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We present the analysis of an electroosmotic flow (EOF) of a Newtonian fluid in a wavy-wall microchannel. To describe the flow and
electrical fields, the lubrication and Debyeitkel approximations are used. The simplified governing equations of continuity, momentum,

and Poisson-Boltzmann, together with the boundary conditions, are presented in dimensionless form. For solving the mathematical problem
numerical and asymptotic techniques were applied. The asymptotic solution is obtained in the limit of very thin electric double layers (EDLS).
We show that the lubrication theory is a powerful technique for solving the hydrodynamic field in electroosmotic flows in microchannels
where the amplitude of the waviness changes on the order of the mean semi-channel height. Approximate analytical expressions for the
velocity components and pressure distribution are derived, and a closed formula for the volumetric flow rate is obtained. The results show
that the principal parameters that govern this EOF are the geometrical parametieich characterizes the waviness of the microchannel,

and the ratio of the mean semi-channel height to the thickness of thefEDL,
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1. Introduction ous character of the channels as well as the role of high fre-
quency roughness. Meanwhile, Xéa al. [10] analyzed the
Electroosmoatic flows have found wide applications in the de-electroosmotic flow in a channel bounded by a plane wall
velopment of a great variety of microfluidic systems consist-and a sinusoidal wall. They obtained an exact solution by us-
ing of valves, pumps, and mixers to be utilized as an effiing a complex function formulation together with the bound-
cient method for transporting micro volumes of fluids. Ex- ary integral method. The effects of the channel width and
amples of such applications are drug delivery, DNA analy-wave amplitude on the electric field, streamline pattern, and
sis, and biological/chemical agent detection sensors on mitow field were presented. More recently, Magzet al. [11]
crochips [1-3]. In this context, electroosmosis enables fluicanalyzed the electroosmotic flow of a viscoelastic fluid in a
pumping and flow control using electric fields, eliminating wavy wall microchannel. They obtained an asymptotic solu-
the need for mechanical pumps or valves with moving comiion based on the domain perturbation method, which can be
ponents. However, because of these applications, some timapplied only for very small amplitude waviness.
there is a need of modifying the cross-section area of the On the other hand, some numerical works where EOF
microchannels, for speeding up samples transported by elefy wavy microchannels have been analyzed, are the fol-
trokinetic effects [4], for transporting particle in micro/nano |owing: [12] investigated the mixing characteristics of
nozzles and diffusers [5], for determining the translocationelectrokinetically-driven flow in microchannels with differ-
speed of DNA in nanopores [6]. ent wavy surface configurations. They conducted numerical
One of the first researchers that analyzed the EOF in misimulations to analyze the influence of the wave amplitude
crochannels with the simultaneous presence of charge arahd the length of the wavy section on the mixing efficiency
shape modulations on the surface in the direction of the apwithin the microchannel. [13] carried out a numerical investi-
plied electric field was Adajari and coworkers [7, 8]. Re- gation to study the flow characteristics of non-Newtonian flu-
cently, Alexandert al [9] studied the electroosmotic flow ids (described by a power-law fluid) in rough microchannels
in wavy channels by expanding the solution into a doubledefined by a complex-wavy surface, composed by the super-
series in terms of the dimensionless amplitudes and of thanposition of two sinusoidal functions. The effects of the
dimensionless zeta potential for a binary dilute electrolytewave amplitude, geometry of the wave, Debyiekiel pa-
They demonstrated the importance of the varicose or sinurameter, and flow behavior index of the non-Newtonian flu-
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ids on the local velocity profiles, volumetric flow rate, and was asymptotically obtained in two limits: in the first case,
electric field distribution were examined. [14] analyzed thewe solve the mathematical problem by considering thin EDLs
electroosmotic flow in a parallel-plate microchannel with si-with values of the waviness amplitude of the same order as
nusoidal surface roughness, and the solution of the governintipe microchannel height; while that in the second case, we
equations was obtained by using the finite element methodtonduct the analysis in the limit of very small waviness am-
Their simulation results indicate that the bulk flow velocity plitude but the Debye layer being of order as the microchan-
and the volumetric flow rate decrease slowly with the roughnel height. Besides a numerical solution was conducted to
ness height when the relative roughness is very small or veryerify the asymptotic solution.

large, while decrease quickly when the relative roughness is

moderate. .

The most of theoretical studies concerning EOF conside?‘ Formulation
that the walls of mlcrqchannels are peffeC“y smooth; hOW'For mathematical modeling, we consider the EOF in a wavy-
ever, a careful analysis reveals in reality that the walls are . L ’
rugous, and therefore it geometrical factor plays a very im-Wall mlcrochannel as §hown in Fig. 1. The length of the mi-

L . ; crochannel id., and it is assumed that the walls are located

portant role in microscales which must be taken into account,

. ; a
Evaluating the perturbations on the flow due to such cause is O
a fundamental fluid mechanics problem of considerable inter- y=nh(z)=+H [1 + esin (L)] : 1)
est in this kind of EOF, as demonstrated by [15, 16]. Many of
the mentioned works use the Helmholtz-Smoluchowski slip  Here, H represents the mean semi-channel height,cand
approximation under the assumption of infinitely thin elec-is & dimensionless geometrical parameter, which character-
tric doub|e |ayers (EDLs) to S|mp||fy the determination Of izes the WaVineSS Of the miCI‘OChanne| Wa||S, and |t can take
the flow field. Because of the assumption of thin EDLs used/alues of0 < e < 0.8; we anticipate that this last value is
in the aforementioned works, the obtained velocity profilesthe upper limit for which the solution obtained in this work
are uniform in the transverse direction. Converse|y to that’eXiStS. In this case, the cross-sectional area of the microchan-
and given different applications that can be found in EOFNel is varying periodically in the flow direction. Although
in the present work, we consider EDLs with finite thickness,the method used for solving this kind of EOF can be ap-
which yields an EOF with a nonuniform velocity profile. We Plied to other geometrical designs of the walls, in this work
also determine the induced pressure along the channel, whi¢hassumed that the crest of the upper wall corresponds to the
cannot be obtained by an analysis of infinitely thin EDLs.  trough of the other.

The mentioned works enable the research community to We consider that the flow is only driven by the effect of
obtain significant physical insights on EOF in microfluidics €lectro-osmotic forces caused by imposing an external elec-
channels; however, most of them have been performed bific field of strength, in the axial direction. The microchan-
using numerical methods or complex mathematical formulahel is supported at the two ends by two liquid reservoirs,
tions. Therefore, this work aims to present a simple analytiwhich are found at a pressuf®. According to typical ap-
cal formulation, based on the lubrication theory that permitsPlications of EOFL >> H. Owing to the geometry, a two-
to determine the flow field of an electroosmotic flow in a mi- dimensional rectangular coordinate systefy is adopted
crochannel with wavy walls in an easier way. The solutionWwith the origin at the microchannel inlet,denoting the flow

E,
L
+! -

FIGURE 1. Sketch of the EOF in a wavy-wall microchannel.
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direction, andy represents the transverse direction in the mi-  The dimensionless variables in E08)-(5) are defined as
crochannel. Here, the flow will i&D; therefore, the velocity follows:
component perpendicular to the plangy) is zero.

On the other hand, and considering wavy-walls of the X = E, vy=2 a= L, U= L,
microchannel, the assumption of unidirectional flow is no L H Uns UnsH
longer valid, except in the case of= 0. Because of the P (p— po)H? - P Bo— E, 6
fluid is incompressible, the velocity component in the di- ~ pUpsL ¥ = ¢’ X7 By ®)

rection should be increased for decreasing values of the di-

mensionH in order to satisfy the mass conservation; a consewhere v and v represent the velocity components in the
quence of the above, is the appearance of an induced pressdre andy— directions, respectively;/n s is the Helmholtz-
the gradient along the microchannel. Besides other assummoluchowski velocity, defined dsys = —e(Eo/pu [19],
tions on which the mathematical model is obtained are th&€ing the viscosity and the permittivity of the fluid. £,
following: (i) constant physical properties and steady-statd€presents the electrical field strength in thalirection, and
conditions; (i) the electrolytic solution is assumed symmetric?’ is the electric potential in the EDL. Alsp,= P—ex?)? /2

(2 : 2); (iii) the wall potential. are axially invariant and low  [7. 8, 17], with P representing the hydrodynamic pressure.
enough € 25 mV), such that the Debye-ktkel linearization ~ From the current continuity through any cross section orthog-
approximation is valid; (iv) the electric double layers (EDLs) onal toz-axis, £, can be written asv, = 1/h(x) [5, 16],

on the inner surface of the microchannel do not overlap; (v)vhereh(x) = 1+ esin(2my).

it is assumed that the electric field and current vectors make The dimensionless boundary conditions are:

only a small angle to the-axis, which is valid in the limit

W ()| < 1 along thex, where the prime denotes deriva-  at Y = i(y) = [1 + e sin(2my)] : { g Z ET 0 (7)
tive [6], and therefore the lubrication theory can be used for -
solving this EOF [15].

ou o
3. Governing equations at Y =0: o5=5-=0 (®)
Under the assumptions presented previously, the equa- &t ¥ = —h(x) =—[1+esin(2ry)]: =0 (9)

tions which govern the steady two-dimensional EOF in a
wavy-wall microchannel are the continuity, momentum, and®" _

Poisson-Boltzmann equations. We start with the dimension- at x=0,1: P=0. (10)
less governing equations, based on the lubrication theory,

From Eq. @), P is exclusively a function of the coor-
which are given by [17]: a. @ y

dinatey; thus, the hydrodynamic problem consists of deter-
ou O mining the solution of Eqgs.2) and B). As can be appreci-

% + ay 0, 2 ated, these equations are similar to that of unidirectional flow.
9P 920 90 However, in this case, due to variations of the cross-section
S I aﬂ 3 of the microchannelg will depend on the dimensional coor-
F) oY?2 +R7Y X 9 ) (3 . ) ! _
X Y X dinatex andz will not be zero in general. Besides, because
of @ is a function of the dimensionless coordingteand so
oP is P.
ay ~ Y @ In Eq. @),
- h(rY
and - § = _CoEY) (11)
b _ 72 (5) cosh (Rh (x))
oy? which satisfies Eq.5), together with the third and second

Here,u andv are the dimensionless velocities in the dimen'boundary conditions of Eqs7)and B), respectively.
sionlessy— longitudinal andY — transverse coordinates, re- -

spectively; P represents the dimensionless pressitieand  yj0cted hecause of some values of the parameters involved in

@ denote the electric field in the-direction and the elec- the definition ofa can assume values such@s: 0.25 mv.
tric potential in the EDL in dimensionless form, respectively. Eo = 1— 100 Vimm, andL ~ O(10~2) m _Thereforé

a = ¢/LEy andr = Hr, with x denoting the Debye-ttkel a ~ 107*. Thus, the solution of Eq.[3}, subject to the
parameter, which is related to thl%Debye lenyth defined no slip boundary conditiom = 0 atY = h(x); and the
ask = Ap' = (2nocz’e®/ekpT) ' [18], wherene, 2, ¢, symmetry boundary conditiofia/dY = 0 atY = 0 given,
kg, andT are the bulk concentration of ions, the Valencevrespectively, inT) and B), is given by

the magnitude of the fundamental (elementary) charge on an ) ’

electron, the Boltzmann constant, and the absolute tempera- 1 (1 cosh(mY)) 1dP

In Eqg. (3), the last term on the right hand side can be ne-

7 o— 2 72
ture, respectively. u=5 o (YP=r7), (12
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where the pressure gradiedt?/dy, is unknown and can be obtained with the aid of the continuity 2}. $ubstitution of
Eqg. (12) into Eqg. ), integrating with respect t&, and applying the impermeability conditian= 0 atY = —h () giveniin
Eqg. 9), we obtain

o h’mnh(mhlﬁnh( Y) W]y, _ lsinh(RY) hh&ﬁiyy_47 YP o\ BP oy dP
h cosh® (kh) h? R cosh(kh) dx 2\ 3 dx dx
2P W W[ . tanh(ih)
Lps @8 Mo (rh) — L | _p tamb(ER) 13
+3ht e g tanh” (5h) hQ{ +— ] (13)

AtY = h(x), © = 0, thus, from Eq./13) we obtain the differential equation that allows determining the pressure field and
is given by:

h' tanh(&h)

d (h3dP
( K (14)

_ K 2

Equation/4) must be solved subject to boundary conditions in @6),(whereP = 0 aty = 0, 1. In the following subsection,
we obtain the solution for thin EDL%(> 1).

3.1. Thin EDL limit: &> 1

For the case of large (i.e., in the thin EDL limit), Eq. [4) can be easily solved. In this limit, the component of the
electroosmotic velocity, Eq1@), can be written as

1 7 3 1dpP
u:h{l—exp [~R(h—Y]) —exp [—/i(h—l—Y])}-&-QdX

While thev-velocity component is given by

(Y2 —h?). (15)

N i’ v exp [-K(h —Y]) —exp [f/?(h +Y]) — 1+ exp(—2k&h)
h? R
1d*pP 2y 273 ,dP 2
_2dx2(3 - h%Y 3h>+h (hY + h?). (16)

Therefore, the dimensionless pressure distribution can be obtained from

d (h*dP n - n _
S = —2Rh) — — —2kh) — 1]. 17
ax ( 3 dx) 3 exp(—2kh) - [exp( Rh) ] a7
Thus, in the limit ofk > 1, Eq. (17) can be simplified as
d (h3dP R’
— =) = —. (18)
dx \ 3 dyx Rh?
After integrating once Eq.1@), yields
ap 3 3 2 + 3¢2
— —_— . 19
T SN R ) 49
From Eq. [19), the pressure distribution becomes
P __ € cos(2mx) [6 + &% + 6¢ sin(?wx) + 22 sin* (2] (6422 (20)
R(24¢e2)(1 —¢e?)2m h?
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4.5

and with the aid of Eg./15), the dimensionless volumetric
flow rate, in the limit ofzx > 1, can be obtained as

Q 2 + 3¢2

Q. (2+2)(1—¢e2)’

where @ is the volumetric flow rate in physical units, and
Q. = 2Ug s H is the characteristic scale for this variable.

Evidently, for a flat parallel microchannék., e = 0, the
EOF’s classical solution for fully developed flow is recov-
ered [20]. In this case, the terin= 1 simplify (15) as shown
below,

4.0 -
&=0.1
£=0.3
&=0.5
£=0.7
&=0.8

3.5 K=100

Q= 1- (22) 708

1
K 3.0

A 4 > o ®

2.5

2.0

1.5 4

1.0

0.5

0.0 +—————4——t+—————1———— 17—
00 01 02 03

a=1—exp[—k(1 —Y)] — exp[—R(1 +Y)]. (22)

FIGURE 3. The dimensionless velocity in thedirection as func-
tion of the dimensionless transverse coordingteevaluated at
x = 0.8, for various values of(= 0.1,0.3,0.5,0.7,0.8), with
k = 100.

Additionally, from (16) v 0, and from i19) and R0),
dP/dx = P(x) = 0, respectively. The volumetric flow rate
in (21) is reduced ta) = 1 — (1/&) [18].

tion. Besides the velocity profiles, evaluatedyat= 0.2,
are weakly concave and are weakly convex when are eval-

We have complemented the asymptotic analysis carried out iated aty = 0.8. These behaviors are present always that

this work by obtaining the numerical solution of E44f, and  the cross-section increases and decreases, respectively. Also,

therefore the flow field. For solving Eq. (14), the well-known from these figures, the flow is strongly accelerated (in re-

Shooting method was used [21]. For the numerical integragions where the cross-section of the channel diminishes) at

tion, Ay = AY steps of k102 have been used in all nu- X = 0.8, in comparison when is evaluatedyat= 0.2.

merical runs. In the following figures, symbols represent the  In Fig. 4 we plot the dimensionless velocity profileas a

numerical solution, while lines correspond to the asymptotidunction of the dimensionless longitudinal coordingteval-

solutions, showing an excellent agreement between them. uated at various values of the dimensionless transverse coor-
Figures 2 and 3 show the dimensionless velocity distribudinate. In this figure, it is shown that the movement of the

tion as function of the dimensionless transversal coordinat§uid in the direction}” is alternating from positive to negative

Y for & = 100, different values of (= 0.1,0.3,0.5,0.7,0.8),  values as the fluid flows in the axial directighaccording to

evaluated afy = 0.2 and 0.8, respectively. By comparing the geometry of the walls. When the velocitys evaluated

both figures, it can be appreciated that the velocity increase§rough the thin EDL solution & = h (x), and compared

and decreases when the microchannel cross-section decreaggginst the numerical solution, there is a small discrepancy,

and increases, respectively, to guarantee the mass conservahich would violate the impermeability condition; however,

the above occurs because we have neglected the terms con-

tainingexp (—2#h) in Eq. {17) for obtaining Eq.18).

4. Results and discussion
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o Y=04h(y)
A Y=0.6h(y)
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u

0.6 4
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0.4 = =0l 0
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<4 =08
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FIGURE 2. The dimensionless velocity in thedirection as func-
tion of the dimensionless transverse coordin&teevaluated at

20

0.0 0.1 0.2 04 0.6

x = 0.2, for different values of(= 0.1,0.3,0.5,0.7,0.8), with
k = 100.

FIGURE 4. TheY-component velocity, Eql1@3), plotted againsk
for various values o¥ .
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FIGURE 5. a) The dimensionless pressure distribution and b) the

pressure gradient plotted as functions of the dimensionless coordif'/GURE 7. Dimensionless velocity profile as function of the di-
natey, for values ofs(= 0.1,0.2,0.3,0.4,0.5), with & = 100. mensionless transverse coordinate evaluated at¢ = 0.8, for

different values ot (= 0.1,0.2,0.3,0.4,0.5), ands = 5.

The mentioned concave and convex behaviors of the vepressureP aty = 0.64 and a corresponding minimum neg-
locity profiles are due to the induced pressure gradient alongtive aty ~ 0.8. On the other hand, when the pressure gra-
the microchannel by the effects of varying the cross-sectiondient is zero, the velocity is uniform (plug-like). Another
In Fig. 5a), the dimensionless pressure is plotted, and ifmportant aspect is that the pressure has negative values in
Fig. 5b), the corresponding pressure gradient is shown, faihe region where the cross-section decreases in the direction
different values of the parametey with & = 100. Itis ob-  of the flow of the microchannel and positive values where the
vious thatP — 0 ase — 0, as expected, because this corre-cross-section is wider.
sponds to the EOF in parallel flat plates microchannel case. Although in principle the approximate solution for the
Also, P ~ O (i), and therefore, the pressure in the mi- flow field was obtained in the limit of >> 1, this remains
crochannel can dissapear in the limitiof~ oo for any value  valid even for relativelysmall valuesof %, as shown in the
of 0 < & < 1. The above is evident from Ec2@), where following figures. In Fig. 6, the velocity profilesaty = 0.2
the pressure is inversely proportional xo On the other are plotted for various values of the parameteaindx = 5.
hand, when the amplitude of the wall waviness incredases, It is clear that the flow behavior is similar to that presented
¢ — 1, this condition yields negative pressures over extensivén the previous figures. However, it is necessary to empha-
portions of the microchannel. size that decreasing the value mfthe velocity profiles are

Referring to the geometry of the microchannel walls, andnot uniform across the transversal section of the microchan-
for the used values of the parameters shown in the figure, weel, adopting a concave form. In this case, fo= 0.1, the

see that there is a maximum positive of the dimensionles¥elocity profile has a paraboloid shape. Eot 0.5, the ve-
locity is more concave near to the center of the microchannel.

This latter behavior is a consequence of the induced pressure
is greater in comparison with the casesof= 0.1, as shown
later in Fig. 8.

Similar to the previous Fig. 6, in 7 we show the veloc-
ity profiles evaluated a{ ~ 0.8, where a concave behavior
is appreciated. The coordinate~ 0.8 corresponds to the
region where the pressure gradient is negative (See Fig. 8),
meaning that the induced pressure decreases in the direction
of the flow.

Figure 9 shows the validity range of the thin EDL and nu-
merical solutions for the flow rate as a functionofinde.
The percentage error in the flow rate is defined as

1.6 EI‘(%) = M x 100. (23)
Qnum
. .= h(x) —
FIGURE 6. Dimensionless velocity profile as function of the di- ~ The numerical flow rate i€.um=J, ®) 4dy, and the veloc-
mensionless transverse coordinate evaluated aty = 0.2, for ity field @ is given by Eq. [12). The approximate solution
different values ot (= 0.1,0.2,0.3,0.4, 0.5) with & = 5. Q.q1 is defined in Eq.[21). We can note from Fig. 9 that the
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FIGURE 8. The dimensionless pressure distribution and the pres- 0207

sure gradient plotted as functions of the dimensionless coordinate ;5 ]

X, for values ofe(= 0.1,0.2,0.3,0.4,0.5), andi = 5. 0.70

0.65 _ _
blue region corresponds to @) = 0 in the flow, which 0.60 ] —*thin EDL solution, Eq. (21) ]
— ] —Oo— numerical solution E

means a large range of the parameteande, whereQ g 0.55 .

is valid. The violet region corresponds to an er0f).1 and 0.50

the pink region tol0%. The last region allows the determi- L T e B

nation of the flow rate fok ~ 5 ande ~ 0.7, with a relative FIGURE 10. Comparison between the numerical and thin EDL so-

error of 1(%LGreen and red regions have no .phy5|cal S?nscﬁnions of the volumetric flow rate in the limit of > 1. The thin
for values ofs < 4 whene — 0.8, due to negative values in  gp solution is given by Eq/21).
the flow rate are obtained. In this context, good agreement in )

results is obtained with > 4 using0 < e < 0.8. is found in the range di < ¢ < 0.1 and1 < & < 100, with
The complexity of obtaining the exact solution of the dif- a maximum E(%) = 5.
ferential equation Eq. 1d) for any value of% is difficult. For example, for the used value of= 0.03, the domain

However, in the limit ofs > 1, we have determined an ap- perturbation solution is indistinguishable from the numerical
proximate solution, for the velocity, pressure, and volumetricsolution. It is worth noting that the obtained thin EDL solu-
flow rate, which are given by Eqgsl$), (20) and 21), respec-  tion in the limit of & > 1 is still valid for values of& > 2.5.
tively. In Fig. 10, the approximate solution for the volumetric |n Fig. 12 we show the thin EDL and the domain perturbation
flow rate, in the limit ofx > 1, is shown and is compared solutions for the dimensionless volumetric flow rate, given by
against the numerical solution. As can be seen, the approxigs. 1) and iA.17).
mate solution provides an excellent agreement even for val-  Finally, a plot of(l — Q) % as a function of is given in
ues ofs = 5 whene < 0.7 with an Ee= 0.1%, as shown in  Fig. 13. Itis evident thaf) diminishes for increasing values
Fig. 9. of e. Of course, in the limit ofi — oo, Q — 1, as can be
On the other hand, for values of« 1, we have applied appreciated from Eq.20). It should be mentioned that this
the domain perturbation method (see Appendix A for detailsfigure is valid for values ok > 2.5. In particular, for values
for determining the flow fieldu, v, P, Q), where the EDL  of ¢ > 0.8 (this value was found by the relative percentage
solution of% > 1is no longer valid. In Fig. 11 a comparison error E(%) in the flow rate, shown in Fig. 9), the thin EDL
between numerical and the perturbation domain method scolution is no longer valid because of the limit of EB1) as
lutions is presented, and a good agreement between them — 1 is undetermined. A physical interpretation is that the
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of parametet, which characterizes the waviness amplitude.

J. ARCOS, O. BAUTISTA, F. NENDEZ, AND M. PERALTA

wavy-microchannel is obstructed at= 0.75, whene — 1.
This condition has no physical sense, thenust be less than
unity. According to Fig. 9, the upper limit afin Fig. 13 can
be established as 0.8 for valuesiof< & < 100, and the
value ofi (1 — Q) is 4.12458 withe = 0.8.

5. Conclusion

In this work, we have conducted a theoretical analysis of an
EOF in a wavy wall microchannel of a Newtonian fluid, by
using the lubrication approximation, under the Debyigckel
approximation. Two approximate solutions were determined:
in a first case we considér > 1 with ¢ ~ O(1), and in the
second case, < 1 with finite values of. These asymptotic
solutions were compared against a numerical solution, and an
excellent agreement was found. The effects of the waviness

tant factors that affect the flow field are the parameter related
to the amplitude of the microchannel wavinessand the
ratio of the mean semi-channel height to the Debye length,
This theoretical analysis can predict general trends in the
data and basic aspects of the observed flow field in EOF in
wavy wall microchannels. Future work will involve the ef-
fect of nonuniform zeta potential. Although the present anal-
ysis considers that the geometry of the microchannel is such
that the crest of a wall corresponds to the through of the other,
this can be applied to analyze other configurations: (i) that the
crest of a wall corresponds to the crest of the other wall of the
microchannel; (ii) one of the walls has a phase-advance/lag
respect to the other. Besides it is very important to comple-
ment this study with a thermal analysis, to understand the
effect of the waviness on the heat transfer process, due to the
inevitable Joule heating effect, which is present in EOF.

Appendix
A. Asymptotic solution in the limit of ¢ <« 1

In this limit, an approximate solution of EQR)¢{(5), together
with the boundary conditionF)-(10), can be obtained by us-
ing the domain perturbation method [22]. In this limit, E8). (
can be written as:
oP  9%*u

oy~ ov? + &2 [1 — esin(27my)] .

(A1)

The boundary conditions/) are transformed to asymp-
totically equivalent boundary conditions appliedrat= +1.
The above is carried out by means of Taylor series approxi-
mation for®, where® stands for any of the dependent vari-
ablesu, v, P and+ atY = h(y). Therefore, we propose
regular expansions for all dependent variables in terms of the
parametee of the form:
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Substituting expansio®(2) into Egs. ), (5) and A.1), and and
collecting terms of the same order gfwe obtain the prob- at x=0,1: P, =0. (A.11)
lems presented in the following lines.

In this order, we apply the same procedure, like that used
e At O (£°), we begin recalling that this solution corre- jn Subsec. 3.1, to EqsA(5)-(A.7), obtaining the solution for
sponds to the case &f = constant, and, in this case, i, 3,, P;, andy; as follows:
the leading order solution of Eq&b)@nd (A.1) is given

by [18] } __ldﬂ(l_yz)
h(RY) L) dx
- COS K
Vo= ——7+" (A.3) =
cosh (%) —sin (2mx) < 1 — [Ftanh (R) + 1] M , (A12)
and b (RY) cosh(rg)
_ . cosh(Rr
4o = cosh (k) (A4)
e At O(e), the resultant system of equations to be solved _ 142P; Y3 2
are nEr e YT a )
ou, 0y .
—+ — = A. R R
oy oy 0, (A.5) 9rd tanh?(i) + tanh(rg) Sl{l(lﬁ:Y) _q
oy cosh(g)
1 _2 7
= 5 A.6
vz =Y o Y + £ (tann(r) + SHRGEY) (2my), (A13)
and R A cosh(r) COSLETX) '
dpl 82ﬂ1 _ - . -
dx T oy? + &? [1ho sin(2mx) — 1] , (A.7)
with the boundary conditions B — 3 (1 ~ tanh?() tanh(/%)>
_ K
P = —a—’f}’ sin (27y)
at Y =1: ) = — 9% sin (21y) (A.8) x {cos(27rx) - 1}, (A.14)
v1 = 0;
83 5 and
() Uy
at Y=0: ——=——=0, (A.9) _ R
oy 9y Jr = — tanh(R) sin(2my) ZREY). (A.15)
cosh(k)
at Y=-1: @ =0. (A.10)

Therefore, up to terms @ (¢), the dimensionless velocity
| is given by

cosh(k) 2 5

u=1- cosh(RY) _ 5{3 <1 — tanh?(R) — tan}:(m)) (1 —Y?)sin(27y)

+ sin (27y) {1 — [Rtanh (R) + 1] Csil}?(%/? }} + O(e?). (A.16)

The dimensionless volumetric flow rate through the wavy wall microchannel can be determined with the aid of the asymp-
totic solution for the velocity profileA.16) as follows:

o= /lu(x,y) gy —1 - b g{ <1 — tanh?(R) — W) sin(27y)

@_ K K
0

+ sin(27rx){1 -1+ /@tanh(/@)]mn_:(M}} + O(g?). (A.17)
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