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In this paper, a statistical analysis of high-frequency fluctuations of the IPC, the Mexican Stock Market Index, is presented. A sample of tick–
to–tick data covering the period from January 1999 to December 2002 was analyzed, as well as several other sets obtained using temporal
aggregation. The results indicate that the highest frequency is not useful to understand the Mexican market because almost two-thirds of the
information corresponds to inactivity. For the frequency where fluctuations start to be relevant, the IPC data does not follow anyα-stable
distribution, including the Gaussian, perhaps because of the presence of autocorrelations. For a long-range of lower-frequencies, but still, in
the intra-day regime, fluctuations can be described as a truncated Lévy flight, while for frequencies above two-days, a Gaussian distribution
yields the best fit. Thought these results are consistent with other previously reported for several markets, there are significant differences in
the details of the corresponding descriptions.
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1. Introduction

Is a fundamental assumption of the economic theory of mar-
kets that the financial markets are efficient in the sense of
the community of economic agents being able to discount
all the possibilities of arbitrage, incorporating with it all the
relevant information for the prices formation, so that it is im-
possible to design an (always) winning strategy for invest-
ment [1, 2]i. Mathematically, this is described as a process,
where a future increase or decrease of the current price is the
result of a random event. Underlying such a random walk is
a binomial distribution, which after a very large number of
steps (price changes), converges to a normal Gaussian distri-
bution. In turn, normal distributions are common in the de-
scription of systems in equilibrium, a stable state, small fluc-
tuations around which decay exponentially with time. How-
ever, it seems that the financial market cannot be modeled as
this kind of system; data for most financial indexes around
the world are statistically described by probability distribu-
tions that exhibit a large skewness or kurtosis, relative to that
of a normal distribution. It may mean that strong perturba-
tions are not, de facto, necessary for the market entering a
critical state. Recurrent significant deviations of economic
variables from their average values could be just the cumu-
lative and unavoidable result of many small-scale processes
and interactions occurring within the market system, contin-
uously subjected to a net external action like, for instance,
publicly available announcements of annual earnings, stock
splits, companies profits forecasts, new securities or, even

more, the punctual action of agents having preferential access
to restricted or confidential information.

In this regard, for years now particularly good fits to fi-
nancial data have been obtained using Lévy-stable distribu-
tions [3]. Nevertheless, it is obvious that, strictly speaking,
the market can neither be such a random process. First, it
is unreasonable to expect data from any real (as opposed to
hypothetical) process to have an infinite variance. Secondly,
it is reasonable to expect data from financial transactions at a
given time to have some memory of the previous transactions,
i.e., the elements of the corresponding time series should not
be really independent each from the others. This is easily
noted, for instance, during steeped variations of the stock re-
turns due to panic or euphoria.

Commonly there are two causes of autocorrelation in this
kind of data, irregular sampling and causality determined by
market microstructure. In agreement with the ‘efficient mar-
ket hypothesis’, it is intuitive not to expect persistent serial
dependence in price changes; otherwise, it would be used
to influence the market. Consistently with this, autocorre-
lation is often neutralized after homogenization of the corre-
sponding series by time averaging of subsamples. This typ-
ically results in sets with information correlated with those
of daily or lower frequency data. It is for these last sets that
fitting to stable distributions have already yielded remarkably
good results [4–8]. More precisely, it has been verified that
the actual density distribution behind the data could be a so-
called Ĺevy-truncated [9, 10] which, after sequential convo-
lution corresponding to the sum of the values over increasing
time intervals also converge to a Gaussian distribution. This



ANALYSIS OF INTRA-DAY FLUCTUATIONS IN THE MEXICAN FINANCIAL MARKET INDEX 701

convergence is ultra-slow; therefore, the truncation still al-
lows for a relatively high probability of extreme fluctuations,
which, as it was already noted, seems to be a distinctive fea-
ture of most financial markets.

Despite the success in describing markets activity as a
Lévy (truncated) flight, it is widely acknowledged that the
description will not be complete unless high-frequency data
is also brought into the study. On the one hand, most mar-
ket models are based on a variety of hypotheses regarding the
long-memory features of volatility, which are difficult to ex-
tract from daily or lower-frequency data but can be observed
in intraday data. For instance, as it was already mentioned, a
crisis in finances may not necessarily be linked only to strong
perturbations over several days, but also to the cumulative ef-
fect of intraday weaker perturbations. On the other hand, the
quality of risk analysis of investment depends on the accu-
racy of measurement of ex-post volatility and forecast eval-
uation. There is evidence of the improvement in both direc-
tions thanks to the availability of high-frequency data from
liquid financial markets such as the foreign-exchange, bond
or equity-index markets afford [11]. Last, but not least, the
analysis of the impact of sample size on the probability esti-
mation of extreme events yields that a large volume of data
is needed to determine the actual stable distribution corre-
sponding to a given asymptotic scaling [8, 12]. This is the
kind of volume that commonly characterizes the sets of high-
frequency data.

It must be pointed out that market microstructure and
short term interactions become relevant while analyzing
intra-day fluctuations and, since they depend on local socio-
economic factors, the stylized facts of the market as a com-
plex system can be difficult to extract. Therefore, it is very
important to study different realizations of high-frequency fi-
nancial data to discriminate local and universal properties of
the market dynamics. It is with this intention that in this paper
we report the first step into analyzing the tick-to-tick data of
the Indice de Precios y Cotizaciones (IPC), the main bench-
mark stock index in Mexico. It has been previously shown
in Ref. [8] that it can be dismissed that a normal

distribution relies upon under the data of daily closing val-
ues of the IPC. On the other hand, the null hypothesis that
it comes fromα-stable Ĺevy distribution cannot be rejected
at the 5% significance level. This implies that the daily data
can safely be considered as independent and identically dis-
tributed, characterized by an infinite variance. Our aim here
is to study how this conclusion changes when tick-to-tick data
is analyzed.

The paper is organized as follows. In the next section, we
provide a brief review of Ĺevy distributions, in particular of
the stable and Ĺevy truncated distributions which we use for
fitting the IPC fluctuations. The description of this data, as
well as the sets derived from them and used for our analysis,
is presented in Sec. 3. Next in Secs. 4 and 5, we proceed to
present the analysis of the probability distribution and serial
dependence of the actual fluctuations of the IPC data. We de-
vote the last section to discuss our results and state the main
conclusions.

2. Lévy distributions

As it was mentioned in the introduction, Lévy distributions
are among the more frequently used to fit data from complex
processes. Particularly, it has been found to be an excellent fit
for the distribution of stock returns as well as other financial
time series. In this section, we will briefly review the defini-
tion and properties of the stable and truncated Lévy distribu-
tions.

2.1. Stable distributions

While studying the behavior of sums of independent random
variables Paul Ĺevy [3] introduced a skew distribution spec-
ified by scaleγ, exponentα, skewness parameterβ, and a
location parameterµ. Since the analytical form of the Lévy
stable distribution is known only for a few cases, they are
generally specified by their characteristic function. The most
popular parameterization is defined by Samorodnitsky and
Taqqu [13] with the characteristic function:

φ(t) =





exp
(−γ|t| [1 + iβ 2

π sign(t) ln(|t|) + iµt
])

, if α = 1.

exp
(−γα|t|α [

1− iβ tan
(

πα
2

)
sign(t) + iµt

])
, otherwise.

(1)

wheresign(t) stands for the sign oft. Then, the probability
density function is calculated from it with the inverse Fourier
transform in the form:

f(x;α, β, γ, µ) =
1
2π

+∞∫

−∞
φ(t)e−itxdt . (2)

Lévy distributions are characterized by the property of
being stable under convolution,i.e, the sum of two indepen-
dent and identically Ĺevy-distributed random variables, is

also Ĺevy distributed with the same stability indexα. The
stability parameterα lies in the interval(0, 2]. Smallα repre-
sents a sharp peak but heavy tails that asymptotically decay as
power laws with exponent−(α+1). For the normal distribu-
tion α = 2. For symmetric distribution (like the normal dis-
tribution), the skewness parameterβ = 0. The skewness pa-
rameter must lie in the range[−1, 1]. Whenβ = +1,−1, one
tail vanishes completely. The parameterγ lies in the interval
(0,∞), while the location parameterµ is in (−∞, +∞).
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The asymptotic behavior of the Lévy distributions is de-
scribed by the expression

f(x; α) ≈ |x|−1−α . (3)

Hence, the variance of the Levy stable distributions is infinite
for all α < 2.

2.2. Truncated Lévy distributions

As mentioned in the previous subsection,α-stable Ĺevy dis-
tributions have infinite variance, hence, they have power-law
tails that decay too slowly. Therefore, the fit of empirical
data by Ĺevy stable distributions will usually overestimate
the probability of extreme events. In particular, real price
fluctuations have finite variance, so their distribution decays
slower than a Gaussian, but faster than a Levy-stable distri-
bution, with the tails better described by an exponential law
than by a power law. The truncated Lévy flight (TLF) was
proposed by Mantegna and Stanley [9] to overcome this prob-
lem and can be defined as a stochastic process with finite vari-
ance and scaling relations in a large, but finite interval. They
defined the truncated Lévy flight distribution as:

P (x) =





0 if x > l
cPL(x) if − l ≤ x ≤ l
0 if x < −l ,

(4)

wherePL(x) is a symmetric Ĺevy distribution. As the TLF
has a finite variance, with sequential convolution, it will con-
verge to a Gaussian process, but the convergence is very slow,
as was demonstrated by Mantegna and Stanley [9]. However,
the cutoff in the tail given by (4) is abrupt. This problem was
solved by Koponen [10], who introduced an infinitely divis-
ible TLF with an exponential cutoff with the characteristic
function:

log φ(t) = − cα

cos(πα
2 )

×
[(

t2 + λ2
)α

2 cos
(

α arctan
|t|
λ
− λα

)]
, (5)

wherec is the scaling factor,α is the stability index, andλ
is the cutoff parameter. The Lévy α-stable law is restored
by setting to zero the cutoff parameter. For small values of
x, the truncated Ĺevy density described by the characteristic
function (5), behaves like a Lévy-stable law of indexα [14].
It was used by Matacz [15] to describe the behavior of the
Australian All Ordinaries Index.

3. Data sets from IPC values

The source of the data used in this study were the databases
of the National Banking and Securities Commission, the fi-
nancial body of the Federal Government of Mexico. For our

FIGURE 1.IPC tick-to-tick data after filtering repeated values. The
horizontal red line corresponds to the mean value over the period.

analysis, we used the IPC value over the period January
1999-December 2002, which comprises 4321427 transac-
tions. Taking into account that the Mexican trading day is
of six and a half hours, this gives us an average time be-
tween transactions of5.2 seconds. To analyze the statistics
of nontrivial index fluctuations, the repeated values (the in-
tervals where no change in the returns was recorded) were
filtered, and the set was reduced toN = 1164256 elements
with a mean value over the period of6209.392, a variance
of 744334.3, and an excess of kurtosis of1537.442. These
ticks,Yk, are now irregularly sampled, with an average time
between fluctuations of 19.3 seconds. This set is plotted in
Fig. 1.

The actual fluctuations are then taken as the difference of
theYk,

Sk = Yk+1 − Yk , for k = 1, 2, . . . , N . (6)

For this study we also used sets corresponding to the con-
volution of the density distributions of high-frequency data
{Sk}, i.e., sets obtained after summing for different values of
Nconv,

SNconv
j =

j×Nconv∑

k=1+(j−1)×Nconv

Sk , for j = 1, 2, . . . , N̄ , (7)

whereN̄ is the multiple ofNconv closer toN .
It was mentioned here that after removing the inactivity

from the original tick-to-tick data, it results in an irregularly
sampled time series. Therefore, it is relevant to assess the
effect of unevenly spaced high frequency data in our analy-
sis and the comparison with known studies elsewhere. First,
note that the ratio of the number of elements in the original
set,4321427, over the number of elements in the filtered set
(N = 1164256) yields 3.71. On the other hand, for the set
formed with the number of ticks between transactions with
different values, it is found that the mean value is of 3.74
ticks.
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TABLE I. Statistical comparison between the fluctuations of the
IPC daily closing values and the set forNconv = 1200.

Statistics Daily Closing Nconv = 1200

Data Fluctuations

Mean 2.20 2.20

Std. deviation 105.39 110.02

Range 993.63 892.47

Minimum -544.35 -436.00

Maximum 449.28 456.00

Sum 2288.78 2122.72

The fact that these two numbers are so close each other is not
trivial because it strongly depends on the way fluctuations
are grouped, and it allows for the filtered data be safely rep-
resented by the mean sampling interval of 19.3 seconds. As
to the impact of the irregular sampling in the convolutions,
let us note that the standard deviation for the times between
transactions with different values is 3.51 ticks or 18.25 sec-
onds, which is still in the high-frequency range. Therefore,
in the worst-case scenario, our time estimates are off by a
factor of just 2 what, as we will see, leaves our conclusions
unchanged. Even so, we have reasons for expecting ours not
to be the worst case. Let us, for instance, assume that the
sampling interval is 19.3 seconds, thenNconv = 1200 would
be the convolution corresponding to one Mexican trading day.
Taking this into account we analyzed also a set of fluctuations

FIGURE 2. Distributions forNconv = 0. In the horizontal axis,Z
stands for the fluctuations data or the values of the corresponding
fits.

of the IPC daily closing values (for the same period studied
here) downloaded from the Yahoo Finance website. It can be
observed from Table I that, even if these are different sets,
the convolution withNconv = 1200 from the unevenly spaced
tick-to-tick data seems to statistically describe the process at
a daily frequency as well as the evenly spaced closing data.

Later in the discussion of the results presented in this
manuscript, we will provide further evidence in that direc-
tion.

4. Probability distribution of IPC fluctuations

We started by analyzing the non-convoluted data. The corre-
sponding distribution is presented in Fig. 2, where a logarith-
mic scale is used for the vertical axis and the horizontal axis
has been rescaled, dividing by the standard deviation. The
plots of best fits to a Gaussian (narrow blue curve below the

TABLE II. Results of the Kolmogorov-Smirnov Goodness of Fit Test (K-S test).

Nconv α β γ δ K-S Statistics p-value RejectH0? p = 0.05

0 1.2565 −0.0024 0.3796 0.0014 0.0179 0.0 Yes

10 1.5788 0.0056 2.3138 −0.0051 0.0097 0.0 Yes

20 1.6107 0.0089 3.8497 −0.0114 0.0076 0.0026 Yes

30 1.6296 0.0072 5.2420 −0.0075 0.0081 0.0115 Yes

40 1.6539 0.0140 6.6326 −0.03553 0.0099 0.0064 Yes

50 1.6523 0.2332 7.8216 −0.0497 0.0108 0.0084 Yes

60 1.6594 0.0145 8.9391 −0.0492 0.0100 0.0404 Yes

70 1.6647 −0.0053 10.0793 0.0359 0.0078 0.2602 No

80 1.6682 0.0010 11.1893 0.0339 0.0089 0.2022 No

90 1.6688 0.0141 12.1705 0.0103 0.0102 0.1365 No

100 1.6845 0.0029 13.2942 0.0329 0.0099 0.2053 No

110 1.6916 0.0080 14.2635 −0.0547 0.0123 0.0819 No

120 1.6887 0.0049 15.2096 −0.0066 0.0114 0.1607 No

130 1.6826 −0.0291 16.0270 0.2303 0.0131 0.0903 No

140 1.6874 −0.0211 16.9094 0.2623 0.0115 0.2163 No

150 1.6909 −0.0027 17.8762 0.1131 0.0107 0.3344 No

1200 1.8693 −0.3670 71.8964 6.8822 0.0150 0.5328 No

2500 1.9065 −0.6018 108.4828 12.0903 0.0301 0.7860 No

2700 2.0000 0.7973 122.6070 5.0104 0.0309 0.7985 No

Rev. Mex. F́ıs. 66 (5) 700–709
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FIGURE 3. Results of the Kolmogorov-Smirnov Goodness of Fit
Test versusNconv.

FIGURE 4. Distributions forNconv = 100. In the horizontal axis,Z
stands for the fluctuations data or the values of the corresponding
fits.

data points) and a Ĺevy (wide red curve above the data points)
distributions are also shownii.

It can be observed that the probability distribution func-
tion for this data does not correspond to a normal distribution,
but it neither does to a Ĺevy one. This is confirmed by the re-
sults of the Kolmogorov-Smirnov test shown in Table II for
the best fit of data to anα-stable distribution.

From this table, we can also observe that asNconv reaches
a value around70, the test cannot longer reject the hypothe-
sis of the probability density function for this data being an
α-stable distribution. As it is shown in Fig. 3. Lévy scaling
holds over a long range of values ofNconv. For instance, in
Fig. 4 is presented the data and the best fits for a normal and
anα-stable distribution forNconv = 100.

The values ofα keep steadily increasing asNconv is also
increased. As can be seen in Table I and it is represented in
Fig. 5, the value of the stable coefficient slowly converges to
2, while the convolution involves larger blocks of data. That
is, for instance, the value ofα for Nconv = 2700. In this case,
the corresponding statistics are presented in the last row of
Table I, and the distributions are plotted in Fig. 6.

As we can see, forNconv = 2700, normal distribution and
the corresponding Ĺevy distribution (withα = 2) give both a
very good fit to the convoluted data. This is strong evidence
that, indeed, the variance of the data is finite.

4.1. Convergence toα = 2

Note in Fig. 5 thatα ≈ 2 for Nconv around2000 too. Also,
in Table I, it can be seen that the convergence toα = 2 is
not just slow, as has been noted previously [9], but it is also
non-uniform. We believe that this is an effect of the finite

FIGURE 5. The stable coefficientα as function ofNconv.

FIGURE 6. Distributions forNconv = 2700. In the horizontal axis
Z stands for the fluctuations data or the values of the corresponding
fits.

FIGURE 7. The stable coefficientα as a function ofNconv, without
truncation.

number of elements in the sample. To verify that, we simu-
lated data by truncating sets generated using the stable library
by Nolan [16] and following expression (4). For the three sets
we used the same parameters, but the length of the series is
one, two, and five million elements, respectively. In Fig. 7
is plotted how the stable coefficientα for each original set
(without truncation) evolves with convolution.

It is noticeable the high quality of the simulated data since
in each caseα converges to a value significantly different
from 2 and, the larger the size of the set, the closer this value
gets to theα used for generating the set.

The truncation was done by erasing out the elements of a
given set with an absolute value greater thannstd× σ, where
σ is the standard deviation of the corresponding data. It im-
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FIGURE 8. The stable coefficientα as function ofNconv for
nstd = 50.

FIGURE 9. The stable coefficientα as a function ofNconv for
nstd = 10.

plies that the smallernstd, the fewer the elements remain-
ing in the truncated set. There is a range ofnstd when the
simulation works. For highnstd (i.e., small truncation), the
length of the series is not large enough for observing the con-
vergence toα = 2, though it seems to converge to a value
significantly different from the value used for generating the
set,i.e., the case without convolution presented in Fig. 7. An
example is given in Fig. 8. On the other hand, for lownstd

(i.e., large truncation), the Kolmogorov-Smirnov test rejects
that the data correspond to a stable distribution. Neither it is
a normal distribution, but it converges very fast toα = 2. An
example is given now in Fig. 9.

Reasonable truncation can be performed, such that it can
be obtained a series that for lowNconv, the test cannot reject
them to be stable-distributed, but with convolution converges
to α = 2. The corresponding example is given in Fig. 10.

From these simulations, it can be observed that the con-
vergence is not only slow but also non-uniform. However,
the larger the number of elements in a given set, the smaller
the size of the irregularities. If considering the whole popu-
lation (a condition for the generalization of the Central Limit
Theorem), the convergence can be expected to be uniform.

FIGURE 10. The stable coefficientα as a function ofNconv for
nstd = 35.

4.2. Lévy to Gaussian crossover

Since our sample is finite, and this affects the estimation of
the parameterα, we further analyzed the transition from Lévy
to the Gaussian regime by following the procedure proposed
in Ref. [17]. We study the behavior of the excess kurtosis for
convoluted samples, fromNconv = 0 to Nconv = 3000. The
excess kurtosis

k ≡ 〈(Si − µ)4〉
〈(Si − µ)2〉2 − 3 (8)

gives a statistical measure of theheavinessof the tail of dis-
tribution with mean valueµ. A normal process shows zero
excess kurtoses for the population, while it is positive for lep-
tokurtic distributions like Ĺevy-stable distributions.

The results we obtained are presented in Fig. 11. It can be
seen that the transition between Lévy and Gaussian regimes

FIGURE 11. Excess kurtosis for the samples as a function ofNconv.
The circle encloses the Lévy to Gaussian crossover.

Rev. Mex. F́ıs. 66 (5) 700–709
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FIGURE 12. Autocorrelations for a)Nconv = 0 and b)Nconv = 10.

FIGURE 13. Autocorrelations for a)Nconv = 50 and b)Nconv = 150.

occurs for values ofNconv between 2700 and 3000. This con-
firms the result discussed above for the fit of the convoluted
data to a stable Ĺevy distribution (see Table I), which gives a
value ofα = 2 for Nconv = 2700. This way, the crossover
time can be set equal toNc = 2700. Recalling that, dur-
ing the analyzed period (from January 1999 to December
2002), the average time between successive fluctuations is
close to 20 seconds and that for the Mexican market, one trad-
ing day is equal to 6.5 hours, we find that the Levy-Gaussian
crossover is approximately 2.3 trading days.

5. Serial dependence in the IPC data

From the previous section, we concluded that for convolu-
tions belowNconv = 70 data does not fit neither a Gaus-
sian nor any Ĺevy distribution. A common hypothesis for
both cases is the data being independent and identically dis-
tributed. In Figs. 12 and 13 we present the results for
the analysis of autocorrelation for the set{Sk}. In princi-
ple, the vertical axis would cover values from−1 (full anti-

correlation) to1 (full correlation), and the values in the hori-
zontal axis stand for the lagδ, i.e., denote the correlation be-
tweenSk andSk+δ. The blue dashed lines in these figures in-
dicate approximate limits of correlation coefficients expected
under a null hypothesis of uncorrelated data. We successfully
tested these limits using the simulations of truncated Lévy
distributions described in Subsec. 4.1. As it can be observed,
the fluctuations exhibit positive autocorrelations, which are
correspondingly diluted after convoluting the series. It sug-
gests a mild serial dependence between fluctuations within an
interval of about48 minutes.

In Figs. 14 are shown the autocorrelations for the series
of absolute values ofSk for a)Nconv = 0 and b)Nconv = 150.
This is a measure of volatility, and it exhibits long-range se-
rial dependence (beyond several months), a fact consistent
with findings reported for other markets [2,7].

Finally, we present in Fig. 15 the autocorrelations for val-
ues and absolute values of the daily closing dataset. As can
be observed, these last results are consistent with those ob-
tained for the tick-to-tick set, where no serial dependence is

Rev. Mex. F́ıs. 66 (5) 700–709
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FIGURE 14. Autocorrelations for the absolute value of the returns for a)Nconv = 0 and b)Nconv = 150.

FIGURE 15. a) Autocorrelations for the returns of the dayly closing and b) the corresponding absolute value.

present for sampling intervals above 48 minutes, including,
of course, the daily frequency which corresponds toNconv =
1200. Moreover, in Fig. 15a) a mild dependence for the
volatility is still observable at a lag of 300 days, which corre-
sponds to the lag of several months observed in Fig. 15b) for
the tick-to-tick data.

6. Discussion

Our results suggest that the statistical description of the Mex-
ican market strongly depends on the time scale of interest.
For the analyzed period, around 73% of the IPC tick–to–tick
data, sampled every 5.2 seconds, shows no activity. Fluctu-
ations occur, on average, every19.3 seconds, but the under-
lying probability is unlikely to follow a Ĺevy-stable distribu-
tion, including the Gaussian. Our analysis shows that one of
the reasons could be that these data are not independent. The
fluctuations exhibit mild positive autocorrelations that persist
for about48 minutes before falling below the level of noise.
This is, for instance, twice the value reported in Ref. [2] for

theS&P500 index, sampled at a 1 min time scale, and also
sometimes reported for various asset returns [7]. The auto-
correlation in the IPC is diluted by convolution,i.e., the ag-
gregation of elements of the set of fluctuations in blocks of
length Nconv. This is characteristic of random walks with
a short memory. Conversely, in the case of a deterministic
process with noise, even if autocorrelations are initially hid-
den, they surface and get more noticeable with convolutions.
Therefore, this serial dependence seems to reflect less the in-
ternal mechanics of the market (due to the law of supply and
demand) than the (complex, noisy) external action on it.

Taking all of this into account, the IPC fluctuations can
be described by Ĺevy-stable distributions in the wide range
of sampling interval from 20 seconds up to two trading days.
After that time, data seems to obey normal probability distri-
butions. We would like to note that this value for the Lévy
to Gaussian crossover also differs from results obtained by
other authors. For example, Mantegna and Stanley [5], for
theS&P500 (during the six years from January 1984 to De-
cember 1989), estimated the crossover time to be of the order
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of one month; Matacz [15], for the Australian All Ordinar-
ies, share market index for the period 1993-1997, found that
the crossover time is approximately 19 trading days, and in
Cuoto Miranda and Riera [17], a crossover of approximately
20 days was found for the Sao Paulo Stock Exchange Index
in Brazil (IBOVESPA), during the 15 years 1986-2000.

It is worthy to note here that these results do not depend
on the fact of the filtered tick-to-tick data to be unevenly sam-
pled. After removing contiguously repeated values, the aver-
age time for fluctuations over the period is, up to a decimal
of second, the same that the mean of the time values between
fluctuations. This will not be the case if, for instance, all the
activity happened along just one year of the whole of January
1999 to December 2002 period. Moreover, we showed that
sets obtained by convolution of the IPC tick–to–tick data can
be safely used to describe the activity at lower frequencies.
We tested this in Table I by comparing the basics statistics
for Nconv = 1200, which would correspond to one trading
day, with the fluctuations of the daily data from Yahoo fi-
nance for the same period. Even more, using the stability
parameterα of the Lévy distribution as a quantitative and
qualitative descriptor of the whole data set, from Table II we
see that forNconv = 1200 the probability density decays with
α = 1.8693, while for the daily closing data we obtained a
close value of1.8370. Last, but not least, the analysis of se-
rial dependence for the fluctuations of the daily closing data
(and their absolute value) presented in Figs. 15 is consistent
with those for convolutions of the tick-to-tick fluctuations
corresponding to frequencies above 48 minutes; there is no
significant dependence at the daily frequency, while for the
volatility, a mild autocorrelation persists over several months.

There are reasons for expecting the statistical descrip-
tion of the IPC to also depend on the period analyzed. As
mentioned before, in Ref. [8] we analyzed the fluctuations
of the daily closing data for the IPC covering the period
from 04/09/2000 to 04/09/2010. For this whole period,
we obtainedα = 1.64, which is significantly lower than the
value of1.86 we obtained for the daily data over the period
01/1999 to 12/2002 studied in this paper. Both these values
are still larger than, for example, the one reported by Man-
tegna and Stanley [5] for theS&P500 about a decade earlier.
The different values ofα for the two sets of IPC data we
have studied, indeed reflects the details of the market behav-
ior in the described periods. Both sets contain the years from
2000 to 2003. In the second half of the nineties, there was

a spectacular rise in the stock market in the United States,
specifically in the shares of companies integrated into what is
known as the “new economy” or “dot-com” companies. The
rate of investment in computers and other high-tech goods
doubled during the last five years of that decade, and this
momentum was carried into the following couple of years.
Nevertheless, several events disturbed the performance of the
markets in that period. Among them, the fact that Russia de-
clared a moratorium on the payment of its debt, as well as
a sudden devaluation of the ruble. At the beginning of 2001
(middle of the studied here period), a crisis arrived, with a
fall in prices, especially in the United States. Fortunately, the
global impact of the dot-com bubble crash was very limited,
since it was mainly in the technological sphere and affected
those who took the highest risk. Similarly, the disturbances
in the financial market caused by the events of September 11,
2001, in New York, decayed rather quickly. Even if Mexico,
as an emergent economy, was affected by the crisis of 2001,
it also managed to effectively damp these perturbations. All
these trends can be observed in Fig. 1. Therefore, even if
the daily data for these years are not normally distributed,
it is reasonable to find a value ofα close enough to 2. On
the other hand, the main difference between both periods is
that the set studied in Ref. [8] contains the mortgage crisis of
2008. This was a financial storm of proportions much greater
than the bursting of the dot-com bubble. The high level of
leverage of a large number of financial assets led to a huge
collapse of the world economy. The consequences in Mex-
ico, although not as dire as in other latitudes, had a serious
impact on investor confidence and the exchange rate. This in-
creased the market volatility, leading to a higher probability
of extreme fluctuations as compared with the first five years
of that decade.
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