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Hidden attractors from the switching linear systems
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Recently, chaotic behavior has been studied in dynamical systems that generate hidden attractors. Most of these systems have quadra
nonlinearities. This paper introduces a new methodology to develop a family of three-dimensional hidden attractors from the switching of
linear systems. This methodology allows to obtain strange attractors with only one stable equilibrium, attractors with an infinite number of
equilibria or attractors without equilibrium. The main matrix and the augmented matrix of every linear system are consideredén Rouch
Frobenius theorem to analyze the equilibrium of the switching systems. Also, a systematic search assisted by a computer is used to find th
chaotic behavior. The basic chaotic properties of the attractors are verified by the Lyapunov exponents.
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1. Introduction one stable equilibrium. For these systems, it is not possible
to apply the Shilnikov theorem [15, 16] to demonstrate the

The first chaotic system was introduced by Edwardexistence of chaos, because they do not have homoclinic and

Lorenz [1]. From this, the interest in developing new similar heteroclinic orbits.

systems emerged, and it has been applied in several appli- From Sprott's A-system [9], chaotic systems without

c_ations such as securing communications [2], synchronizaéquilibrium such as Pham [17], C. Wang [18], Azar [19],
tion (.)f systems [3], power systems [.4]’ among others. "T dy Wei [20] and Jafari [21] systems have been developed. Also,
namical systems, equilibrium is an important CharaCte”St'Chyperchaotic systems [22], multi scroll systems [23-25], and

;ince the motion ,Of trajectories depgnd on 'the local behaVfractional-order systems [26, 27] without equilibrium have
ior around the neighborhood of the fixed point. Most of thebeen studied

chaotic systems reported in the literature have a determined .
number of equilibria, and these have been widely studied. On the other hand, some 'authors have dev'eiloped chqotlc
For instance, the Lorenz [1], Chen [5]iil[6] and Chua [7] systems that_present an |nf|n|te number c_;f equilibria. For in-
systems have three equilibrium points, and thesster sys- Stance, Jafari [28], Chumbiao [29] and Li [30] systems. Be-
tem [8] has only two equilibrium points. Likewise, Sprott [9] sides it has been found that some hyperchaotic systems [31]

has proposed a set of chaotic systems where some of thefind fractal-order systems [32] has a line of equilibria.

have only one or two equilibrium points. Moreover, some  Finally, the systems with only one stable equilibrium have
chaotic systems have an equilibrium point in each basin opeen studied from the Sprott's E-system. Some authors, such
attraction which is generated by a piecewise linear functiords Wang [33], Pham [34], among others, proposed similar
(PWL) [10-12]. The PWL function allows to obtain a set systems through quadratic nonlinearities. Also, systems with
of linear systems, each one having a hyperbolic equilibriuniwo stable equilibria [35, 36] have been developed, and this
point. These systems can generate three or more scrolls in @pens the possibility to design multi scroll systems in the fu-
attractor; thus, they are known amilti scroll attractors ture.

Similar systems have been studied with two or more pos-  Notice that the chaotic systems mentioned above present
itive Lyapunov exponents. According to [13], these dynami-quadratic nonlinearities. However, there are a few systems in
cal systems are calldd/perchaotic the literature that generate hidden attractors from switching

In recent years, some systems that generate chaotic dinear systems [37,38]. In these researches, the main method-
tractors which their basin of attraction does not intersect wittology is to find hidden degeneracies in piecewise smooth dy-
its neighborhoods of the equilibrium points have been foundpamical systems through the sliding mode methods, and they
these are known as hidden attractors. Hidden attractors atese of efficient analytical-numerical methods for the study
difficult to find because both basins of attraction and the di-of hidden attractors. The approach is based on the use of
mension of the attractor could be very small. Accordingmodern computers and the development of numerical meth-
to [14], the systems with hidden attractors are classified as ads. Chua’s system was used to find hidden attractors trough
hidden attractor without equilibrium, a hidden attractor withthese approaches. Due to this motivation, this work presents
an infinite number of equilibria, and a hidden attractor witha new methodology to develop a family of three-dimensional
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hidden attractors from the switching linear systems. The 1. The linear system5f has a unique solution, if and
Roucté-Frobenius theorem is used as a tool to analyze the only if, the rank(A) = 3 andrank(A|B) = 3. In
equilibrium of every switching system. Thus, these systems other words, a unigue solution existsAf is not sin-
can generate a chaotic system without equilibrium, a chaotic gular. Hence, the dynamical syster) bas a hyper-

system with an infinite number of equilibrium points, or a bolic equilibrium point given byr* = —A~!B, and
chaotic with a stable equilibrium. the eigenvalues of matrid have the nonzero real part.

This paper is organized as follows: In Sec. 2, the pre- Therefore, the systerd) is called ahyperbolic linear
liminary theory of linear systems is introduced, and its rela- system

tionship with the equilibrium of the dynamical system. The
switched systems without equilibrium, with an infinite num- 2
ber of equilibria, and with stable equilibrium are introduced

in Secs. 3to 5. Finally, a discussion of the proposed systems
and the conclusions are given in Secs. 6 and 7, respectively.

. The linear system5f has multiple solutions if the
rank(A) = rank(A|B) < 3, that means, the matrix
A is singular. Consequently, the dynamical systéjn (
has an infinite number of equilibrium points. Because
of that the constant tersn= 0 andA < 0in Eq. (3),

2. Equilibrium description of a linear system the system is nonhyperbolisince at least one of its

) ) ) . o eigenvalues has the real part equal zero.
This section contains briefly the study of the equilibrium

point of a linear system, and its main features are presented.
Consider a three-dimensional linear dynamical system given

by

3. Finally, the linear systenmb) does not have a solu-
tion if the rank(A) # rank(A|B), consequently,

i — Az + B, 1) det(A) :0 Thus, the.d.ynamical SySFEI@)(dOES not

have equilibrium, and it inonhyperbolicsince at least

_ T 3 i _
wherez = [r1,22,25]" € R is the state variablel3 = one of its eigenvalues has the real part equal zero.

[b1,b2,b3]T € R? stands for a vector of real constants and

A € R3*%3 js a linear operator given b i i )
P g y The first statement from the aforementioned theorem is

ail G122  a13 the main characteristic of a self-excited attractor since its
A= a2 ax a3 |. (2)  pasin of attraction intersects with the neighborhood of the
azy azz2 a3 equilibrium point. On the other hand, the last two statements

Assume the systerri)(is dissipative; that means, the sum of are related to hidden attractors. That means its basin of attrac-
its eigenvalues is negative, and it has stable®) and unsta- tion does not intersect with the neighborhoods of equilibria.

ble (WY) manifolds. The behavior of the system is definedIt is important to mention that the systems with a stable equi-
through the eigenvalues of, which are obtained from the librium fulfill the first statement of the RouéhFrobenius the-

characteristic polynomial orem, however, they are considered as hidden attractors. The
3 5 previous theorem is considered along with this paper since
gA) = X" = BAT+ A =4, G we pretend to generate a chaotic attractor through the switch-
wheres = a1 +ago +ass, ¥ = 11092 +a11a33+ageasz — NG of nonhyperbolic linear systems.
12021 — A130A31 — A230A32 andé = det(A) The eigenvalues
of the system are determined through the discriminant of the

polynomialg(A). By definition, the discriminant of a third- 3 gwitched chaotic system without equilib-
degree polynomial is as follows fium

A =1803v0 — 4636 + 5%4% — 43 — 2752, (4)

where the next cases are consideréd) if A > 0, the
dynamical systenil) has three different eigenvalug®,) if

This section introduces to a system without equilibrium from
the switching of two nonhyperbolic linear systems. Each lin-

A = 0, the dynamical systeni) has multiple eigenvalues; €@ Systemi;z = B; belongs to domai; C R*, where the

and(3) if A < 0, the dynamical systerd) has a real eigen- MatrixA mustbe singular.

value and a pair of Comp|ex_conjugate eigen\/a|ues_ Assume that the flow of the SWitChing system is given by
The algebraic linear system solutids) (it is a starting  z(t) = ¢(zo) such that > 0. Moreover, assume that the

point to analyze the equilibrium of the system, since bothsystem is dissipative and generates an attractor. As a case

concepts are strongly related. study, consider the next switching system
Av+ B =0. ©) [ A+ By, iz >0 ®)
The Rouck-Frobenius theorem uses an augmented matrix | Asz+ B, ifx; <O.

(A|B), and provides the necessary conditions to establish the
type of solution. The concept of equilibrium point and theo-The domain of the system #B; whenx; > 0 andDs; when
rem are related as follows: x1 < 0. The states vector and the vector$3; and B, are
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defined in Eq.T). Finally, the matricesi; and A, are given 0.4 : ‘ ‘ ‘
by
~
0 1 1 0 1 1 ® OMW\/\/\///L//WMMJ\///\//\
A= 0 —p q |, A= 0 —p q |. (7)
0 —q¢ -k 0 —q k 04" : : : ‘
3500 3520 3540 3560 3580 3600

Both previous matrices have a column vector zero, thus,
det(A;) = det(A2) = 0. This leads to the third statement
of Roucte-Frobenius theorem, if and only if, the elements of ~ 0

B, andBs; are nonzero. Then, this guarantees that the system ® WWWMWNW
(6) does not have equilibrium.

To obtain a chaotic behavior, firstly, the solution of the -0.8" ‘ ‘ ‘ ‘

initial value problem must be of an oscillatory nature through 350003520 3540 3560 3380 3600
of the eigenvalues. The characteristic polynomials associated 0.6

with D; andD, are shown in the Eq.8]; meanwhile, their
eigenvalues are given in the E§).( s 0 WWWMMWWV\WWL"\]\”

0.6

gN=A+(p RN +(¢” + kp)X, = Ds 06+
9=’ +(p = F)?+(¢* — kp)p, = D ®) ) 3500 3520 3540 3560 3580 3600
a t
- k) £ k)?2—4(¢®> + k
M0, Agge TR \/(p; )2—4(¢* + kp) oal
k—p) + —k)2—4(¢2 - k 02r
=0, pgmEP) Vi 2 PoA® k) g
Note that these matrices have an eigenvalue equal to zero i
becausg(\) andg() do not have independent terms. Thus, 02t
the solution set is of oscillatory nature if the last two eigen-
values are one pair of complex-conjugates, that is to say, 0.4t
(p+ k)2 < 4(¢® + kp) and (p — k)2 < 4(¢® — kp), for
Dy andD,, respectively. Therefore, according to Eq. (4) the 0.61
discriminant is calculated a& = 3%y2 — 4+3 < 0. . 04 02 0 0.2 04
Let p = 0.25 andq = 3 be the elements of matrices b) x
1

A; and Ay, and letb; = by = 0 andbs = 0.05 be ele-
ments Of vectors3; and 5. . Taklng into account the abov.e FIGURE 1. a) Time series of states of the switching system with-
|nequaI|t|es_, the parametéris defined through a systematic out equilibrium. b) Phase portrait of the chaotic attractor in the
search assisted by software based on the methods proposggtching system without equilibrium am — z3-plane.

in Ref. [39]. This search consists in to find both the value of

k as the initial conditions, such that the Lyapunov exponents

or the bifurcation diagrams show the presence of chaos in the ) . .
o 81‘1 8%2 8333

system. VV(t) = -— 4+ ——= 4+ ==
In this way, the systeni6] has chaotic behavior when Oxy  Oxg  Ous
the parameterk = 2.3 and the initial conditions are 2.05, for D,
(14,24, 23,) = (0.05,0.05,0.05). The properties of the 1 —255, for D,. (10)

characteristic polynomials of the domaifs and D, were
verified. In the domainD;, the discriminant isA =
—2915.21 and the eigenvalues associated are= 0 and
A3 = —1.275 £ 2.8195i. Meanwhile, in the domaiD,,
the discriminant isA = —2093.75 and the eigenvalues are
p1 = 0andusg 3 = 1.025 + 2.71564.

The Lyapunov exponents are denotedXyy = 0.1086,
AL, = 0and\;, = —0.3509, and the Kaplan-Yorke di- . ) ) o
mension isDxy = 2.3065, which indicate that there ex- 4. A switched chaotic system with an infinite
ist a strange attractor. The sum of Lyapunov exponents humber of equilibrium points.

AL, + AL, + Ar, = —0.2423 indicates the system is dissi-
pative. However, the dissipation of each domain is calculatedhis section presents the switching of a linear system with
by the variation of a small element of voluri@t) as an infinite number of equilibria and a linear system without

In Fig. 1, itis can observe the time series of statgse,,
andzxs. Also, the hidden attractor generated from the switch-
ing system is shown. The frequency spectra of the time series
confirm that they are of a chaotic nature in Fig. 2.
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0.015 ; ‘ ' the systems of the domairf®; andD, the switched system
(11) has an infinite number of equilibrium points.
— 0.0l . ) L .
i According to equatior3), the characteristic polynomials
©0.005 ] of the matrices in12) are as follows
0 * A) =N+ (p— k3)A? + (k1g — ksp)A, = D
6 i p= a0 ” g(A) (p— ka) (k1q — kap) 3
0.03 ‘ ‘ : 9(p) = 1° + (ks — p)p® + (k2g — ksp)p, = Ds. (14)
002t ] Then the discriminant af(\) andg(u) is A = 32~2 — 443,
= Thus, their corresponding eigenvalues are defined by
0.01
A =0,
0 .
. = a0 o 40 oo Bs=p) V(P —ks)® —4(kig — ksp)
0.03 T " " 2,3 = 2 2 ’
B 0.02 ] w1 =0,
o 001F 1 —k ks —p)2 — 4(kaq —
u273:(p2 3)i\/(3 p) . (kag 319). (15)
0 -
0 10 20 30 40 Like in the previous section, domains should be governed
/ by eigenvalues such as unstable focus or stable focus. This
FIGURE 2. Frequency spectra generated from the time series of theP"0Vides an oscillatory solution to the initial value pr20blem.
switching system without equilibrium. This implies the next inequalities from EdLS) (k5 — p)* <

4(k1q — k3p) and (ks — p)? < 4(kaq — ksp) in D3 and Dy,
equilibrium. Hence, the equilibrium of the switched dynam-respectively.
ical system is an infinite number of equilibrium points. Con-  Assume that the parameters of the systén) arep =

sider the next system 0.25, ¢ = 3, b3 = 0.2, andks = 1.75. According to
) the inequalities aforementioned, we have an unstable focus
. _ | Asw+ Bs, !f 120 and a stable focus when the parameters> (1/3) and
T A+ By, if (11) . nd.
47+ By, If 21 <0, ks > (1/3), respectively. In the same way, the initial

conditions and the parametets and k-, are found through
the systematic search by software. Chaotic behavior was
found whenk; = 1.9 and ks = 4.1 with initial condi-

wherex = (z1, zo, ng)T is the states vector, and the matrices
are denoted by

0 1 1 tions (x1,, 22,,x3,) = (0.05,0.05,0.05). The eigenvalues
A= 0 —p ¢ |, of domainDs; areA; = 0 and)\233 = 0.75 #2.16791’ with
0 —ky ks A = —520.645. On the domairD, their eigenvalues are
p1 = 0andug 3 = —0.75 £ 3.3615¢ with A = —6360.49.
0 1 1 The Lyapunov exponents of the switched system with an
Ag=1| 0 D q |- (12)  infinite number of equilibrium points ard,, = 0.04298,
0 —ky —ks A, = 0and\;, = —0.1129, and the Kaplan -Yorke di-

] . mension isD gy = 2.38070. This confirms the presence of
Both matrices havelet(A3) = det(A4) = 0. The domain of ;1545 and the existence of a strange attractor. This system is
system(L]) is represented b; whenz, > 0 andDs when  gigqinative since the sum of the Lyapunov exponents is nega-
x1 < 0. The domainDs; has an infinite number of equilib- tive, we have\r, + Az, + Az, = —0.0631. Meanwhile, the

. . . . T .
rium points, if and only if,B; = (0,0,0)". This leads 10 iergence and convergence of the flow of each domain are
the second statement of Ro@sRrobenius. The equilibrium  opaineq in Eq.16). Itis clear that domaifd, is dissipative,

of D3 has been obtained when the following algebraic equapt D, is not.

tions are solved: . . .
- axl 81‘2 (91’3

o+ 5 =0 YV =50 T ony T oms
—px2 +qrs =0 _ 1.5, for Ds
_{ —1.5, for Dy. (16)

—kix9 + ksxs = 0. (13)
Figure 3 shows a section of the times series of staies:,
Thus, the equilibrium is defined b¥(x7,0,0). On the other andzs, moreover, the phase portrait of the hidden attractor
hand, the domairD, does not have equilibrium, since the onx; — x5 plane is present. The frequency spectra for each
vectorB, = (0,0,b3)” with b # 0. Therefore, combining time series are illustrated in Fig. 4.

Rev. Mex. 5. 66 (5) 683-691



HIDDEN ATTRACTORS FROM THE SWITCHING LINEAR SYSTEMS 687
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3500 3520 3540 3560 3580 3600
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a) t 0
2 : : : 0 10 20 30 40
/
Lr FIGURE 4. Frequency spectra generated from the time series of the
switching system with an infinite number of equilibrium points.
%" 0
and the values of the parameterandq are the same as the
previous sections.
-7 The linear system; 2+ B does not have an equilibrium,
: if and only if, Bs = (0,0,b3)", with bs # 0. This system
2 ‘ ‘ ‘ was studied in detail in Sec. 3 as well as their eigenvalues.
b -1 0.5 0 0.5 1 On the other hand, the systetigz+ Bg with Bg = (0,0, 0)”
) X has one equilibrium point when the next algebraic system is

FIGURE 3. a) Time series of states of the switching system with Solved,
an infinite number of equilibrium points. b) Phase portrait of the
chaotic attractor in switching system with an infinite number of To+23=0
equilibrium points one; — x3-plane.
—px2 +qrs =0

) ; ) —k‘g.’L‘l — qro — kll‘g =0. (19)
5. Switched chaotic system with only one sta-

ble equilibrium point. Thus, this linear system has one equilibrium point in

This system is developed by the switching of a linear s stemE(O’O’O)' This equilibrium must be stable, which means,
y P y 9 YSIMI the eigenvalues associated with the mattixmust have

without equilibrium and a linear system with one stable equi- . .
o . o . negative real part. Therefore the systdrr) has one equi-
librium. To analyze this case, a switching system is propose Torium point

as follows . o .
Now, the analysis of the matrifg is carried out from the

. A5£L' + B5 if 1 > 0 . . .
— b characteristic polynomial
v { Agx + Bg, if r1 <0, (17) poly

where the matriced; and Ag are given by 96(N) = N3+ (k1 +p) A2+ (k1p+g® +k2) A+ ko (p-+q). (20)
0 1 1
As=1 0 -p q |, This polynomial has an independent term, that means, the
0 —q ki determinant of the matri¥ls is nonzero. Thus, Cardano’s
method is used to solve the polynomial. Consider the next
0 1 1 cubic equation
Ag = 0 —p q |, (18)
—ky —q —k 96(A\) =N +aX? +bA+c=0, (21)
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where parameters are= (k; + p), b = (kip + ¢* + k») Finally, the roots of Eq.21) are calculated from the solutions
andc = k2(p + ¢). Now, we perform a change of variable as of Eq. 23). Consequently, we have
follows:
a a
A=y g, (22) No=yi- g (27)
and substituting in Eq./2(1) the quadratic term is removed.

Hence, the reduced cubic equation is obtained Notice that the parameteris equivalent to the discriminant

in Eq. 4). Then, the matrix4ds has a real eigenvaluwg and

v +uy+v=0, (23)  apair of complex-conjugate eigenvalues; if o > 0.
Taking into account the mathematical expressions above,
where the values of the parametels and k- are found, by a sys-
3b — a? tematic search, such that all eigenvalues have the negative
= 3 real part. The systeniy) is chaotic and has an equilibrium
3 stable wherk; = 2 andk, = 2.6, with the initial conditions
2a° — 9ab + 27c .
v ———————— (24)  (x14,2,,23,) = (0.05,0.05,0.05). Analyzing the local be-
27 A . . S
havior inxz; > 0, the eigenvalues afs (1) (it was studied in
o= (E)Q i (E)S' detail in Sec. 3) argi; = 0 andpus 3 = 0.875 + 2.7811¢
2 3 with A = —2235.23. Hence, inz; < 0, the eigenvalues of
The cubic Eq.23) has three roots, and they are calculated agis(A) areh; = —0.7710 andAz 3 = —0.7395+3.22707 with
follows: A = —4516.99.
This system is chaotic because the Lyapunov exponents
n=r+aQ arer, = 0.3562, A\, = 0 and\,, = —0.5560, and the
1 V3 existence of the strange attractor is confirmed by the Kaplan-
Yo = —§(P +Q)+ iT(P -Q) (25)  Yorke dimensionDgy = 2.6548. Besides the system dissi-
pation is verified by the sum of the system of the Lyapunov
ys = —}(P +Q) - iﬁ(P —Q) exponents is negative andJs,, + Az, + Ar, = —0.1998.
2 2 ’ Thus, the divergence of the flow of each domain is

where the values of parametdrsy () are defined as

0 01 0d .
vy = 28 OB O :{ 1.75, 33 (28)
P=2_2 _B + \/E aiCl 8(E2 81'3 —2.25, 4.
2
The time series and chaotic attractor are presented in
Q=2¢ Y (26) Fig. 5. As can be seen in Fig. 6, frequency spectra indicate
2 the chaoticity of the system.

TABLE |. Three cases derived from the switching systems presented previously, for the initial cor(ditjpns,, , z3,) = (0.05,0.05,0.05).

Case Parameters Equilibrium Eigenvalues LEs Dxy
pr =0
A, =0.1214
p2,3 = —1.68 £ 2.6372¢
SWnE k=311 None AL, =0 2.1682
A1 =0
A, = —0.7168

Ao2,3 = 1.43 £ 2.48544

pr =0
k=2 AL, = 0.0527
a3 = 0.75 & 2.2360i
SWLE k,‘2 =4.1 E(I*,(LO) )\L2 IO 2.5611
A =0
ks = 1.75 Ars = —0.0939

Xas = —0.75 + 3.3615i

1 =0
Az, = 0.4849
ki=2 p2,3 = 0.875 £ 2.7810¢
SWsk E(0,0,0) AL, = 2.5374
ko =4 A1 = —0.9371
ALy = —0.8892

A2,3 = —0.4064 £ 3.4019:¢
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i ; . ‘ ‘ 0.04
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g ‘ s ‘ ‘
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FIGURE 6. Frequency spectra generated from the time series of the
- switching system with only one stable equilibrium point.
=
0.5 . \
-0.5 MMN " M foa
0 m o
[
1 . -05¢F
-0.4 -0.2 0 0.2 0.4 0.6
b X w -lr
) 1 Lﬂ
FIGURE 5. a) Time series of states of the switching system with ~ -1.5¢
only one stable equilibrium point. b) Phase portrait of the chaotic
attractor in a switching system with only one stable equilibrium 2t
point onz;, — x3-plane.
-2.5

6. Discussion -3

2 2.5 3 3.5 4 4.5 5
The dynamic of the previous systems was analyzed through k
the parameter variation found by the systematic search. F
the switching system without equilibrium, the paraméter
was varied in the interval fror to 5. Figure 7 shows the
system dynamics through the Lyapunov exponents. As can
be observed, the chaoticity exists in the system for some vaPf equilibrium points may be a quasi-periodic. In this way,
ues into the intervals from ar1 to 2.5 and from2.9t0 3.2. ot only can beautiful chaotic systems can be obtained by
For the switching system with an infinite number of equi- Mixing linear systems, but even quasi-periodic dynamics can
librium points, its dynamic has been plotted in a LyapunovPe obtained as well.
exponents diagram (Fig. 8) concerning paramétewhen Similarly, a Lyapunov exponents diagram has been plot-
is varied from1.5 to 5. It can be observed a small region ted in Fig. 9 to the switching system with only one stable
of chaos froml.6 to 2.2, though limit cycles exist in the in- equilibrium, where the parametés was varied from0 to
terval from2.2 to 5. However, note that the system power 4.5. It can be appreciated that the regiorkto> 2.5, some
spectrum presented in Sec. 4 (Fig. 4) shows strong amplMalues indicate chaos in the system.
tude peaks. Also, the Lyapunov exponents are very small, Itis hard work to find chaotic behavior in a switching sys-
and its almost impossible to distinguish from zero, this indi-tem, and generate hidden attractor since they are developed
cates the strong probability that the system with an infinitefrom the combination of linear systems no-solution, multiple

q'-[IGURE 7. Dynamic of the Lyapunov exponents of the switching
system without equilibrium when parameteis varied from2 to 5.

Rev. Mex. 5. 66 (5) 683-691



690 F. DELGADO-ARANDA, . CAMPOS-CANTON, E. TRISTAN-HERNANDEZ, AND P. SALAS-CASTRO

0.1 ‘ ‘ ‘ ‘ ‘ ‘ negative real part. This indicates that the linear system is sta-

ble or asymptotically stable. For this reason, it was decided
to include a system without equilibrium with its eigenvalues

A f/\ with a positive real part, so that the system orbits would ex-

0 il \\ pand and contract.
// - Despite this, we have found that the dynamics of these
systems are bounded and converges towards the attractor for
a wide range of initial conditions and different system param-
eters. Table | summarized some cases of the switching sys-
tems above (with different values of their parameters), where
| chaos is present. The system without equilibrium is stood for
‘ ‘ ‘ ‘ ‘ | ™ SWy g, the system with many equilibria &8V and the
'0'21.5 2 25 3 35 4 45 5 system with one stable equilibrium &8V .
k The above dynamics systems were numerically solved by
1 the fifth-order Runge-Kutta method. The simulations were
FIGURE 8. Dynamic of the Lyapunov exponents of the switching generated in a time interval from 0 to 5000 with an integra-
system with an infinite number of equilibria whén = 4.1 andk:  tjon step dt=0.001. On the other hand, the systematic search

is varied froml.5 to 5. mentioned in each section above is based on the methods pro-
posed in the reference [39]. This search consists in to find
1 ‘ ‘ ‘ ' both the values of some parameters as the initial conditions,
such that the Lyapunov exponents show the presence of chaos
05} 1 in the system. The Lyapunov exponents were calculated us-
ing the algorithm of Wolf [40], and they were verified using
0 the algorithm from the reference [41].
g
~
0.5+ ] 7. Conclusions
1l A family of switching systems that generates hidden attrac-
tors is proposed in this paper. The presence of stable equi-
librium, an infinite number of equilibria, and no-equilibrium
-1~50 1 2 3 4'; . is in this family. The development of these switching sys-
tems is based on the linear systems theory. It is important to
kz mention that most of the hidden attractors reported in the lit-
FIGURE 9. Dynamic of the Lyapunov exponents of the switching €rature are constructed by systems with quadratic nonlinear-
system with only one stable equilibrium whén = 2 andks, is ities. However, a few hidden attractors constructed through
varied from0 to 4.5. the switching of linear systems have been found in the liter-

ature. It would be interesting to implement these systems on
solutions, or a unique solution whein = 0. Besides the chaos-based applications.
presence of an eigenvalue equal to zero and the absence of
a saddle eigenvalue, the switched systems without equilib-
rium, and switched systems with an infinite number of equi-Acknowledgements
libria depend only on eigenvalues of stable focus and unsta-
ble focus to obtain an oscillatory solution. In other words, theF- Delgado-Aranda is a doctoral fellow of the CONACYT in
system oscillates towards infinity, and through switching, the¢he Graduate Program on Applied Science at ICO-UASLP
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