this saturation appears for the high levels contrary to Z flz) = lf (0) + /f (z) da
what has been found in the non-relativistic case, ford 2 J

° o0

the analytical asymptotic limits are well depicted, B Z %f@p—l) ). 1)
e the beginning of the saturation starts from a specific p=1 (2p)!
quantum numbew,,,,. These parameters decreaseé\nere B,, are the Bernoulli numbers. angi2»~1) is the
rapidly when|y| increases slowly. derivative of order(2p — 1) . In statistical mechanics, the
Boltzmann factore=#F is an essential tool used to deter-
mine thermodynamic quantities such as the partition function
Z(B), free energyF'(/3), total energyU(3), entropyS(5),
and specific heat'(3), for a given system. These quantities

Now, we intend to show the influence of the parameten
the probability density . The probability density is ex-
pressed by the following equation (see Appendix A for de-

tails) are defined as
1 alinz
preco ) = v (o 8)" {26 - L2 o 0. F =iz, U= -2, (12)
1 S anz C  ,*nZ
= <2E— 2w2> o (z, E)|?, (8) T InZ — 3 93 Fp =p 95 (13)

, . In what follows we will focus our study on the influence of
So thatpx represent a physical system, only two posSi-the narameter; on these quantities for the case of the one-

bilities can exist regardless of the sign @t ¢, i.e., either dimensional Klein-Gordon oscillator.
pra < 0orpgg > 0. Thus, as a consequence of this, the
sign of the parametey is negative for particles, and positive 2 3. Results and discussions
for antiparticles (see Ref. [6])
We give our basic results in Figs. 1, 2, 3, and 4, where we
2.2. The thermal quantities in ordinary statistical me-  plot the variation of all thermal functions versus the inverse
chanics via the Euler-MacLaurin formula of the temperaturg for different values ofy. We emphasize
that the behavior of the partition function, specific heat, free
To obtain the partition function from the obtained energyenergy, and entropy are not identical to those obtained for the
spectrum, we adopt the following way, which the partition relativistic oscillators. The reason for this is fundamentally

function Z is defined by [5]: related to the nature of the interactions of KG oscillator and
- the potential that are linearly depends on the energy consid-
7 — Z o—BEn ©) ered here. We must ment_ion.that all these results found here
o ’ about the thermal properties in our problem can be extended

to the case of 1D Dirac oscillator (both Eqg) &nd B.8).
weres = (1/kgT) with k; is the Boltzmann constant and In Fig. 1, we plot the variation of the partition functich
T is the temperature in Kelvin. Tto calculate this function, concernings for different values ofy. Figure 1 shows that
we adopt two approaches: (i) we first fixed the parameter partition function increases with decreases values.oBe-
and then varied the values ofuntil we obtain the saturation sides the effect of the parameteon the partition function is
phenomena in our spectrum of the energy (IZ)) énd soon, more apparent for nearly high temperatures.
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FIGURE 2. The free energyF’ versusg with different parameters

of . FIGURE 4. Specific heat versys with different parameters of.

In Fig. 2, we give the variation of the free enerfyas
a function of the parametet for different values ofy: we 3 Superstatistical properties of the one-
can see that the free energyhas an upper limit for the low

dimensional Klein-Gordon oscillator with
temperatures. .
. _ energy-dependent potentials
In Fig. 3 we observe that the entropy decreases with pa-
rameter and has an upper limit for the high temperatures:3.1.

The effect ofy on the entropys is more apparent for the high
temperatures. For the low temperatures, we Itave 0.

In Fig. 4 the specific heaf', versus the temperature in-

Partition function in Superstatistics

Instead to use the habitual stationary probability distribution

e BB
verseg for different values ofy values have been well de- Z (14)
picted. We observe that, for each specific valueyptach we have
curve has a peak symmetry around a suitable temper&ture B(E)
The intensity of these peaks increases axreases. For the p(E)=——%— (15)

high values of3 we haveC,, — 0: the third law of thermo-
dynamics is well fulfilled. > B(En),

Now, we are ready to extend our discussions to the case of n

Generalized statistical mechanics for a superstatistical framavhereZ (3) is the normalization constant of #Z for a given
work. 0 (or partition function).

with

by
=
i
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In what follows we use thg?-distribution or Gamma dis- of Superstatistics is expressed in terms of the universal pa-
tribution: the probability density function reads as rameters; and 3, as follows:

0= 7 (f)c_l e 3;

+9(@) B E 4+ ), (22)
Note here that in the superstatistics approach, only a few pos- (@)8) )

sible distributionsf(3) are relevant: (iyy?-superstatistics \yhere the functiony(¢) depends on the Superstatistics cho-
(=Tsallis statistics), (i) inverse?-superstatistics, and (iii) sen,e, on the choice of (3). In our case (Gamma distribu-

log-normal superstatistics. In our case, we are focused Offon), g (q) = —(a2/3).

Gamma distribution defined by Eg16): this choice is jus- Now, due to this universality, Beck [24] introduced a uni-
tified by the wide use of this distribution in the literature: asygrgg| parameteyfor any Superstatistics, not only for Tsallis

an example, we can cite the following: in blinking quantum sagistics: this parameter is given by the following relation

dots, cosmic ray statistics, various scattering processes in par-

ticle physics [9], one-dimensional Dirac oscillator [7] and the (8%)

thermo-magnetic properties of a system of 2D GaAs quantum = <ﬁ>2 :

dots [34]. Other recent applications of the superstatistics are

briefly reviewed by Refs. [8,25,26] and references therein. The physical meaning of the parametés just the coefficient
The integration ovepB yields the generalized Boltzmann Of variation of the distributiory (3), defined by the ratio of

factor standard deviation and mean. If there are no fluctuatios of

B(E,) ={1+bE,}°. 17) at all, we obtairg =1las r'equired. o '
So, according to this approximation, the generalized

Now, according to the following works of Tsallis [19-23], Boltzmann factor, can be rewritten as

the non-extensive statistics of Tsallis defined by the so-called

g-exponential function

@

16) B (B, ~ e P (145 (0)° B,
3

(23)

B (E’I’L) — efﬁln(1+(q71)<ﬁ>En) ~ e_BOEn

1 a a2
e =+ (g = 1) oB) 7T, (18) x <1+2<ﬁ>2E§—3<ﬂ>3E2+---), (24)
with the g-exponential function is defined by [22,23] with a = ¢ — 1. The zeroth-order approximation #(E,,)

. corresponds, as is expected, to the “pure” Boltzmann statis-
— g—1 .
) (@) = {(1 F-ga) T 0<g<l g s

)

@ g=1 B(E,) ~ e B En (25)

and where the parameteiis the index of non-extensive sta- 3.2. Generalized statistical mechanics for superstatisti-
tistical mechanics: if we identify = 1/¢ — 1 andbc = Gy cal systems

wheregy . . . .
As we know in statistical mechanics, the habitual Boltzmann

Bo = (B) = /@f (B)d3 = be, (20) factor e=#F is an essential tool used to determine thermo-
5 dynamic quantities such as the partition functié(g), free
energyF'(j3), total energyU(3), entropyS(3) and specific

is the average of, Eq. [17) becomes the generalized Boltz- neatC(), for a given system. These quantities are defined
mann factor(1 + (g — 1) (8) E,)~(1/9=Y] of non-extensive ¢

statistical mechanics. In this case, E4.7)(is transformed

i 1 dinZ
into F=—-—InZ, U=—-——"——, 26
5 5 (26)
—(B)En
B (E) = e, . (21) S g gtz O potnz o
kp 08 kg | 07

Note here that in the limit wherg — 1, we recover both (i)
the habitual exponential function and (ii) the ordinary statis-Recently, a remark about the validity of the applicability of
tics mechanics. the Egs. [26) and 27) to the case of Superstatistics seems
In our case, to seek simplicity, we use the approximatioimportant has been treated. To extend all well-known formu-
of the low-energy asymptotics (for more detail, see Ref. [7])lae of normal statistical mechanics to the case of Superstatis-
This approximation represents the leading order correction ttics, are restricted by the following conditions; First, Super-
ordinary statistical mechanics in our system with temperaturstatistics is characterized by using the superposition of mul-
fluctuations for small values of the enerfjy More precisely, tiple different statistical models to achieve the desired non-
the low-energy asymptotics behavior is universal: that meanknearity. In terms of ordinary statistical ideas, this is equiv-
that the generalized Boltzmann factor for a different choicealent to compounding the distributions of random variables.

Rev. Mex. 5. 66 (5) 671-682
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More precisely, Superstatistics assumes that the correct en- Although the superstatistics is a non-equilibrium process,
semble is not canonical, but a superposition of canonical erthe authors (i) do not give the arguments of the validity of ap-
sembles at different (inverse) temperatures weighted by a faglicability of habitual law thermodynamics in superstatistics
tor f(B). So, the Superstatistics denoted by symBoF),  for their case, and (ii) they have not used EBQ)(in their
allows the infinite types of system’s distribution with respectcalculations.

to E, once the fluctuating distributiofi(3) is given. This Now, when we starting with the following generalized
factor is based on three crucial premises; (i) a system is partBoltzmann factor defined by E24), the partition function
tioned into cells that can be considered to be reached an equs

librium locally, which is characterized by a singte (ii) its

statistical factor is Gibbsian and (iii) the separation betweenZ = Z B(E,) = Z e (D En

two time scales is adequate, that is, the time for approach- n
ing to each local equilibrium state is much faster than that for a,. 9.0 @ 3 4
varying f(3). This last criterion means that the framework of % ( 1+ 5 (5)" &, — Y (B) En) :

the theory of Superstatistics regards the existence of tempo-

rally local equilibrium within each of the cells that subdivide a, o d? a®, 5 d3 > (8B
a non-equilibrium thermodynamic system. Thus, this formal- + D) (B) d <5>2 T 3 () d(ﬁ>3 Z ¢ ’
ism can only be applied if we have sufficient time scale sep- =0
aration in the complex system, so that the system has enough a, o d? a’ 3

time to find local equilibrium in the local cells with a given = + 9 (8) W + 3 (8) d<5>3> Z.
(. In the local cells, local equilibrium statistical mechanics

is then valid for the givert in that cell (for more detail see To evaluate this partition function, we calculate at first the
Ref. [7] and references therein). In conclusion, and followingterm Z with the same method used above. Thus, we found
these arguments, it is possible to do ordinary statistical mefhat

chanics for this superstatistical non-equilibrium system, with ) )

all the known formulae such as described by EdK2 gnd Z((8)) = (1 4 <ﬁ>2 d? I f <ﬂ>3 d? )
13)). Note here that some recent theoretical developments, d <ﬁ>2

in the context of the theory of superstatistics, have used the N

known formulae of normal statistical mechanics in their in- o Z o~ (B)En

(31)

vestigation on some problems in physics [27-33]. Their re- —~ (32)
sults can be accepted only in the framework of the above L,_/

arguments about the applicability of the habitual thermody- contribution of few levels

namics laws in the superstatistics formalism. So, Z is an essential tool used to determine thermodynamic

In the recent paper of Castaet al[34], the authors used  guantities such as the partition functich(3), free energy
the g-algorithm of the g-calculus formalism [22, 23] to dis- (), total energyl(3), entropyS(5), and specific heat

cuss thermo-magnetic properties of a system of 2D GaAgy(3), for a given system. These quantities are defined by
quantum dots. Here we can mention two remarks about thigeplacings by (3) in Egs. 2) and (13).

formalism:

e When we use a g-logarithm, the algebra of our problem3'3' Results and discussions

is deformed, and it follows the theory of g-calculus for- Now, after this discussion abo(28) and 27) in the case of
malism with the following g-sum and g-product defini- the Superstatistics formalism, we are ready to discuss our nu-
tions [22, 23] merical simulations found. In our case, we concentrate only
on the main function, such the entropy, and the specific heat
to seek the existence of saturation and the nature of this satu-
(28) )
ration.
r@,y=x+y+(1—q)zy. (29) Our basic results are plotted in Figs. 5, 6, 7 and 8, in
these figures, we plot the variation of the entropy and the
¢ Following this algebra, the-derivative definition, in  specific heat versus the inverse of the temperafui@ dif-
the framework of the-calculus formalism, is given ferent values ofy and q: recall that these parameters denote

_1
@y = (¢ +y "I =1) 7, (x>, y > 0)

by [35-39] the parameter of the dependence of the potential with energy
and the parameter of deformation respectively.
_f(1 Besides these figures are subdivided into four canvas fol-
_ o S@) — f(y) . :
D, f () = lim lowing the choice of the parametegr Here we have selected

R 7Oy four values ofy < —1 [6], which correspond the case of

df (93). (30) particles £ > 0). Each canvas is presented and specified

{1+ -gz} dx by a value of the parameter. It contains the curves of the

Rev. Mex. 5. 66 (5) 671-682
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entropy and the specific heat for different values of the pa- e These peaks correspond to the phenomena of satura-
tion that appear in the case of the problems with the

rameter of deformation. We emphasize that the behavior of
these functions is not identical from canvas to another. potentials dependence energy. In this context, we note
Now, from these canvases, three remarks can be made that the observation of peaks in the curves of specific
about the influence of both parameterandq on the ther- heat indicates that there are a small number of discrete
mal properties of our oscillator: energy levels dominating the behavior of our system
in question. This behavior is due essentially to the de-
pendence of the potential of our oscillator with the en-
e From canvas to another, we can see that the number ergy: as argued in [5], this situation is very similar to

of Gau33|an—llk.e.shape in specific heat curves is differ- the case of Schottky peak (Schottky anomaly) which
ent. For a specific value of the paramejewe observe is a broad maximum in the specific heat observed in
that (i) these curves have a peak symmetry around @ gy qtems with several discrete energy levels, and not a
suitable temperatur@, (ii) the intensity of these peaks phase transition.

increases ag decreases and (ii) finally, they appear

whenqg — 1. Also, the number of these peaks de- e Contrarily to the non-relativistic limit( see Ref. [5]),

the limit of specific heat is equal zero only in very
high-temperature§s — 0). In very low-temperatures
(B — o0), for different values ofy, this limit depends

creases whefy| increases, and they increase when
decreases: in our case, we have a maximum number of

these peaks whep= —0.1.
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FIGURE 8. Thermal quantities of 1D (KGO) foy = —0.7 and for different values of.

on the value of the parametgr Wheng is aroundl,
we obtain the well know third thermodynamic law.

e On the other hand, in the range of high temperatures
(8 — 0), we haveC' — 0 : this situation, for all can-
vas, can be argued to the existence of saturation of
spectrum of energy for this type of potentiak., the
energy-dependent potential. So, all curves, exhibit a
transition phase between the growth phase, and the so-
called saturation phase. In our best knowledge, this
phenomena do not treated and discussed in the litera-
ture.

Recently, the superstatistical of the one-dimensional Dirac
oscillator has been well studied [7]. Although arguments of
the validity of applicability of law thermodynamics in su-

perstatistics for both Dirac and Klein-Gordon equations are

the same, the difference is very clear. The reason for this is
twofold:

e This study in question is devoted to the case of the one-
dimensional Dirac oscillator describing fermionic par-
ticles without energy-dependent potentials.

e Although the eigenvalues of one-dimensional Dirac
oscillator with energy-dependent potentials have the
same form of energy as those for our considered case,
the situation is not the same: the probability density, in
this case, is given by [3]

- ov

— a0 (19
p =1y (1 3 E) Y.
which is a spinor, not a scalar. This definition is very
different from the case of the Klein-Gordon equation

(33)
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(see Eq./A.17)), which describing the bosonic parti- Appendix
cles.
A. Modified product scalar in the Klein-Gordon

In conclusion, in order to understand well the influence of theequation

parameter of; of our Superstatistics formalism on the ther-

mal properties of our oscillator, we choose the lowest value-€t Us examine this problem of normalization by considering
of the paramete. This parameter contains all information the Klein-Gordon equation [3]

about the potentials which depend on energy.

&y 2 .0
4. Conclusion and its complex conjugate
In thi i i >’y 0
is work, we studied the influence of energy-dependent — - Ay + m2* +V(r, —i— |*=0 (A2)
potentials on the thermodynamic quantities of a one- ot ot

slrr?irsrlnonval Krl1e|\r/1-Gbordr(1)n i?/ S(;'"iit?r:' 'frihe rvarla\t/{;) nhOfvthesbeWhen we multiply these two equations multiplied by and
unctions vs; have been give € figures. Ve have o ") respectively, and after a subtraction we obtain

tained the variation of thermal functions such as the free en-

ergy, the entropy, and the specific heat withand also dis- 9 op* Lo . .
cussed the results for high temperatures for different values 77 (1# % at) + V@'V —pVyT)
of 4.
Also, we considered the Superstatistics of the statistical + {V (r’ _Z_8> w*}
mechanics of 1D-(KGO). We derived, by using the form of ot
the energy spectrum of this oscillator, the partition function 0
of our problem in question. In the framework of the applica- -y {V <T’Z(’9t> 7/1} =0. (A.3)
bility of this formalism, which imposes that the Superstatis-
tics formalism can only be applied if you have sufficient time By using that
scale separation in the complex system. So, we show the ex- P t
istence of a mapped of the superstatistical non-equilibrium ft)= 5/dsf (s), (A.4)

system onto an equilibrium system of ordinary statistical me-

chanics exists. This mapped allows us to tell that it is possiblend to obtain the continuity equati¢p/dt)+(95/0x) = 0,
to do ordinary statistical mechanics for this superstatisticaith j = *V1 — ¢ V*, we have

non-equilibrium system, with all the known formulas.

In our case, we have used (i) this mapping to determinate 9 [¢ oy w*aﬂ + /t ds
the Superstatistics of our problem in question, and (ii) choice ot ot ot
a functionf () following a Gamma distribution which is de- o
fined by Eq. [2). Now, by using this function, we have cal- X {w (r,s) {V (7“’ ia> Y*(r, 3)}

culated at first the generalized Boltzmann fac®f,£), and

consequently the desired partition function for our problem ok v .0

Z (8). According to this function, all thermodynamic prop- vrir.s) "o v(r,s)

erties such as mean energy, Helmholtz free energy, entropy, X B o

and the specific heat have been determinate: as a result we +VETVY - yVyn) =0. (A-5)

observe that phenomena of saturation in the curve of SP&ere the density is written as

cific heat appear only in the lowest valuesofin our case

~ = —0.1) and when the parameter of our Superstatistics for- { - t
Y

np
T

ot

malismg — 1. Finally, the limit of specific heat is equal to - 1
zero only in very high-temperaturgs — 0. In very low-
temperatureg — o), for different values ofy, this limit P
depends on the value of the parameteiheng is around X {w (r,s) {V (r, —i) P (r, s)}
1, we obtain the well-known third thermodynamic law. In the s

range of high temperaturés — 0), we have(C' — 0). This )
situation, can be argued to the existence of saturation of the = (r,s) {V (T’Zb) Y (r, S)H : (A.6)
spectrum of energy for this type of potentieg,., the energy-

dependent potential. So, all curves, as in the non—relativisticAS we have that

limit, exhibit a transition phase between the growth phase and 3
the so-called saturation phase. d°rp =1, (A7)

ds

_1/}*
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SO

/d%« [waw* —* —+ ds/ds

X [w (r,s) {V(r, —z’%)w*(r, s)}

v (r9) {v<r,i§s>w<r,s>}H -1, (A8
is the exact expression of normalization.
Putting now that
t) = / dEapyep (1) e Pt (A.9)
W* (1, 8) = / AE @l g™ (r) eHE'! (A.10)

so we have

ip=i / / dEdE' ay aper (7) o™ (1)

% lei(EE')t (E/+E)

efi(EfE’)t
- ﬁ + Cte

x{V(r,E')=V (r,E)}|. (A.11)
Now, if we choose that

ap = 6 (E - E()) s (A12)
ap' =6 (E — Ey), (A.13)

and after a limit development &f with

E
Vi) =V i)+ (- ) D E)
1 ’ 2 82V (’I“, E)

+§(E —-FE) W-‘r..., (A.14)

Eq. (A.11) becomes

- z’//dEdE’cS (E — Eo)§ (E' — Eo) ¢p (r) op™ (r)

ov(r,E) 1

—i(E—E")t| g . S _
X e E+FE 3E 5 (E'—E)
0%V (r, E) , oV (r,E)
5E2+:| +Cte|:(E —E)T
1 ’ 2 32V (T',E)
+ B} (E'—F) ;T (A.15)

After integration onF’ andE’, we arrive at the final result

oV (r, B,
p = om, () o, (r) {25, - LB 16
0Ey
and the condition of normalization becomes
E
/d3rg0E0 (r)op,* (1) {2E0—8V(’°’0)} =1. (A.17)
OFEy,

B. The eigensolutions of 1D Dirac oscillator with
energy-dependent potential

The free Dirac equation is:
[a (p — i)\'yow) + ’yo] P = E.

where) = /T +~E, a = o, andy" are the Dirac matrices.
These matrices are given by

0

-1 :

(01 o (1
de=\ 10 )7 T%7 o

From B.1) we get a set of coupled equations as follows:

(B.1)

(B.2)

(P2 —iAx) Y1 = (B + 1) 9o, (B.3)
(P2 +iAx) Yo = (B — 1) 9. (B.4)
Using B.4) we have
_ (px - iAx)
Po = 7(E 1) U1 (B.5)
Putting B.5) into (B.3), we get
(po + iAT) (pp — iX) 1 = (E* + 1) ¢y (B.6)

In the presence of a potential with energy-dependent poten-
tial, (B.6) changes into

2
Pe 1y o
(2 +2)\:1c>1/}1(x,E)

_ <El+>\ (8.7)

5 > Y1 (z, E)

the Eq. B.7) is the standard equation of a harmonic oscillator
in one-dimensional. The energy levels are well-known, and
are given by

E* —2F? —4yn®E —4n’ +1 =0, (B.8)
and the wave functions is
A

o1 (2, E) = CpHy (ﬁx) exp (2x2> . (BY9)

The total associated wave function is

1
V(@ E)=Ch| (po—ira)
(E+1)
A

H, (\E\x) exp (—2x2> (B.10)
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where(C,, is the normalization constant, ai, is the Her-
mite polynomial

A= Fenl-a(+3) - (5)

1

x 2" (n — 1) (1 - ;A (n— ;)) ) . (B.11)
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