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Thermal quantum correlations of spin chain with multiple interactions

S. Ahadpour and F. Mirmasoudi
Physics Department, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.

e-mail: Ahadpour@uma.ac.ir

Received 7 March 2020; accepted 27 May 2020

To explore the impact of distance between spins on quantum correlation, we compute trace distance discord and spin squeezing in an
anisotropic Heisenberg XYZ model with Dzyaloshinskii-Moriya interaction in the presence of the external magnetic field. It is valuable
to investigate how we can protect quantum correlations in a system when the distance between the spins is promoted. We find that rich
Dzyaloshinskii-Moriya interaction and low temperature can be effective for quantum correlations with increasing distance between spins as
at sufficiently low temperature. Besides, the generated correlated channels are inspected to interchange the information between the system
qubits applying the standard dense coding protocol; then, the dense coding capacity of the transmitted information is quantified. It is found
that the strength Dzyaloshinskii-Moriya interaction and magnetic field have a great impact on the dynamics of the quantum correlations and,
consequently, the quality of the generated channels to exchange the information. Therefore, the effect of Dzyaloshinskii-Moriya interaction
for various strengths of temperature needs to be considered to have valid dense coding when the distance of spin increases.
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1. Introduction

Quantum correlation and entanglement are some of the most
considerable aspects of quantum mechanics, which has many
uses in quantum information theory [1-5]. Lately, it turned
into a basic entrance of the quantum information theory be-
cause of its promising prospect in probing the quantum com-
puters and other quantum information devices. In quantum
information theory, the entanglement could be considered
as a clue role for implementing some quantum information
tasks such as quantum cryptography [6], quantum computa-
tions, geometric quantum computation [7-9], and dense cod-
ing [1,10]. In the past few decades, the role of quantum corre-
lations in dense coding and teleportation has attracted consid-
erable attention and expanded multiple approaches not only
in theories but also in experiments [11-17]. Quantum telepor-
tation and dense coding are performing with the help of prior
quantum entanglement partaken by the sender and receiver.

Up to now, various entanglement measures are manip-
ulated to quantify entanglement and to distinguish between
entangled and separable (not entangled) states. Recently, it is
interesting to find that spin squeezing is connected to quan-
tum entanglement, and one can use spin squeezing to charac-
terize entanglement. It was found that spin squeezing refers
to the minimum spin fluctuation on the plane perpendicular
to the mean spin direction [18-20]. It is investigated for an
arbitrary symmetric multi-qubit state, spin squeezing implies
pairwise entanglement, for some special state, spin squeezing
is equivalent to the pairwise entanglement [21]. Because of
important applications, spin squeezing has attracted consid-
erable attention and developed various approaches not only
in theories but also in experiments [22,23]. Another benefit
is that the spin squeezing involves no bipartition or reduction
process in a many-body system, unlike some other measures
of entanglement,e.g., concurrence or negativity. So, it can

be easily used for every spin model, independent of size, di-
mension, and geometry of the system [19,24,25]. There are
various definitions of the spin squeezing parameter; here, we
exploit the most vastly studied one, determined by Kitagawa
and Ueda [19].

Recent studies show that nontrivial nonclassical correla-
tions may exist even in separable states [26]. Thereby, the
general nonclassical correlations are not quantitatively deter-
mined by quantum entanglement. The quantum correlations
have recently emerged as a topic calling for the introduction
of modern cases. In this respect, quantum discord(a measure
of quantum correlation over entanglement) has been widely
studied in the literature as an alternative way to character-
ize nonclassical correlations even in separable mixed states
[27-29]. The investigation of this information-theoretic mea-
sure of nonclassical correlations has generated an increasing
interest during the last two decades [30]. Another interest-
ing geometrical approach to describe quantum correlation is
the so-called trace distance discord (TDD) [31,32]. It evalu-
ates the distance between the state under investigation and its
closest zero discord states. A formalism for a special subset
of two-qubit density operators named X-state is provided to
calculate TDD in [33]. TDD is one of the most successful ap-
proaches to detect not only the quantum correlations in many-
spin systems but also quantum phases transition [34,35].

Up to now, the effect of Calogero-Moser type interaction
on the quantum correlation of thermal states of a spin chain
is investigated by the authors in Ref. [38]. Their results im-
ply that the quantum discord depends on the relative distance
between the spins, the external magnetic field, and the tem-
perature [38]. Some authors discussed the quantum telepor-
tation by using thermal entangled states as entanglement re-
source,i.e., the final two-qubit state after teleportation, and
the entanglement teleportation of two qubits can be entan-
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gled [36,37]. Our most important motive for this study is
to investigate the effect of Calogero-Moser (CM) type inter-
actions on the thermal quantum correlations and dense cod-
ing in an anisotropic two-qubit Heisenberg XYZ system with
Dzyaloshinskii-Moriya(Dz) interaction in the presence of
the external magnetic field. Temperature fluctuations lead to
oscillating in the positions of spin lattices [39]. It seems that
the distance between spins may thus play an fundamental role
in the quantum correlation of the system. Such interaction
types are recognized as Calogero-Moser type interactions,
acquired in the Haldane-Shastry model. Investigation the ef-
fect of Calogero-Moser type interactions on the spin quantum
correlation is very important, therefore contributing to the re-
alistic assessment of the potential of such spin systems for
solid-state quantum computation and communication.

The paper is organized as follows: in Sec. 2, we describe
the Hamiltonian of the systems that we want to study dense
coding and quantum correlations through them. In Sec. 3 we
briefly review spin squeezing and TDD, then we investigate
the behavior of them by varying the model parameters. We
also study thermal dense coding through this model. Finally,
the main results will be summarized in Sec. 4.

2. Description of the model

The Hamiltonian of the Heisenberg model with z-component
interaction parameterDz in the presence of uniform and
nonuniform magnetic fields and long-range interaction is
given by

H = Jzσ
z
1σz

2 + Dz(σx
1σy

2 − σy
1σx

2 ) + (B + b)σz
1

+ (B − b)σz
2 + J(R)(σx

1σx
2 + σy

1σy
2 ) (1)

whereJz is the real spin-orbit coupling constant between the
spins inz−direction, Dz is Dzyaloshinskii-Moriya (DM )
coupling constants in the z direction, andσi are Pauli matri-
ces of thei-th site with(i = x, y, z). The term B and b repre-
sent z-component homogeneous and inhomogeneous exter-
nal magnetic fields, respectively.Dz interaction and exter-
nal magnetic fields are thought to be along thez−direction.
J(R) is the spin-orbit interaction coupling, which is charac-
terized as far as CM interactions. All the parameters are di-
mensionless. The CM has different types of interactions in
the isotropic ferromagnetic XYZ model. Here we consider
Calogero-Moser type I:J(R) = (1/R2), which is a ver-
sion of the Haldane-Shastry model with exchange interaction
J = (1/R2). One can easily calculate the matrix form of H:

H =




2B − Jz 0 0 0
0 2b− Jz 2(J(R)− iDz) 0
0 2(J(R) + iDz) −2b + Jz 0
0 0 0 Jz − 2B


 (2)

The above Hamiltonian is written in the standard basis of
|00〉, |01〉, |10〉, |11〉. After a straightforward calculation, we
obtain the eigenvectors and eigenvalues as follows:

E1 = 2B + Jz, |ψ1〉 = |00〉,
E2 = Jz − 2B, |ψ2〉 = |11〉,
E3 = 2ν − Jz,

|ψ3〉 =
1√

1 + MM∗ [M |01〉+ |10〉] ,

E4 = −2ν − Jz,

|ψ4〉 =
1√

1 + NN∗ [N |01〉+ |10〉] . (3)

where

M =
ν + b

G + iDz
N =

b− ν

G + iDz

ν =
√

b2 + D2
z + G2 G =

1
R2

(4)

We can introduce thermal fluctuations into the system, the
density matrix of this two spins at thermal equilibrium is
ρ = (1/Z)e−βH = Σ4

n=1P (n)|ψn〉〈ψn〉|, whereP (n) =
(1/Z)e−βEn are thermally distributed populations in the

quantum states,β = 1/kT (k = 1) , T is the temperature.
Z =

∑
n e−βEn is the partition function. In the standard ba-

sis, the density matrix of the system in thermal equilibrium
can be written as

ρin =




ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ∗23 ρ33 0
0 0 0 ρ44


 (5)

where

ρ11 =
e2B+Jz

Z
,

ρ22 =
e−Jz

Z

[
b sinh(2ν)

ν
+ cosh(2ν)

]
,

ρ23 =
e−Jz (G− iDz) sinh(2ν)

Zν
,

ρ33 =
e−Jz

Z

[−b sinh(2ν)
ν

+ cosh(2ν)
]

,

ρ44 =
eJz−2B

Z
, (6)

andZ = 2e−Jz cosh(2
√

b2 + D2
z + G2)+2e−Jz cosh(2B).

Now, one can investigate the entanglement of the two-qubit
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stateρ given in Eq. (6). In what follows, our purpose is
to quantify the number of quantum correlations of the above
system function of the parameters of the system.

3. Thermal quantum correlations

In this section, we study the thermal evolution of quantum
correlations under the effect of the Hamiltonian parameters
with multiple interactions. Thermal entanglement of the
XYZ system with the Dzyaloshinskii-Moriya (Dz) interac-
tion in the presence of the external magnetic field was con-
sidered in Ref. [13]. However, in this paper, we shall use
three types of useful measures that are being discussed be-
low.

3.1. spin squeezing

Following Kitagawa and Ueda’s criterion of spin squeezing,
we briefly review the definition of the spin squeezing pa-
rameter for a collection of N qubits with componentsSα =∑N

i=1(σ
α
i /2), (α ∈ x, y, z) as

ξ2 =
2(∆S−→n⊥)2min

J
=

4(∆S−→n⊥)2min

N
(7)

Here the subscript−→n ⊥ refers to an axis perpendicular to an-
gular momentum operator.S = (Sx, Sy, Sz) denotes the an-
gular momentum operator of an ensemble of spin-1/2 parti-
cles. Where(∆S−→n⊥)2min is the minimal spin fluctuation in a
plane perpendicular to the mean spin, andJ = (N/2), and
S−→n⊥ =

−→
S .−→n ⊥ . The noncorrelated limit yieldsξ2 = 1;

while the inequalityξ2 < 1 indicates that the system is spin
squeezed and entangled. In Ref. [40] was indicated for the
mean spin along thez direction spin squeezing can be written
as

ξ2 = 1 +
N

2
− 2

N
[〈S2

z 〉+ |〈S2
+〉|2] (8)

whereS± = Sx ± Sy are the ladder operators. From Eq. (8)
we see that the squeezing parameter is determined by a sum
of two expectation values〈S2

z 〉 and〈S2
+〉, hence the calcula-

tions are greatly simplified. For this density matrix Eq. (6),
the associated spin squeezing is given by

ξ2 =
3
2
− 1

8
[ρ11 − ρ22 − ρ33 + ρ44]− 2|ρ23| (9)

3.2. Trance distance discord

For any bipartite system AB which described by the den-
sity operatorρ, the trance distance is defined as the mini-
mal trace distance betweenρ and all of the classical quantum
states [41]:

DT (ρ) = min ‖ρ− σ‖ (10)

where‖A‖ = Tr
√

A†A denotes the trace distance between
ρAB andσ ∈ ρCQ, and [42]

ρCQ =
∑

k

pkΠA
k ⊗ ρB

k (11)

pk is the probability distribution, andΠA
k andρB

k are the or-
thogonal projectors forA and the density operator for B, re-
spectively. For a two-qubit X stateρ, which only contains
nonzero elements along the main diagonal and anti-diagonal,
the calculation of the trace distance discord can be calculated
as [33]

DT (ρ) =

√
ε2
1εmax − ε2

2εmin

εmax − εmin + ε2
1 − ε2

2

(12)

here, ε1,2 = 2(|ρ23| ± |ρ14|), ε3 = 1 − 2(ρ22 + ρ33),
εmax = max(ε2

3, ε
2
2 + Λ2

A3), εmin = min(ε2
1, ε

2
2) andΛ2

A3 =
2(ρ11 + ρ22) − 1. So we could get every parameter in the
Eq. (12) and figure out theDT (ρ) for the Heisenberg model
with z−component interaction parameterDz in the presence
of uniform and nonuniform magnetic fields and long-range
interaction.

FIGURE 1. 3D plot of (a) spin squeezing (ξ2) (b) TDD as a function
of R & T with Dz = B = b = Jz = 1.
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FIGURE 2. 3D plot of (a) spin squeezing (ξ2) (b) TDD as a function of R &Dz with B = b = Jz = T = 1.

3.3. Results and discussion

Using the results of the previous sections, we begin by an-
alyzing the behavior of thermal quantum correlations un-
der the effect of the Hamiltonian XYZ system with the
Dzyaloshinskii-Moriya (Dz) interaction in the presence of
the external magnetic field in the caseCM = (1/R2). Fig-
ures 1 show the 3D plot for Fig. 1a) spin squeezing and
Fig. 1b) TDD as a function of the distance R and the tem-
perature T. It is observed from Figs. 1 that the increase
of the temperature leads to very fast decaying of the TDD
and having no squeezing, which implies no global entan-
glement. In particular, we noticed that for higher temper-
atures, there is not any squeezing. The system of the two
atoms stays separable but contains quantum correlations that
are not captured by the spin squeezing. When the temper-
atureT = 10, the correlations reaches a minimal value at
R = 0.5 with choosingDz = B = b = Jz = 1. Also, it
is observed that at any finite temperature, there is an optimal
distance at which TDD reaches its deepest value; however,
TDD decreases steadily as the distance is raised gradually
beyond the optimal one. Moreover, we have presented plots
of spin squeezing and TDD as a function of the distance R
and the strength of the Dzyaloshinskii-Moriya (Dz) interac-
tion in Figs. 2. We can see from Figs. 2 that the increase
in the value of the Dzyaloshinskii-Moriya (Dz) interaction
helps the TDD and spin squeezing to create again. Finally, it
is revealed that higherDz values correspond to lower thresh-
old distance, deeper squeezing, and TDD.

For the better description of observed behavior, we depict
the thermal quantum correlations over the suggested model
in Figs. 3, which is quantified by the spin squeezing a TDD
under the effect of the system parameters (Dzyaloshinskii-
Moriya, spin-orbit coupling, Calogero-Moser type interac-
tion, and magnetic field) in the presence and absence of a
magnetic field and(T = Jz = 1). We can observe that the

presence of theDz interaction has led to the increase in the
value of the quantum correlations as same as Fig. 2. It is clear
that for the larger values of the Dzyaloshinskii-Moriya (Dz)
interaction,Dz = 2 gives a much better value of the TDD
and deeper squeezing as observed in the dotted curve whether
have a magnetic field or not it is. Also, we note that, at any
fixed homogeneous magnetic field, squeezing dies down and
TDD decays as the distance is increased and finally vanishes
at a specific critical one. It can be observed from this figures
that the homogeneous magnetic field increases the squeez-
ing vanished very quickly, where the TDD reaches its deep-
est value. Moreover, in general, the magnetic field presence
has a bad impact on the dynamics and the value of the TDD
and spin squeezing. If we compare the results of these fig-
ures, it is easy for us to see that the presence of an inhomoge-
neous magnetic field increases the value of the TDD as long
as it does not exceed the value of the Dzyaloshinskii-Moriya
(Dz) interaction. Also, it can maintain squeezing (see solid
curves).

4. Super Dense coding

Now we carry out the optimal dense coding with three dif-
ferent types of two-qubit systems as a quantum channel. For
this purpose, the set of mutually orthogonal unitary transfor-
mations is necessary to be made. The set of mutually or-
thogonal unitary transformations for two-qubit are given as
follows [10]

U00|j〉 = |j〉 (13)

U01|j〉 = |j + 1(mod2)〉 (14)

U10|j〉 = e
√−1(2π/2)j |j〉 (15)

U11|j〉 = e
√−1(2π/2)j |j + 1(mod2)〉 (16)

Rev. Mex. F́ıs. 66 (5) 692–699
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FIGURE 3. Spin squeezing and TDD as a function of R; the solid,
dashed and dotted, curves are evaluated forDz = 0, 1, 2, respec-
tively, with Jz = T = 1. (a) and (b) B =1 and b=0, (c) and (d) B
=0 and b=1, (e) and (f) B = b=0 (g) and (h) B=b=1.

where|j〉 is the single-qubit computational basis(|j〉 =
|0〉, |1〉). The average state of the ensemble of signal states
generated by the unitary transformations Eq. (13) given by:

ρ∗ =
1
4

3∑

i=0

(Ui ⊗ I2)ρ(U†
i ⊗ I2) (17)

where0 stands for00, 1 for 01, 2 for 10, 3 for 11, andρ
is the density matrix of the quantum channel. If the sender
does the set of mutually orthogonal unitary transformations,
the maximum dense coding capacityχ can be obtained by

χ = S(ρ∗)− S(ρ) (18)

whereS(ρ∗) is the von Neumann entropy of the average state
of the ensemble of signal statesρ∗, andS(ρ) is the von Neu-
mann entropy of the quantum channel. Ifχ > 1 dense coding

FIGURE 4. 3D plot of Dense coding capacity as a function of
(a) R and T withDz = 1 (b) Dz and T with R = 1, when
B = b = Jz = 1.

is valid, and for optimal dense codingχ must be the max-
imum, i.e., χmax = 2. In the following, we will use three
different types of two-qubit system as a quantum channel to
study optimal dense coding.

This section discusses the generated entangled channel
validity in Sec. 2 to exchange the information from a spin
to another. Fig. 4a) describes the effect of the temperature
and Dzyaloshinskii-Moriya(Dz) interaction on the dynam-
ics of the dense coding capacity as a function of the distance
between the spins. In this figure, dense coding capacity de-
creases with increasing temperature. What is interesting is
that we can even see valid dense coding in the large amount of
distance between the spins for the ground state(T → 0). But
it is decreased from the maximum to zero in a short period
of temperature and vanishes suddenly for the large amount
of T. The Dzyaloshinskii-Moriya(Dz) interaction on the be-
havior of dense coding has been illustrated in Fig. 4b) for
B = b = Jz = 1. It can keep its valid value for some strong
Dzyaloshinskii-Moriya(Dz) interaction. Hence, the increase
in the value of the Dzyaloshinskii-Moriya(Dz) interaction
helps the dense coding capacity to recover again. We can ob-
serve thatDz and T have the same effect as in the quantum
correlations in Fig. 3. As shown in this figure, the critical
temperature increases very rapidly with increasingDz.

Rev. Mex. F́ıs. 66 (5) 692–699
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FIGURE 5. Dense coding capacity as a function of R; the solid, dashed and dotted, curves are evaluated forDz = 0, 1, 2, respectively, with
Jz = T = 1. (a) B =1 and b=0, (b) B =0 and b=1, (c) B = b=0 (d) B=b=1.

The behavior of dense coding capacity affected by the ex-
ternal magnetic field has been plotted in Figs. 5. As shown in
Figs. 5, the effect of the Dzyaloshinskii-Moriya (Dz) inter-
action (Dz = 0, 1, 2 for the solid, dashed, and dotted curve,
respectively) on the dynamics of the dense coding capacity
in the case that there is no effect of both uniform and non-
uniform magnetic field. However, by looking at Figs. 5, they
reveal that optimal dense coding values appear whether be
external magnetic field or not it whenDz ≥ 1. Moreover,
it can be noted that the recovery of the values of the dense
coding capacity is done by increasing theDz interaction. It
can be observed from Figs. 5 that the homogeneous and in-
homogeneous magnetic fields have an opposite effect on the
dynamics of the dense coding capacity, where theDz inter-
action increases the dense coding capacity, and the magnetic
field decreases it. Also, we can understand that the effect of
the inhomogeneous magnetic field is more than the homoge-
neous magnetic field.

5. Conclusions

Amplification of quantum correlations and the rich dense
coding capacity of the information transfer have become one

of the hottest topics in quantum processors. However, it is im-
portant to identify the parameters that can cause to increase
the capacity of a quantum information channel.

Our most important motivation for this study has been
to analyze the impact of the distance between spins on the
thermal quantum correlations and the dense coding capacity
of state transfer in a two-qubit via a Heisenberg XYZ model
with differentDz interactions under the effect of the external
magnetic field and temperature, which can be considered as
a model of the quantum processor. At first, we have provided
a comprehensive quantitative analysis of spectral properties
for the TDD and spin squeezing in an anisotropic two-qubit
Heisenberg XYZ system. The results show that in the pres-
ence of the CM-type interactions, the thermal quantum corre-
lations between spins have a strong behavior depending upon
the magnetic field,Dz interaction, temperature, and interac-
tion strength. It is found that the sudden death is represented
at the critical distance of the TDD and spin squeezing. The
dynamics of the spin squeezing and TDD have a very strong
effect by varying the system parameters. Finally, we can con-
clude that in our model for a long-distance spin, the system
can exchange information with high dense coding capacity.
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