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Information entropies for H 2 and ScF diatomic
molecules with Deng- Fan-Eckart potential

P. O. Amadia, A. N. Ikota,b, G. J. Ramphob, U. S. Okoriea, Hewa Y. Abdullahc,d,∗ and B. C. L̈utfüoğlue,f
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In this paper, the Shannon entropy and Fisher information is investigated with molecular Deng-Fan-Eckart potential for the diatomic
molecules H2 and Shannon entropy and Fisher in position and momentum spaces in three dimensions. Due to the difficulty in obtaining
the Fourier transform of the wave function in the momentum space, we considered only two low lying states corresponding to the ground and
first excited states. The results are obtained numerically for these diatomic molecules. Localization is observed for the Shannon entropy and
delocalization for the Fisher information for the two diatomic molecules considered in position and momentum spaces. The Shannon entropy
and the Fisher information measures for the two diatomic molecules satisfied the Bialynicki-Birula and Mycielski and the Stam-Cramer-Rao
inequalities uncertainty relation, respectively.
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1. Introduction

The information-theoretic measures have received a great
research interest in quantum mechanical systems over the
years. These are largely due to its applications in proba-
bility density function and computation and have provided
a broader perspective for various quantum mechanical sys-
tems [1-3]. The concepts of information-theoretic measures
have been applied in areas such as communication [4], phys-
ical sciences [5], chemical sciences [6], and other disciplines
that have connections with quantum information systems [7-
8]. Quantum information-theoretic measures quantify uncer-
tainty, and these measures are classified as either global or
local measures. The global measures describe the probabil-
ity density spread in a region [9-10], and these include Shan-
non entropy [2], Renyi entropy [11], Tsallis entropy [12], and
Onicescu information energy [13]. On the other hand, the lo-
cal measure is the Fisher information [14] and is concerned
with the point changes that occur in the probability density
[15]. Quantum information theory is a very important tool in
the uncertainty measures of atoms and molecules, and of all
these quantum information measures, the Shannon entropy
and Fisher information have been exhaustively studied than
other information-theoretic tools [2, 14]. The entropic den-
sities in the position and conjugate momentum spaces pro-
vide the basic description of a molecular and chemical sys-
tem. In the molecular system, it provides a good narrative
for chemical bonding [16], and it can also be applied in the

comparison of molecular interactions [17-18]. Several re-
search works have been carried out for information-theoretic
measures both analytically and numerically. For instance,
Isonguyoet al. [19] investigate the different information-
theoretic tools for the screened Coulomb potential. On the
other hand Onateet al. [20] investigated the dissociation
energy effect on the Shannon entropy and Renyi entropies.
Romeraet al. [15] studied analytically the behavior of Fisher
information for the central potential for a single particle sys-
tem and established a novel uncertainty relation that is sat-
isfied for any central potential model. Amadiet al. [21]
analyzed comparatively the screened Coulomb potential and
screened Kratzer potential in three dimensions for Shannon
entropy and Fisher Information. Another application of the
Fisher information is in the study of the Schrödinger equa-
tion in the presence of external electrical and magnetic ef-
fects in atomic systems [22]. The Shannon and Fisher infor-
mation has been studied for position-dependent mass within
the framework of non-relativistic quantum mechanics [23-
25]. This study will offer more information in the applica-
tions to semiconductors and quantum dots. Information en-
tropies have been investigated for scaling behavior properties
[26-28], confined systems [29-32], shape effect of quantum
heterostructures [33], among others [34-41]. In recent times,
there are very little research works on information theory
with exponential type potentials, and to the best of our knowl-
edge, no application of diatomic molecules for exponential
type potential has been investigated and hence the motivation
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of this study. The quantum information-theoretic measure
considered in this study is the molecular Deng-Fan-Eckart
potential model (DFEP). Recently, Edetet al. [42] studied
the DFEP model for some selected diatomic molecules. The
choice of this potential stems from the fact that it exhibits an
almost exact behavior with that of the Morse potential and
so makes it a good choice to the study of atomic interaction
for diatomic molecules. The organization of the paper is as
follows: Section 2 is devoted to the solutions of the Eigen
solutions of the DEFP. Section 3 tabulates the spectroscopic
values of the diatomic molecules. Section 4 is concerned with
the information entropy, where we examine the Shannon en-
tropy and Fisher information. Finally, we give a brief conclu-
sion in Sec. 5.

2. Eigensolution of DFEP

The Deng-Fan-Eckart potential is defined as [42],

V (r) = De

(
1− b

eδr − 1

)
− V1e

−δr

1− e−δr

+
V2e

−δr

(1− e−δr)2
, (1)

where,b = e−δre − 1, De, r, δ, andre are the dissociation
energy, internuclear distance, potential range, and molecular
bond length, respectively.V1 andV2 are potential strengths.
Using the Pekeris type approximation [43] for the centrifugal
approximation term in the Schrödinger equation [44], Edetet
al. [42] derived analytical expressions for the energy values
and the corresponding wave function for the DFEP using the
factorization method [45] as,
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, k = l(l + 1) and s = e−δr. (4a)

Other parameters are defined in Ref. [42],Yl,m(Ω) is the
angular component of the wave function [30]. Using the
MATHEMATICA software [45], we obtained the normaliza-
tion constant for the radial component for the ground state
from Eq. (3) in three dimensions as follows [21].

N0 =

√
δ3Γ(2ω + 1 + 2λ)
σΓ(λ)Γ(2λ + 1)

, (4b)

where,

σ = (γ −H2λ+ω + ψ(0)(2λ))2

+ ψ(1)(2λ)− ψ(1)(2λ + 1 + 2ω), (5)

andψ(n) = Γ′(x)/Γ(x) being the polygamma function. Hn
is the Harmonic number [9,19] andγ is the Euler Gamma de-
fined by [46],γ = limn→∞(

∑n
k=1(1/k) − ln n), where the

first term is Harmonic number. The probability density for
the ground states [47] in the position space is calculated as
follows,
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]
(s)2λ(1− s)2ω. (6)

The momentum-space wave function is obtained by tak-
ing the Fourier transformation [48] of the position space wave
function. For the ground state, the momentum space wave
function is given as,
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where,
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However, due to the difficulty and complexity of the in-
tegral expression in the momentum state at the first excited
state, we solved for the first excited state in position and mo-
mentum spaces numerically.

Figures 1 and 2 shows the characteristic behaviors of the
probability densities, which are plotted in position and mo-
mentum space, respectively. From the plots, we observed
that ScF is more concentrated than H2 and so shows a higher
localization.
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FIGURE 1. Probability densities in the position space for the selected diatomic molecules at the ground and excited state forl = m = 0.

FIGURE 2. Probability density in momentum space for the selected diatomic molecules at ground and excited state forl = m = 0.

TABLE I. Spectroscopic parameter of some selected diatomic
molecules.

Molecules De (cm−1) re (Å) α (Å−1 ) µ (amu )

H2 38,266 0.7416 1.9426 0.50391

ScF 47, 183.43 1.794 1.46102 13.35894

3. Spectroscopic values for some diatomic
molecules

Many interesting studies have been investigated on Shan-
non entropies and Fisher information with different poten-
tial models in recent times [50-53]. Here, we intend to study
the quantum information -theoretic measures for the diatomic
molecules of H2 and ScF. These selected diatomic molecules
are homonuclear and heteronuclear, respectively. These di-
atomic molecules possess the same properties as each di-
atomic molecule is made of two atoms only and differ from
each other in terms of covalent bonding and their geomet-
ric structure [54, 55]. Our choice of these two molecules is

based on the available data of their spectroscopic parameters
as given in Table I. Hence, we intend to observe their quan-
tum measures in the study. We take the experimental val-
ues of the spectroscopic parameters for each of the diatomic
molecules from Ref. [42].

4. Information entropies

4.1. Shannon entropy

In this section, the quantum information-theoretic measures
for Shannon entropy and Fisher information in position and
momentum spaces will be calculated. Shannon entropy,
which is regarded as a logarithmic probability density, inves-
tigates the concentration of the probability densities spread in
a quantum system. It is defined for position and momentum
spaces in spherical polar coordinate as [30];

Sr = −
∫

ρ(r) ln ρ(r)r2dr, (9)
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Sp = −
∫

φ(p) ln φ(p)p2dp, (10)

Sθ,φ = −
∫

γ(θ) ln γ(θ) sin(θ)dθ (11)

ST = 2π[Sr + Sp + Sθ,φ] (12)

whereSr, Sp, andSθ,φ are position Shannon entropy, mo-
mentum Shannon entropy, the angular component of Shan-
non entropy, andST is the total Shannon entropy, respec-
tively. The probability densities areρ(r) = |ψ(r)|2, Φ(r) =
|ψ(p)|2, andγ(θ) = |Θ(θ)|2. The angular component of
Shannon entropy is constant for both spaces. Now using
Eqs. (10-12), we obtain the numerical values of the Shan-
non entropies for the two diatomic molecules, which validate
the BBM uncertainty relation [30] as shown in Tables II and
III. One of the consequences of the BBM inequality is that
it represents the lower bound values of the Shannon entropy
sum [30, 49] such that, if the position entropy increases, then
the momentum entropy will decrease in such a way that their
sum bounds above (BBM) inequality. The Shannon entropy
uncertainty relation was established by Berkner, Bialynicki-
Birula, and Mycieslki (BBM) and is expressed as [49-51],

St = 2π[Sr + Sp + Sθ,φ] ≥ D(1 + ln π) (13)

where,D is the spatial dimension.
Tables II and III show the numerical results for the Shan-

non entropies of the two diatomic molecules of and ScF for
the ground and excited states in the position and momentum
spaces. In Table II, we observed that the Shannon entropies in
the position space are all negative in the ground and excited
state. This behavior of the negative Shannon entropic value
shows that the position Shannon entropy has a characteristic
of a high localization [19], which implies a high accuracy in
the prediction of the localization and less uncertainty. More
so, in the first excited state, there is a decrease in the Shannon
entropy values in the position space, which reaffirms its delo-
calization of H2 diatomic molecules. Similarly, in Table III,

high localization is observed for ScF diatomic molecule in
the position space as its Shannon entropy values dropped for
increasing angular momentum quantum numberl. In the mo-
mentum space, we observed a decreasing Shannon entropic
value for both diatomic molecules at the first excited state,
and hence there is an occurrence of localization for the two
diatomic molecules. Subsequently, the computed Shannon
entropies in the position and momentum spaces for the two
diatomic molecules satisfied the BBM uncertainty relation.

4.2. Fisher information

On the other hand, the Fisher Information is a local mea-
sure of information entropy and has a differential component
which makes it very sensitive to detect local changes that oc-
cur in the probability density. Fisher information, usually
regarded as the measure of information entropy [14, 38], is
the control of localization of the probability density. It can
be seen as a measure of oscillator degree, which has appli-
cations in quantum mechanical kinetic energy of the system
[54]. Thus, Fisher information in position space and momen-
tum space is expressed as [14,38]

Ir =
∫ ∇ρ(~r)

ρ(~r)
d~r, (14)

Ir =
∫ ∇φ(~r)

φ(~r)
d~r. (15)

In the theory of Fisher information, the higher the Fisher
information, the higher the accuracy of predicting the local-
ization of the system and thus increasing the Fisher informa-
tion increased the fluctuation of the system. Generally, for an
arbitrary angular momentum quantum numberl of any cen-
tral potential model, the two products of the Fisher informa-
tion must satisfy the the Stam, Cramer-Rao inequality [15],

IrIp ≥ 4〈r2〉〈p2〉
[
2− 2l + 1

l(l + 1)
|m|

]2

, (16)

wherem = 0,±1,±2... is the magnetic quantum number.

TABLE II. Shannon entropy in the position space for H2 diatomic molecules

n l Sr Sp Sϕ,θ St

0 0 -8.5615577582 12.0463422727 2.5310242469 53.7013355814

1
0 -8.2329583587 13.9224628761 2.5310242469 67.5539999101

1 -8.2238032731 13.9136537663 2.0990786246 62.1281849644

TABLE III. Shannon entropy for ScF diatomic molecule.

n l Sr Sp Sϕ,θ St

0 0 -8.6861099573 14.4531162093 2.5310242469 68.0409576704

1
0 -8.4105519485 16.5893973167 2.5310242469 83.1949897682

1 -8.4103361211 16.5885734544 2.0990786246 77.7631805966
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TABLE IV. Fisher Information for the diatomic molecules.

H2 ScF

n l Ir Ip Ir Ip

0 0 7.2812768317 18699.31566 40.0634648239 102888.46210

1
0 20.0364861998 51456.43944 119.2641535616 306286.67286

1 19.9186301824 51153.76904 119.2470271964 306242.69001

In Tables IV, we compute numerically the Fisher informa-
tion in the position and momentum spaces for the diatomic
molecules of H2 and ScF at the ground and excited states for
different quantum numbers. We observed that the Fisher in-
formation values increase as it transits from the ground state
to the excited state. At the excited state, Fisher informa-
tion decreases as the orbital angular momentum quantuml
is increased. This behavior is observed for the two diatomic
molecules, which indicate the presence of fluctuation and de-
localization in the diatomic molecules. Finally, the Stam-
Cramer-Rao inequality relation is satisfied for the two di-
atomic molecules.

5. Conclusions

In this work, we have studied the quantum information mea-
sures for Shannon entropy and Fisher information for the two
selected diatomic molecules of H2 and ScF in the position
and momentum spaces numerically at the ground and first
excited states. Each diatomic molecule investigated satis-
fied the BBM inequality for the Shannon entropy and Stam-
Cramer-Rao inequality relation for the Fisher information. In
this study, we have shown that H2 that ScF satisfied the un-
certainty relations for Shannon and Fisher information at the
ground and excited states.

6. Graphical abstract text and image

In this study, the Shannon entropy and Fisher information
is investigated with molecular Deng-Fan-Eckart potential for
the diatomic molecules H2 and ScF in position and momen-
tum spaces in three dimensions. Localization is observed for
the Shannon entropy and delocalization for the Fisher infor-
mation for the two diatomic molecules considered in posi-
tion and momentum spaces. The Shannon entropy and the
Fisher information measures for the two diatomic molecules
satisfied the Bialynicki-Birula and Mycielski (BBM) and the
Stam-Cramer-Rao inequalities uncertainty relation respec-
tively.
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