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We present the analysis of an electroosmotic flow (EOF) of a Newtonian fluid in a wavy-wall microchannel. To describe the flow and
electrical fields, the lubrication and Debye-Hückel approximations are used. The simplified governing equations of continuity, momentum,
and Poisson-Boltzmann, together with the boundary conditions, are presented in dimensionless form. For solving the mathematical problem,
numerical and asymptotic techniques were applied. The asymptotic solution is obtained in the limit of very thin electric double layers (EDLs).
We show that the lubrication theory is a powerful technique for solving the hydrodynamic field in electroosmotic flows in microchannels
where the amplitude of the waviness changes on the order of the mean semi-channel height. Approximate analytical expressions for the
velocity components and pressure distribution are derived, and a closed formula for the volumetric flow rate is obtained. The results show
that the principal parameters that govern this EOF are the geometrical parameter,ε, which characterizes the waviness of the microchannel,
and the ratio of the mean semi-channel height to the thickness of the EDL,κ̄.
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1. Introduction

Electroosmotic flows have found wide applications in the de-
velopment of a great variety of microfluidic systems consist-
ing of valves, pumps, and mixers to be utilized as an effi-
cient method for transporting micro volumes of fluids. Ex-
amples of such applications are drug delivery, DNA analy-
sis, and biological/chemical agent detection sensors on mi-
crochips [1–3]. In this context, electroosmosis enables fluid
pumping and flow control using electric fields, eliminating
the need for mechanical pumps or valves with moving com-
ponents. However, because of these applications, some times
there is a need of modifying the cross-section area of the
microchannels, for speeding up samples transported by elec-
trokinetic effects [4], for transporting particle in micro/nano
nozzles and diffusers [5], for determining the translocation
speed of DNA in nanopores [6].

One of the first researchers that analyzed the EOF in mi-
crochannels with the simultaneous presence of charge and
shape modulations on the surface in the direction of the ap-
plied electric field was Adajari and coworkers [7, 8]. Re-
cently, Alexanderet al. [9] studied the electroosmotic flow
in wavy channels by expanding the solution into a double
series in terms of the dimensionless amplitudes and of the
dimensionless zeta potential for a binary dilute electrolyte.
They demonstrated the importance of the varicose or sinu-

ous character of the channels as well as the role of high fre-
quency roughness. Meanwhile, Xiaet al. [10] analyzed the
electroosmotic flow in a channel bounded by a plane wall
and a sinusoidal wall. They obtained an exact solution by us-
ing a complex function formulation together with the bound-
ary integral method. The effects of the channel width and
wave amplitude on the electric field, streamline pattern, and
flow field were presented. More recently, Martı́nezet al. [11]
analyzed the electroosmotic flow of a viscoelastic fluid in a
wavy wall microchannel. They obtained an asymptotic solu-
tion based on the domain perturbation method, which can be
applied only for very small amplitude waviness.

On the other hand, some numerical works where EOF
in wavy microchannels have been analyzed, are the fol-
lowing: [12] investigated the mixing characteristics of
electrokinetically-driven flow in microchannels with differ-
ent wavy surface configurations. They conducted numerical
simulations to analyze the influence of the wave amplitude
and the length of the wavy section on the mixing efficiency
within the microchannel. [13] carried out a numerical investi-
gation to study the flow characteristics of non-Newtonian flu-
ids (described by a power-law fluid) in rough microchannels
defined by a complex-wavy surface, composed by the super-
imposition of two sinusoidal functions. The effects of the
wave amplitude, geometry of the wave, Debye-Hückel pa-
rameter, and flow behavior index of the non-Newtonian flu-
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ids on the local velocity profiles, volumetric flow rate, and
electric field distribution were examined. [14] analyzed the
electroosmotic flow in a parallel-plate microchannel with si-
nusoidal surface roughness, and the solution of the governing
equations was obtained by using the finite element method.
Their simulation results indicate that the bulk flow velocity
and the volumetric flow rate decrease slowly with the rough-
ness height when the relative roughness is very small or very
large, while decrease quickly when the relative roughness is
moderate.

The most of theoretical studies concerning EOF consider
that the walls of microchannels are perfectly smooth; how-
ever, a careful analysis reveals in reality that the walls are
rugous, and therefore it geometrical factor plays a very im-
portant role in microscales which must be taken into account.
Evaluating the perturbations on the flow due to such cause is
a fundamental fluid mechanics problem of considerable inter-
est in this kind of EOF, as demonstrated by [15,16]. Many of
the mentioned works use the Helmholtz-Smoluchowski slip
approximation under the assumption of infinitely thin elec-
tric double layers (EDLs) to simplify the determination of
the flow field. Because of the assumption of thin EDLs used
in the aforementioned works, the obtained velocity profiles
are uniform in the transverse direction. Conversely to that,
and given different applications that can be found in EOF,
in the present work, we consider EDLs with finite thickness,
which yields an EOF with a nonuniform velocity profile. We
also determine the induced pressure along the channel, which
cannot be obtained by an analysis of infinitely thin EDLs.

The mentioned works enable the research community to
obtain significant physical insights on EOF in microfluidics
channels; however, most of them have been performed by
using numerical methods or complex mathematical formula-
tions. Therefore, this work aims to present a simple analyti-
cal formulation, based on the lubrication theory that permits
to determine the flow field of an electroosmotic flow in a mi-
crochannel with wavy walls in an easier way. The solution

was asymptotically obtained in two limits: in the first case,
we solve the mathematical problem by considering thin EDLs
with values of the waviness amplitude of the same order as
the microchannel height; while that in the second case, we
conduct the analysis in the limit of very small waviness am-
plitude but the Debye layer being of order as the microchan-
nel height. Besides a numerical solution was conducted to
verify the asymptotic solution.

2. Formulation

For mathematical modeling, we consider the EOF in a wavy-
wall microchannel as shown in Fig. 1. The length of the mi-
crochannel isL, and it is assumed that the walls are located
at

y = h (x) = ±H

[
1 + ε sin

(
2πx

L

)]
. (1)

Here,H represents the mean semi-channel height, andε
is a dimensionless geometrical parameter, which character-
izes the waviness of the microchannel walls, and it can take
values of0 ≤ ε ≤ 0.8; we anticipate that this last value is
the upper limit for which the solution obtained in this work
exists. In this case, the cross-sectional area of the microchan-
nel is varying periodically in the flow direction. Although
the method used for solving this kind of EOF can be ap-
plied to other geometrical designs of the walls, in this work
is assumed that the crest of the upper wall corresponds to the
trough of the other.

We consider that the flow is only driven by the effect of
electro-osmotic forces caused by imposing an external elec-
tric field of strengthE0 in the axial direction. The microchan-
nel is supported at the two ends by two liquid reservoirs,
which are found at a pressureP0. According to typical ap-
plications of EOF,L À H. Owing to the geometry, a two-
dimensional rectangular coordinate systemx, y is adopted
with the origin at the microchannel inlet,x denoting the flow

FIGURE 1. Sketch of the EOF in a wavy-wall microchannel.
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direction, andy represents the transverse direction in the mi-
crochannel. Here, the flow will be2D; therefore, the velocity
component perpendicular to the plane (x, y) is zero.

On the other hand, and considering wavy-walls of the
microchannel, the assumption of unidirectional flow is no
longer valid, except in the case ofε = 0. Because of the
fluid is incompressible, the velocity component in thex− di-
rection should be increased for decreasing values of the di-
mensionH in order to satisfy the mass conservation; a conse-
quence of the above, is the appearance of an induced pressure
the gradient along the microchannel. Besides other assump-
tions on which the mathematical model is obtained are the
following: (i) constant physical properties and steady-state
conditions; (ii) the electrolytic solution is assumed symmetric
(z : z); (iii) the wall potentialsζ are axially invariant and low
enough (≤ 25 mV), such that the Debye-Ḧuckel linearization
approximation is valid; (iv) the electric double layers (EDLs)
on the inner surface of the microchannel do not overlap; (v)
it is assumed that the electric field and current vectors make
only a small angle to thex-axis, which is valid in the limit
|h′(x)| ¿ 1 along thex, where the prime denotes deriva-
tive [6], and therefore the lubrication theory can be used for
solving this EOF [15].

3. Governing equations

Under the assumptions presented previously, the equa-
tions which govern the steady two-dimensional EOF in a
wavy-wall microchannel are the continuity, momentum, and
Poisson-Boltzmann equations. We start with the dimension-
less governing equations, based on the lubrication theory,
which are given by [17]:

∂ū

∂χ
+

∂v̄

∂Y
= 0, (2)

∂P̄

∂χ
=

∂2ū

∂Y 2
+ κ̄2ψ̄

(
Ēχ − α

∂ψ̄

∂χ

)
, (3)

∂P̄

∂Y
∼ 0, (4)

and
∂2ψ̄

∂Y 2
= κ̄2ψ̄. (5)

Here,ū andv̄ are the dimensionless velocities in the dimen-
sionlessχ− longitudinal andY− transverse coordinates, re-
spectively;P̄ represents the dimensionless pressure.Ēx and
ψ̄ denote the electric field in thex-direction and the elec-
tric potential in the EDL in dimensionless form, respectively.
α = ζ/LE0 andκ̄ = Hκ, with κ denoting the Debye-Ḧuckel
parameter, which is related to the Debye lengthλD, defined
asκ = λ−1

D =
(
2n∞z2e2/εkBT

)1/2
[18], wheren∞, z, e,

kB , andT are the bulk concentration of ions, the valence,
the magnitude of the fundamental (elementary) charge on an
electron, the Boltzmann constant, and the absolute tempera-
ture, respectively.

The dimensionless variables in Eqs. (2)-(5) are defined as
follows:

χ =
x

L
, Y =

y

H
ū =

u

UHS
, v̄ =

vL

UHSH
,

P̄ =
(p̃− p̃0)H2

µUHSL
, ψ̄ =

ψ

ζ
, Ēχ =

Ex

E0
(6)

where u and v represent the velocity components in the
x− andy− directions, respectively;UHS is the Helmholtz-
Smoluchowski velocity, defined asUHS = −εζE0/µ [19],
beingµ the viscosity andε the permittivity of the fluid.Ex

represents the electrical field strength in thex- direction, and
ψ is the electric potential in the EDL. Also,̃p = P−εκ2ψ2/2
[7, 8, 17], with P representing the hydrodynamic pressure.
From the current continuity through any cross section orthog-
onal tox-axis, Ēχ can be written as̄Eχ = 1/h̄(χ) [5, 16],
whereh̄(χ) = 1 + ε sin(2πχ).

The dimensionless boundary conditions are:

at Y = h̄(χ) = [1 + ε sin(2πχ)] :
{

ū = v̄ = 0,
ψ̄ = 1.

(7)

at Y = 0 :
∂ū

∂Y
=

∂ψ̄

∂Y
= 0, (8)

at Y = −h̄(χ) = − [1 + ε sin(2πχ)] : v̄ = 0 (9)

and
at χ = 0, 1 : P̄ = 0. (10)

From Eq. (4), P̄ is exclusively a function of the coor-
dinateχ; thus, the hydrodynamic problem consists of deter-
mining the solution of Eqs. (2) and (3). As can be appreci-
ated, these equations are similar to that of unidirectional flow.
However, in this case, due to variations of the cross-section
of the microchannel,̄u will depend on the dimensional coor-
dinateχ andv̄ will not be zero in general. Besides, because
of ū is a function of the dimensionless coordinateχ, and so
is P̄ .

In Eq. (3),

ψ̄ =
cosh(κ̄Y )

cosh
(
κ̄h̄ (χ)

) , (11)

which satisfies Eq. (5), together with the third and second
boundary conditions of Eqs. (7) and (8), respectively.

In Eq. (3), the last term on the right hand side can be ne-
glected because of some values of the parameters involved in
the definition ofα can assume values such asζ ≤ 0.25 mV,
E0 = 1 − 100 V/mm, andL ∼ O(10−2) m. Therefore,
α ∼ 10−4. Thus, the solution of Eq. (3), subject to the
no slip boundary condition̄u = 0 at Y = h̄(χ); and the
symmetry boundary condition∂ū/∂Y = 0 at Y = 0 given,
respectively, in (7) and (8), is given by

ū =
1
h̄

(
1− cosh(κ̄Y )

cosh(κ̄h̄)

)
+

1
2

dP̄

dχ

(
Y 2 − h̄2

)
, (12)
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where the pressure gradient,dP̄/dχ, is unknown and can be obtained with the aid of the continuity Eq. (2). Substitution of
Eq. (12) into Eq. (2), integrating with respect toY , and applying the impermeability condition̄v = 0 atY = −h̄ (χ) given in
Eq. (9), we obtain

v̄ = − h̄′

h̄

sinh
(
κ̄h̄

)
sinh (κ̄Y )

cosh2
(
κ̄h̄

) +
h̄′

h̄2

[
Y − 1

κ̄

sinh(κ̄Y )
cosh(κ̄h̄)

]
+ h̄h̄′

dP̄

dχ
Y − 1

2

(
Y 3

3
− h̄2Y

)
d2P̄

dχ
+ h̄2h̄′

dP̄

dχ

+
1
3
h̄3 d2P̄

dχ2
− h̄′

h̄
tanh2

(
κ̄h̄

)− h̄′

h̄2

[
−h̄+

tanh(κ̄h̄)
κ̄

]
. (13)

At Y = h̄(χ), v̄ = 0, thus, from Eq. (13) we obtain the differential equation that allows determining the pressure field and
is given by:

d

dχ

(
h̄3

3
dP̄

dχ

)
=

h̄′

h̄

[
tanh2(κ̄h̄)− 1

]
+

h̄′

h̄2

tanh(κ̄h̄)
κ̄

. (14)

Equation (14) must be solved subject to boundary conditions in Eq. (10), whereP̄ = 0 atχ = 0, 1. In the following subsection,
we obtain the solution for thin EDLs (κ̄ À 1).

3.1. Thin EDL limit: κ̄ À 1

For the case of largēκ (i.e., in the thin EDL limit), Eq. (14) can be easily solved. In this limit, the component of the
electroosmotic velocity, Eq. (12), can be written as

ū =
1
h̄

{
1− exp

[−κ̄(h̄− Y
]
)− exp

[−κ̄(h̄ + Y
]
)
}

+
1
2

dP̄

dχ

(
Y 2 − h̄2

)
. (15)

While thev̄-velocity component is given by

v̄ = − h̄′

h̄

{
exp

[−κ̄(h̄− Y
]
)− exp

[−κ̄(h̄ + Y
]
)− exp(−2κ̄h̄)

}

+
h̄′

h̄2

{
Y +

exp
[−κ̄(h̄− Y

]
)− exp

[−κ̄(h̄ + Y
]
)− 1 + exp(−2κ̄h̄)

κ̄

}

− 1
2

d2P̄

dχ2

(
1
3
Y 3 − h̄2Y − 2

3
h̄3

)
+ h̄′

dP̄

dχ
(h̄Y + h̄2). (16)

Therefore, the dimensionless pressure distribution can be obtained from

d

dχ

(
h̄3

3
dP̄

dχ

)
= − h̄′

h̄
exp(−2κ̄h̄)− h̄′

κ̄h̄2

[
exp(−2κ̄h̄)− 1

]
. (17)

Thus, in the limit ofκ̄ À 1, Eq. (17) can be simplified as

d

dχ

(
h̄3

3
dP̄

dχ

)
=

h̄′

κ̄h̄2
. (18)

After integrating once Eq. (18), yields

dP̄

dχ
= − 3

κ̄h̄4
+

3
κ̄h̄3

2 + 3ε2

(2 + ε2)(1− ε2)
. (19)

From Eq. (19), the pressure distribution becomes

P̄ = − ε

κ̄(2 + ε2)(1− ε2)2π

{
cos(2πχ)

[
6 + ε2 + 6ε sin(2πχ) + 2ε2 sin2(2πχ)

]

h̄3
− (6 + ε2)

}
(20)
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and with the aid of Eq. (15), the dimensionless volumetric
flow rate, in the limit ofκ̄ À 1, can be obtained as

Q̄ =
Q

Qc
= 1− 1

κ̄

2 + 3ε2

(2 + ε2)(1− ε2)
, (21)

whereQ is the volumetric flow rate in physical units, and
Qc = 2UHSH is the characteristic scale for this variable.

Evidently, for a flat parallel microchannel,i.e., ε = 0, the
EOF’s classical solution for fully developed flow is recov-
ered [20]. In this case, the term̄h = 1 simplify (15) as shown
below,

ū = 1− exp[−κ̄(1− Y )]− exp[−κ̄(1 + Y )]. (22)

Additionally, from (16) v̄ = 0, and from (19) and (20),
dP̄/dχ = P̄ (χ) = 0, respectively. The volumetric flow rate
in (21) is reduced toQ̄ = 1− (1/κ̄) [18].

4. Results and discussion

We have complemented the asymptotic analysis carried out in
this work by obtaining the numerical solution of Eq. (14), and
therefore the flow field. For solving Eq. (14), the well-known
Shooting method was used [21]. For the numerical integra-
tion, ∆χ = ∆Y steps of 1×10−2 have been used in all nu-
merical runs. In the following figures, symbols represent the
numerical solution, while lines correspond to the asymptotic
solutions, showing an excellent agreement between them.

Figures 2 and 3 show the dimensionless velocity distribu-
tion as function of the dimensionless transversal coordinate
Y for κ̄ = 100, different values ofε(= 0.1, 0.3, 0.5, 0.7, 0.8),
evaluated atχ = 0.2 and0.8, respectively. By comparing
both figures, it can be appreciated that the velocity increases
and decreases when the microchannel cross-section decreases
and increases, respectively, to guarantee the mass conserva-

FIGURE 2. The dimensionless velocity in theχ direction as func-
tion of the dimensionless transverse coordinateY , evaluated at
χ = 0.2, for different values ofε(= 0.1, 0.3, 0.5, 0.7, 0.8), with
κ̄ = 100.

FIGURE 3. The dimensionless velocity in theχ direction as func-
tion of the dimensionless transverse coordinateY , evaluated at
χ = 0.8, for various values ofε(= 0.1, 0.3, 0.5, 0.7, 0.8), with
κ̄ = 100.

tion. Besides the velocity profiles, evaluated atχ = 0.2,
are weakly concave and are weakly convex when are eval-
uated atχ = 0.8. These behaviors are present always that
the cross-section increases and decreases, respectively. Also,
from these figures, the flow is strongly accelerated (in re-
gions where the cross-section of the channel diminishes) at
χ = 0.8, in comparison when is evaluated atχ = 0.2.

In Fig. 4 we plot the dimensionless velocity profilev̄, as a
function of the dimensionless longitudinal coordinateχ, eval-
uated at various values of the dimensionless transverse coor-
dinate. In this figure, it is shown that the movement of the
fluid in the directionY is alternating from positive to negative
values as the fluid flows in the axial directionχ, according to
the geometry of the walls. When the velocityv̄ is evaluated
through the thin EDL solution atY = h̄ (χ), and compared
against the numerical solution, there is a small discrepancy,
which would violate the impermeability condition; however,
the above occurs because we have neglected the terms con-
tainingexp

(−2κ̄h̄
)

in Eq. (17) for obtaining Eq. (18).

FIGURE 4. TheY -component velocity, Eq. (13), plotted againstχ
for various values ofY .
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FIGURE 5. a) The dimensionless pressure distribution and b) the
pressure gradient plotted as functions of the dimensionless coordi-
nateχ, for values ofε(= 0.1, 0.2, 0.3, 0.4, 0.5), with κ̄ = 100.

The mentioned concave and convex behaviors of the ve-
locity profiles are due to the induced pressure gradient along
the microchannel by the effects of varying the cross-section.
In Fig. 5a), the dimensionless pressure is plotted, and in
Fig. 5b), the corresponding pressure gradient is shown, for
different values of the parameterε, with κ̄ = 100. It is ob-
vious thatP̄ → 0 asε → 0, as expected, because this corre-
sponds to the EOF in parallel flat plates microchannel case.
Also, P̄ ∼ O

(
κ̄−1

)
, and therefore, the pressure in the mi-

crochannel can dissapear in the limit ofκ̄ →∞ for any value
of 0 ≤ ε < 1. The above is evident from Eq. (20), where
the pressure is inversely proportional toκ̄. On the other
hand, when the amplitude of the wall waviness increases,i.e.,
ε → 1, this condition yields negative pressures over extensive
portions of the microchannel.

Referring to the geometry of the microchannel walls, and
for the used values of the parameters shown in the figure, we
see that there is a maximum positive of the dimensionless

FIGURE 6. Dimensionless velocity profilēu as function of the di-
mensionless transverse coordinateY , evaluated atχ = 0.2, for
different values ofε(= 0.1, 0.2, 0.3, 0.4, 0.5) with κ̄ = 5.

FIGURE 7. Dimensionless velocity profilēu as function of the di-
mensionless transverse coordinateY , evaluated atχ = 0.8, for
different values ofε(= 0.1, 0.2, 0.3, 0.4, 0.5), andκ̄ = 5.

pressureP̄ at χ = 0.64 and a corresponding minimum neg-
ative atχ ≈ 0.8. On the other hand, when the pressure gra-
dient is zero, the velocity is uniform (plug-like). Another
important aspect is that the pressure has negative values in
the region where the cross-section decreases in the direction
of the flow of the microchannel and positive values where the
cross-section is wider.

Although in principle the approximate solution for the
flow field was obtained in the limit of̄κ À 1, this remains
valid even for relativelysmall valuesof κ̄, as shown in the
following figures. In Fig. 6, the velocity profiles̄u atχ = 0.2
are plotted for various values of the parameterε, andκ̄ = 5.
It is clear that the flow behavior is similar to that presented
in the previous figures. However, it is necessary to empha-
size that decreasing the value ofκ̄, the velocity profiles are
not uniform across the transversal section of the microchan-
nel, adopting a concave form. In this case, forε = 0.1, the
velocity profile has a paraboloid shape. Forε = 0.5, the ve-
locity is more concave near to the center of the microchannel.
This latter behavior is a consequence of the induced pressure
is greater in comparison with the case ofε = 0.1, as shown
later in Fig. 8.

Similar to the previous Fig. 6, in 7 we show the veloc-
ity profiles evaluated atχ ≈ 0.8, where a concave behavior
is appreciated. The coordinateχ ≈ 0.8 corresponds to the
region where the pressure gradient is negative (See Fig. 8),
meaning that the induced pressure decreases in the direction
of the flow.

Figure 9 shows the validity range of the thin EDL and nu-
merical solutions for the flow rate as a function ofκ̄ andε.
The percentage error in the flow rate is defined as

Er(%) =
|Q̄num − Q̄edl|

Q̄num
× 100. (23)

The numerical flow rate is̄Qnum=
∫ h̄(χ)

0
ūdY , and the veloc-

ity field ū is given by Eq. (12). The approximate solution
Q̄edl is defined in Eq. (21). We can note from Fig. 9 that the
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FIGURE 8. The dimensionless pressure distribution and the pres-
sure gradient plotted as functions of the dimensionless coordinate
χ, for values ofε(= 0.1, 0.2, 0.3, 0.4, 0.5), andκ̄ = 5.

blue region corresponds to Er(%) = 0 in the flow, which
means a large range of the parametersκ̄ andε, whereQ̄edl

is valid. The violet region corresponds to an error≈ 0.1 and
the pink region to10%. The last region allows the determi-
nation of the flow rate for̄κ ≈ 5 andε ≈ 0.7, with a relative
error of 10%. Green and red regions have no physical sense
for values ofκ̄ < 4 whenε → 0.8, due to negative values in
the flow rate are obtained. In this context, good agreement in
results is obtained with̄κ > 4 using0 < ε ≤ 0.8.

The complexity of obtaining the exact solution of the dif-
ferential equation Eq. (14) for any value ofκ̄ is difficult.
However, in the limit ofκ̄ À 1, we have determined an ap-
proximate solution, for the velocity, pressure, and volumetric
flow rate, which are given by Eqs. (15), (20) and (21), respec-
tively. In Fig. 10, the approximate solution for the volumetric
flow rate, in the limit ofκ̄ À 1, is shown and is compared
against the numerical solution. As can be seen, the approxi-
mate solution provides an excellent agreement even for val-
ues ofκ̄ = 5 whenε 6 0.7 with an Er= 0.1%, as shown in
Fig. 9.

On the other hand, for values ofε ¿ 1, we have applied
the domain perturbation method (see Appendix A for details)
for determining the flow field(ū, v̄, P̄ , Q̄), where the EDL
solution ofκ̄ À 1 is no longer valid. In Fig. 11 a comparison
between numerical and the perturbation domain method so-
lutions is presented, and a good agreement between them

FIGURE 9. Contour plot of the relative percentage error Er(%) in
the flow rate as a function of̄κ andε.

FIGURE 10. Comparison between the numerical and thin EDL so-
lutions of the volumetric flow rate in the limit of̄κ À 1. The thin
EDL solution is given by Eq. (21).

is found in the range of0 < ε 6 0.1 and1 6 κ̄ 6 100, with
a maximum Er(%) = 5.

For example, for the used value ofε = 0.03, the domain
perturbation solution is indistinguishable from the numerical
solution. It is worth noting that the obtained thin EDL solu-
tion in the limit of κ̄ À 1 is still valid for values of̄κ > 2.5.
In Fig. 12 we show the thin EDL and the domain perturbation
solutions for the dimensionless volumetric flow rate, given by
Eqs. (21) and (A.17).

Finally, a plot of
(
1− Q̄

)
κ̄ as a function ofε is given in

Fig. 13. It is evident that̄Q diminishes for increasing values
of ε. Of course, in the limit of̄κ → ∞, Q̄ → 1, as can be
appreciated from Eq. (21). It should be mentioned that this
figure is valid for values of̄κ À 2.5. In particular, for values
of ε > 0.8 (this value was found by the relative percentage
error Er(%) in the flow rate, shown in Fig. 9), the thin EDL
solution is no longer valid because of the limit of Eq. (21) as
ε → 1 is undetermined. A physical interpretation is that the

Rev. Mex. F́ıs. 66 (6) 761–770



768 J. ARCOS, O. BAUTISTA, F. ḾENDEZ, AND M. PERALTA

FIGURE 11. Contour plot of the relative percentage error Er(%) in
the flow rate determined by the domain perturbation solution, as a
function ofκ̄ andε.

FIGURE 12. Numerical solution of the dimensionless volumetric
flow rate as a function of the parameterκ̄, for ε = 0.03. Also
shown are the two asymptotes,(21) and(A.17).

FIGURE 13. The dimensionless volumetric flow rate as a function
of parameterε, which characterizes the waviness amplitude.

wavy-microchannel is obstructed atχ = 0.75, whenε → 1.
This condition has no physical sense, thenε must be less than
unity. According to Fig. 9, the upper limit ofε in Fig. 13 can
be established as 0.8 for values of5 6 κ̄ 6 100, and the
value ofκ̄(1−Q) is 4.12458 withε = 0.8.

5. Conclusion

In this work, we have conducted a theoretical analysis of an
EOF in a wavy wall microchannel of a Newtonian fluid, by
using the lubrication approximation, under the Debye-Hückel
approximation. Two approximate solutions were determined:
in a first case we consider̄κ À 1 with ε ∼ O(1), and in the
second case,ε ¿ 1 with finite values of̄κ. These asymptotic
solutions were compared against a numerical solution, and an
excellent agreement was found. The effects of the waviness
were investigated, and we have shown that the most impor-
tant factors that affect the flow field are the parameter related
to the amplitude of the microchannel waviness,ε, and the
ratio of the mean semi-channel height to the Debye length,κ̄.

This theoretical analysis can predict general trends in the
data and basic aspects of the observed flow field in EOF in
wavy wall microchannels. Future work will involve the ef-
fect of nonuniform zeta potential. Although the present anal-
ysis considers that the geometry of the microchannel is such
that the crest of a wall corresponds to the through of the other,
this can be applied to analyze other configurations: (i) that the
crest of a wall corresponds to the crest of the other wall of the
microchannel; (ii) one of the walls has a phase-advance/lag
respect to the other. Besides it is very important to comple-
ment this study with a thermal analysis, to understand the
effect of the waviness on the heat transfer process, due to the
inevitable Joule heating effect, which is present in EOF.

Appendix

A. Asymptotic solution in the limit of ε ¿ 1

In this limit, an approximate solution of Eqs. (2)-(5), together
with the boundary conditions (7)-(10), can be obtained by us-
ing the domain perturbation method [22]. In this limit, Eq. (3)
can be written as:

∂P̄

∂χ
=

∂2ū

∂Y 2
+ κ̄2ψ̄ [1− ε sin(2πχ)] . (A.1)

The boundary conditions (7) are transformed to asymp-
totically equivalent boundary conditions applied atY = ±1.
The above is carried out by means of Taylor series approxi-
mation forΦ, whereΦ stands for any of the dependent vari-
ablesū, v̄, P̄ and ψ̄ at Y = h̄(χ). Therefore, we propose
regular expansions for all dependent variables in terms of the
parameterε of the form:

Φ = Φ0 + εΦ1 + · · · . (A.2)
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Substituting expansion (A.2) into Eqs. (2), (5) and (A.1), and
collecting terms of the same order ofε, we obtain the prob-
lems presented in the following lines.

• At O
(
ε0

)
, we begin recalling that this solution corre-

sponds to the case ofh = constant, and, in this case,
the leading order solution of Eqs. (5) and (A.1) is given
by [18]

ψ̄0 =
cosh (κ̄Y )
cosh (κ̄)

(A.3)

and

ū0 = 1− cosh (κ̄Y )
cosh (κ̄)

. (A.4)

• At O(ε), the resultant system of equations to be solved
are

∂ū1

∂χ
+

∂v̄1

∂Y
= 0, (A.5)

∂2ψ̄1

∂Y 2
= κ̄2ψ̄1, (A.6)

and

dP̄1

dχ
=

∂2ū1

∂Y 2
+ κ̄2

[
ψ̄0 sin(2πχ)− ψ̄1

]
, (A.7)

with the boundary conditions

at Y = 1 :





ψ̄1 = −∂ψ̄0
∂Y sin (2πχ)

ū1 = −∂ū0
∂Y sin (2πχ)

v̄1 = 0;
(A.8)

at Y = 0 :
∂ψ̄1

∂Y
=

∂ū1

∂Y
= 0, (A.9)

at Y = −1 : v̄1 = 0. (A.10)

and

at χ = 0, 1 : P̄1 = 0. (A.11)

In this order, we apply the same procedure, like that used
in Subsec. 3.1, to Eqs. (A.5)-(A.7), obtaining the solution for
ū1, v̄1, P̄1, andψ̄1 as follows:

ū1 = −1
2

dP̄1

dχ

(
1− Y 2

)

− sin (2πχ)

{
1− [κ̄ tanh (κ̄) + 1]

cosh(κ̄Y )
cosh(κ̄)

}
, (A.12)

v̄1 =
1
2

d2P̄1

dχ2

(
Y − Y 3

3
+

2
3

)
−

2π

{
tanh2(κ̄) +

tanh(κ̄) sin(κ̄Y )
cosh(κ̄)

− 1

− Y +
1
κ̄

(
tanh(κ̄) +

sinh(κ̄Y )
cosh(κ̄)

) }
cos(2πχ), (A.13)

P̄1 =
3
2π

(
1− tanh2(κ̄)− tanh(κ̄)

κ̄

)

×
{

cos(2πχ)− 1
}

, (A.14)

and

ψ̄1 = −κ̄ tanh(κ̄) sin(2πχ)
cosh(κ̄Y )
cosh(κ̄)

. (A.15)

Therefore, up to terms ofO(ε), the dimensionless velocitȳu
is given by

ū = 1− cosh(κ̄Y )
cosh(κ̄)

− ε

{
3
2

(
1− tanh2(κ̄)− tanh(κ̄)

κ̄

)
(1− Y 2) sin(2πχ)

+ sin (2πχ)

{
1− [κ̄ tanh (κ̄) + 1]

cosh(κ̄Y )
cosh(κ̄)

}}
+ O(ε2). (A.16)

The dimensionless volumetric flow rate through the wavy wall microchannel can be determined with the aid of the asymp-
totic solution for the velocity profile (A.16) as follows:

Q̄ =
Q

Qc
=

1∫

0

ū (χ, Y ) dY = 1− tanh(κ̄)
κ̄

− ε

{ (
1− tanh2(κ̄)− tanh(κ̄)

κ̄

)
sin(2πχ)

+ sin(2πχ)
{

1− [1 + κ̄ tanh(κ̄)]
tanh(κ̄)

κ̄

}}
+ O(ε2). (A.17)
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