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Thermal quantum correlations of spin chain with multiple interactions
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To explore the impact of distance between spins on quantum correlation, we compute trace distance discord and spin squeezing in an
anisotropic Heisenberg XYZ model with Dzyaloshinskii-Moriya interaction in the presence of the external magnetic field. It is valuable

to investigate how we can protect quantum correlations in a system when the distance between the spins is promoted. We find that rich
Dzyaloshinskii-Moriya interaction and low temperature can be effective for quantum correlations with increasing distance between spins as
at sufficiently low temperature. Besides, the generated correlated channels are inspected to interchange the information between the system
qubits applying the standard dense coding protocol; then, the dense coding capacity of the transmitted information is quantified. It is found
that the strength Dzyaloshinskii-Moriya interaction and magnetic field have a great impact on the dynamics of the quantum correlations and,
consequently, the quality of the generated channels to exchange the information. Therefore, the effect of Dzyaloshinskii-Moriya interaction
for various strengths of temperature needs to be considered to have valid dense coding when the distance of spin increases.
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1. Introduction be easily used for every spin model, independent of size, di-
mension, and geometry of the system [19,24,25]. There are
Quantum correlation and entanglement are some of the mogtrious definitions of the spin squeezing parameter; here, we
considerable aspects of quantum mechanics, which has maeyploit the most vastly studied one, determined by Kitagawa
uses in quantum information theory [1-5]. Lately, it turned and Ueda [19].
into a basic entrance of the quantum information theory be- . - :
cause of its promising prospect in probing the quantum com- Recent stgdles shpw that nontrivial nonclassical correla-
puters and other quantum information devices. In quanturionS May exist even in separable states [26]. Thereby, the
information theory, the entanglement could be considere&’eneral nonclassical correlations are not quantitatively dgter-
as a clue role for implementing some quantum informatio ined by quantum entanglemer_wt. Th? quantum.correlaulons
tasks such as quantum cryptography [6], quantum comput 1ave recently emerged as a topic calling for the introduction

tions, geometric quantum computation [7-9], and dense coo‘?: modetrn cases.l ",:. this respectt, qulantumt d;lsco[)d(a me.zSLIJre
ing [1,10]. In the past few decades, the role of quantum corre?! quantum correiation over entanglemen ) has been widely
tudied in the literature as an alternative way to character-

lations in dense coding and teleportation has attracted considt . ) : )
e nonclassical correlations even in separable mixed states

erable attention and expanded multiple approaches not on 7.29] The | o f this inf . h .
in theories but also in experiments [11-17]. Quantum teleport~"” ]. The investigation of this information-theoretic mea-

tation and dense coding are performing with the help of priOI_sure of nonclassical correlations has generated an increasing

quantum entanglement partaken by the sender and receivell_.mereSt during the last two decades [30]. Another interest-

: . ing geometrical approach to describe quantum correlation is
Up to now, various entanglement measures are manip- . .
. e the so-called trace distance discord (TDD) [31,32]. It evalu-

ulated to quantify entanglement and to distinguish between ) . L .
a%es the distance between the state under investigation and its

entangled and separable (not entangled) states. Recently, it . . .
g P ( gled) Y closest zero discord states. A formalism for a special subset

interesting to find that spin squeezing is connected to quan-: . X ; .

tum entanglement, and one can use spin squeezing to chara?c,fcﬂt(\:'\l/J ?;euglégias[gélog%gt?srzergﬁiexr':;ittesig;\s% ?g t?

terize entanglement. It was found that spin squeezing referd ' ) . b
roaches to detect not only the quantum correlations in many-

to the minimum spin fluctuation on the plane perpendicular” " »
to the mean spin direction [18-20]. It is investigated for an>P" systems but also quantum phases transition [34,35].

arbitrary symmetric multi-qubit state, spin squeezing implies  Up to now, the effect of Calogero-Moser type interaction
pairwise entanglement, for some special state, spin squeezirg the quantum correlation of thermal states of a spin chain
is equivalent to the pairwise entanglement [21]. Because af investigated by the authors in Ref. [38]. Their results im-
important applications, spin squeezing has attracted consigly that the quantum discord depends on the relative distance
erable attention and developed various approaches not onhetween the spins, the external magnetic field, and the tem-
in theories but also in experiments [22,23]. Another benefiperature [38]. Some authors discussed the quantum telepor-
is that the spin squeezing involves no bipartition or reductiortation by using thermal entangled states as entanglement re-
process in a many-body system, unlike some other measurssurce,i.e., the final two-qubit state after teleportation, and
of entanglemente.g, concurrence or negativity. So, it can the entanglement teleportation of two qubits can be entan-
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gled [36,37]. Our most important motive for this study is 2. Description of the model

to investigate the effect of Calogero-Moser (CM) type inter-

actions on the thermal quantum correlations and dense codhe Hamiltonian of the Heisenberg model with z-component
ing in an anisotropic two-qubit Heisenberg XYZ system with interaction parameted. in the presence of uniform and
Dzyaloshinskii-Moriya(D,) interaction in the presence of n_onumform magnetic fields and long-range interaction is
the external magnetic field. Temperature fluctuations lead t§iven by

oscillating in the positions of spin lattices [39]. It seems that
the distance between spins may thus play an fundamental role
in the quantum cc_)rrelation of the system. Such_ interac_tion + (B = b)oi + J(R)(c¥0% + a¥0d) (1)

types are recognized as Calogero-Moser type interactions,

acquired in the Haldane-Shastry model. Investigation the efwhere J, is the real spin-orbit coupling constant between the
fect of Calogero-Moser type interactions on the spin quantunspins in z—direction, D, is Dzyaloshinskii-Moriya D M)
correlation is very important, therefore contributing to the re-coupling constants in the z direction, amdare Pauli matri-
alistic assessment of the potential of such spin systems fares of the-th site with(i = z, y, z). The term B and b repre-
solid-state quantum computation and communication. sent z-component homogeneous and inhomogeneous exter-

The paper is organized as follows: in Sec. 2, we describgal magnetic fields, respectivel\D, interaction and exter-

L nal magnetic fields are thought to be along thedirection.
g:)%Earggt;nE‘;nﬁjrghgosr?j:trigiglﬁtrxe r\:v :ﬂg;]o f;uggcdzn;S(R) is the spin-orbit interaction coupling, which is charac-
ading and quan . 9 o . ?erized as far as CM interactions. All the parameters are di-
briefly review spin squeezing and TDD, then we investigate

the behavior of them by varving the model parameters Wmensionless. The CM has different types of interactions in
y varying p > Wehe isotropic ferromagnetic XYZ model. Here we consider
also study thermal dense coding through this model. Finall

Y, . 2 ik
: : AR Calogero-Moser type IJ(R) = (1/R*), which is a ver-
the main results will be summarized in Sec. 4. sion of the Haldane-Shastry model with exchange interaction

| J=(1/R?). One can easily calculate the matrix form of H:

H = J,0505 + D.(c{0y — d¥o3) + (B +b)of

2B — J, 0 0 0
o 0 2~ J. 2(J(R) —iD.) 0 @)
0 2(J(R) +iD.)  —2b+J. 0
0 0 0 J, — 2B

The above Hamiltonian is written in the standard basis of
|00), |01), |10}, |11). After a straightforward calculation, we |quantum states? = 1/kT(k = 1), T is the temperature.

obtain the eigenvectors and eigenvalues as follows: Z=>3, e~ PFEn is the partition function. In the standard ba-
sis, the density matrix of the system in thermal equilibrium
Ey=2B+J., |11) = 100), can be written as
Ey =J, — 2B, [tha) = |11), pin 0 0 O
0 p22 pa3 O
Ey=2v—J,, p 0 pbs pss O )]
1 0 0 0 pa
= ———[M|01) + |10)],
95} =~ [M]O1) + [10)) Where
Ey=—2v—J., _ et
P11 = )
1 Z
|th4) = ——=—=== [N]01) + [10)] . ®3) =J= [hsinh(2
V1+ NN* P22 = eZ [sm (2v) +cosh(2v)} )
14
where
e~'*(G —iD,) sinh(2v)
v+b b—v P23 = s
M = . = - Zv
G+iD, G+1iD,
) e [—bsinh(2l/) +Cosh(2y)}
V:\/b2+Dg+G2 G:ﬁ (4) P33 = 7 v )
J.—2B
We can introduce thermal fluctuations into the system, the pas = € , (6)
density matrix of this two spins at thermal equilibrium is Z
p = (1/2)e PH = ¥1_ P(n)|ibn) ()|, whereP(n) =  andZ = 2e~7= cosh(2./b% + D2 + G2)+2e¢~ /= cosh(2B).

(1/Z)e=PEn are thermally distributed populations in the Now, one can investigate the entanglement of the two-qubit
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statep given in Eq. 6). In what follows, our purpose is py is the probability distribution, anti andp? are the or-

to quantify the number of quantum correlations of the aboveahogonal projectors foA and the density operator for B, re-
system function of the parameters of the system. spectively. For a two-qubit X state, which only contains
nonzero elements along the main diagonal and anti-diagonal,
the calculation of the trace distance discord can be calculated

3. Thermal quantum correlations as [33]

In this section, we study the thermal evolution of quantum
correlations under the effect of the Hamiltonian parameters Dalp) = \/ £2€max — €3€min (12)

with multiple interactions. Thermal entanglement of the Emax — Emin + €7 — €3

XYZ system with the Dzyaloshinskii-Moriya (Dz) interac-

tion in the presence of the external magnetic field was conbere,ei2 = 2(|p2s| + [p14]), €3 = 1 = 2(p22 + p33),
sidered in Ref. [13]. However, in this paper, we shall usefmax = max(e3, €3 + A%), emin = min(ef, €3) andA%; =

three types of useful measures that are being discussed b&p11 + p22) — 1. So we could get every parameter in the

low. Eq. (12) and figure out théDr(p) for the Heisenberg model
with z—component interaction parametey, in the presence

3.1. spin squeezing of uniform and nonuniform magnetic fields and long-range
interaction.

Following Kitagawa and Ueda’s criterion of spin squeezing,
we briefly review the definition of the spin squeezing pa-
rameter for a collection of N qubits with componests =
Y (08/2), (a € x,y,2) as
2 2
52 _ Q(Asﬁl)min — 4(ASWL)min (7)
J N
Here the subscripk , refers to an axis perpendicular to an-
gular momentum operatofl = (S, Sy, S-) denotes the an-
gular momentum operator of an ensemble of spin-1/2 parti-
cles. Wherg AS )2, is the minimal spin fluctuation in a
plane per_p)endicular to the mean spin, ahe- (N/2), and
S», = S.7m. . The noncorrelated limit yield§* = 1,
while the inequality¢? < 1 indicates that the system is spin
squeezed and entangled. In Ref. [40] was indicated for the
mean spin along thedirection spin squeezing can be written
as

N 2
=145 - FUSDH +[(SH] (8)
whereSy = S, £ 5, are the ladder operators. From E8) (
we see that the squeezing parameter is determined by a sum
of two expectation value&S?) and(S? ), hence the calcula-
tions are greatly simplified. For this density matrix E@),

the associated spin squeezing is given by
3 1

& = 5~ g[ﬂn — paz2 — p33 + paa] — 2|pas|  (9)

3.2. Trance distance discord

For any bipartite system AB which described by the den-
sity operatorp, the trance distance is defined as the mini-
mal trace distance betwegrand all of the classical quantum
states [41]:

Dr(p) = min ||p — o (10)  FiGURE1. 3D plot of (a) spin squeezing?) (b) TDD as a function
where||A|| = Trv At A denotes the trace distance between® R&TWith D= = B =b=J. =1.
pap ando € pcg, and [42]

poq = > pelli ® pf] (12)
k
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FIGURE 2. 3D plot of (a) spin squeezing?) (b) TDD as a function of R&D, with B=b=J, =T = 1.

3.3. Results and discussion presence of thé, interaction has led to the increase in the
value of the quantum correlations as same as Fig. 2. Itis clear

Using the results of the previous sections, we begin by anthat for the larger values of the Dzyaloshinskii-Moriy@.(

alyzing the behavior of thermal quantum correlations un-ntéraction,D, = 2 gives a much better value of the TDD
der the effect of the Hamiltonian XYZ system with the and deeper squeezing as observed in the dotted curve whether

Dzyaloshinskii-Moriya ) interaction in the presence of have a magnetic field or not_ it is. Also, we _note_that, at any
the external magnetic field in the caSé/ = (1/R?). Fig- fixed homogeneous magneuc_: f|.eld, squeezing _d|es dowr_1 and
ures 1 show the 3D plot for Fig. 1a) spin squeezing and' PP decgys a;_the distance is increased and fmally vgmshes
Fig. 1b) TDD as a function of the distance R and the tem-at @ specific critical one. It can pe qbserved from this figures
perature T. It is observed from Figs. 1 that the increaséhat the homogeneous magnetic field increases the squeez-

of the temperature leads to very fast decaying of the TDONY vVanished very quickly, where the TDD reaches its deep-

and having no squeezing, which implies no global entan€st value. Moreover, in general, the magnetic field presence

glement. In particular, we noticed that for higher temper-N@s & bad impact on the dynamics and the value of the TDD

atures, there is not any squeezing. The system of the wand s_pi_n squeezing. If we compare the results of .these fig-
atoms stays separable but contains quantum correlations tH4€S: it is easy for us to see that the presence of an inhomoge-

are not captured by the spin squeezing. When the tempefR€0US magnetic field increases the value of the TDD as long
atureT — 10. the correlations reaches a minimal value at®S it does not exceed the value of the Dzyaloshinskii-Moriya

R = 0.5 with choosingD, = B = b = J, = 1. Also, it (D) interaction. Also, it can maintain squeezing (see solid

is observed that at any finite temperature, there is an optim&Urves)-
distance at which TDD reaches its deepest value; however,

TDD decreases steadily as the distance is raised graduall .

beyond the optimal one. Moreover, we have presented plolg- Super Dense coding

of spin squeezing and TDD as a function of the distance R

and the strength of the Dzyaloshinskii-MoriyR ) interac-  Now we carry out the optimal dense coding with three dif-
tion in Figs. 2. We can see from Figs. 2 that the increaséerent types of two-qubit systems as a quantum channel. For
in the value of the Dzyaloshinskii-Moriyal).) interaction  this purpose, the set of mutually orthogonal unitary transfor-
helps the TDD and spin squeezing to create again. Finally, inations is necessary to be made. The set of mutually or-
is revealed that highed., values correspond to lower thresh- thogonal unitary transformations for two-qubit are given as

old distance, deeper squeezing, and TDD. follows [10]

For the better description of observed behavior, we depict ) ,
the thermal quantum correlations over the suggested model Uoolj) = 1) (13)
in Figs. 3, which is quantified by the spin squeezing a_TDI? Uoilj) = |j + 1(mod2)) (14)
under the effect of the system parameters (Dzyaloshinskii- '
Moriya, spin-orbit coupling, Calogero-Moser type interac- Urolj) = eV =17/ |5 (15)
tion, and magnetic field) in the presence and absence of a ) JTT(2n /2]
magnetic field and7 = J. = 1). We can observe that the Unlj)=e |j + 1(mod2)) (16)

Rev. Mex. 5. 66 (5) 692-699
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10 15 20

00,5 10 15 20 “0 5 10 15 20

FIGURE 4. 3D plot of Dense coding capacity as a function of
(@ Rand T withD, = 1 (b) D, and T withR = 1, when

B=b=J,=1.

U
is valid, and for optimal dense coding must be the max-
imum, i.e., xmax = 2. In the following, we will use three

0.0 “0 5 10 15 20 different types of two-qubit system as a quantum channel to
0 5 10 15 20 . :

study optimal dense coding.

g) R h) R

FIGURE 3. Spin squeezing and TDD as a function of R; the solid, This section discusses the generated entangled channel

dashed and dotted, curves are evaluateddor= 0, 1, 2, respec- validity in Sec. 2 to exchange the information from a spin
tively, with J, = T = 1. (a) and (b) B =1 and b=0, (c) and (d) B to another. Fig. 4a) describes the effect of the temperature

=0 and b=1, (e) and (f) B = b=0 (g) and (h) B=b=1. and Dzyaloshinskii-Moriyg D) interaction on the dynam-
ics of the dense coding capacity as a function of the distance
wherdj) is the single-qubit computational bas{§j) =  between the spins. In this figure, dense coding capacity de-
|0),[1)). The average state of the ensemble of signal stategreases with increasing temperature. What is interesting is
generated by the unitary transformations Eg) @iven by:  that we can even see valid dense coding in the large amount of

13 distance between the spins for the ground gtate- 0). But
P == Z(Ui ® [Q)p(UiT ® I) (17)  itis decreased from the maximum to zero in a short period

i=0 of temperature and vanishes suddenly for the large amount

where0 stands for00, 1 for 01, 2 for 10, 3 for 11, andp of T. The Dzyaloshinskii-Moriyd D ) interaction on the be-
is the density matrix of the quantum channel. If the sendehavior of dense coding has been illustrated in Fig. 4b) for
does the set of mutually orthogonal unitary transformationsB = b = J, = 1. It can keep its valid value for some strong
the maximum dense coding capacitgan be obtained by Dzyaloshinskii-Moriya( D, ) interaction. Hence, the increase
— in the value of the Dzyaloshinskii-Moriy@D,) interaction
x=8(p") = Sp) (18) helps the dense coding capacity to recovi?a)gain. We can ob-
whereS(p*) is the von Neumann entropy of the average stateserve thatD, and T have the same effect as in the quantum
of the ensemble of signal statgs andS(p) is the von Neu-  correlations in Fig. 3. As shown in this figure, the critical
mann entropy of the quantum channelyIf- 1 dense coding temperature increases very rapidly with increasing.

Rev. Mex. 5. 66 (5) 692-699
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0'00:0 0.5 1.0 1.5 2.0 2.5 3.'6 0'00:0 0.5 1.0 1.5 2.0 2.5 3.0
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FIGURE 5. Dense coding capacity as a function of R; the solid, dashed and dotted, curves are evalutee-for 1, 2, respectively, with
J. =T =1.(a) B=1and b=0, (b) B =0 and b=1, (c) B = b=0 (d) B=b=1.

The behavior of dense coding capacity affected by the exef the hottest topics in quantum processors. However, it is im-
ternal magnetic field has been plotted in Figs. 5. As shown iportant to identify the parameters that can cause to increase
Figs. 5, the effect of the Dzyaloshinskii-Moriy@®() inter-  the capacity of a quantum information channel.
action (D, = 0,1, 2 for the solid, dashed, and dotted curve,
respectively) on the dynamics of the dense coding capacity Our most important motivation for this study has been
in the case that there is no effect of both uniform and nonto analyze the impact of the distance between spins on the
uniform magnetic field. However, by looking at Figs. 5, they thermal quantum correlations and the dense coding capacity
reveal that optimal dense coding values appear whether baf state transfer in a two-qubit via a Heisenberg XYZ model
external magnetic field or not it wheh, > 1. Moreover, with differentD, interactions under the effect of the external
it can be noted that the recovery of the values of the densmagnetic field and temperature, which can be considered as
coding capacity is done by increasing the interaction. It a model of the quantum processor. At first, we have provided
can be observed from Figs. 5 that the homogeneous and i comprehensive quantitative analysis of spectral properties
homogeneous magnetic fields have an opposite effect on tHer the TDD and spin squeezing in an anisotropic two-qubit
dynamics of the dense coding capacity, whereftheinter-  Heisenberg XYZ system. The results show that in the pres-
action increases the dense coding capacity, and the magne#ace of the CM-type interactions, the thermal quantum corre-
field decreases it. Also, we can understand that the effect d&tions between spins have a strong behavior depending upon
the inhomogeneous magnetic field is more than the homogehe magnetic fieldD, interaction, temperature, and interac-
neous magnetic field. tion strength. It is found that the sudden death is represented
at the critical distance of the TDD and spin squeezing. The
dynamics of the spin squeezing and TDD have a very strong
effect by varying the system parameters. Finally, we can con-

Amplification of quantum correlations and the rich denseclude that in our model for a long-distance spin, the system
coding capacity of the information transfer have become onéan exchange information with high dense coding capacity.

5. Conclusions
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