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In this article, we consider the exact solutions of the Hunter-Saxton anéd@nber equations defined by Atangana’s conformable derivative

using the general Kudryashov method. Firstly, Atangana’s conformable fractional derivative and its properties are included. Then, by
introducing the generalized Kudryashov method, exact solutions of nonlinear fractional partial differential equations, which can be expressed
with the conformable derivative of Atangana, are classified. Looking at the results obtained, it is understood that the generalized Kudryashov
method can yield important results in obtaining the exact solutions of fractional partial differential equations containing beta-derivatives.
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1. Introduction tively, fractional Hunter Saxton, fractional Sharma-Tasso-
Olver, the space-time fractional modified Benjamin-Bona-
Recently, many articles have been made about obtaining andahony, time fractional Scibdinger equations with Atan-
lytical, numerical, exact solutions of the mathematical prob-gana’s conformable derivative has been solved by the first
lems expressed by these events and some physical everingéegral method [27]. In [28,29], Médriez and Aguilar ap-
that can be mathematically modeled and defined using fraglied the fractional sub-equation method to construct exact
tional derivatives [1-5]. These and similar events are ususolutions of the space-time conformable generalized Hirota-
ally expressed in non-linear FPDEs. Besides the mentione8atsuma-coupled KdV equation, coupled mKdV equation,
fractional differential equations have many application areasthe space-time resonant nonlinear $ctinger equation with
Some of them are dynamics, engineering, physics, chemAtangana’s conformable derivative. The authors in [30] con-
istry, biology, signal processing, continuum mechanics, consider the generalized exponential rational function method
trol theory, respectively. Many different types of fractional for the Radhakrishnan-Kundu-Lakshmanan equation with
derivative operators have been identified, some of which arbeta-conformable time derivative.
as follows: Caputo derivative [6], Riemann-Liouville deriva-  In this article, the effectiveness of the generalized
tive [7], Caputo-Fabrizio [8], Jumarie’s modified Riemann- Kudryashov method was investigated to determine the exact
Liouville derivative [9], Atangana-Baleanu derivative [10]. solutions of the FPDEs with Atangana'’s conformable deriva-
With the help of these derivative operators, various techiives. In some studies in the literature, this method has been
niques have been developed that provide analytical, approxapplied to various nonlinear fractional problems [31-33].
imated, and exact solutions of nonlinear FPDEs such as the The rest of the paper is organized as follows: In
sub-equation method [11], the first integral method [12], theSec. 2, some basic properties concerning the Atangana’s
extended trial equation method [13], the modified trial equa<conformable derivative are examined. Then the generalized
tion method [14], the variational iteration method [15], lo- Kudryashov method has been introduced in detail in Sec. 3.
cal fractional Adomian decomposition method [16], LaplaceSection 4 includes some applications. This study was com-
transforms [17], local fractional Fourier series method [18],pleted with a conclusion in Sec. 5.
finite difference method [19], finite element method [20] and

soon. 2. Atangana’s conformable derivatives (beta-
In [21], a new fractional derivative called conformable derivatives)

derivative has been defined, and then exact solutions of the

time-heat differential equation obtained using this derivativeDefinition 1. In [21], a new fractional derivative called
have been obtained [22]. On the other hand, Atangana efs conformable derivative is defined by Khail al. Let
al. have given some definitions, theorems, and features of : [0, oo) be a function-th order, the conformable deriva-
the subject of conformable derivative [23]. Therefore, someive of f(¢) for allt > 0, a € (0, 1) is given as follows:
applications have been made with the use of these features o

[24,25]. Finally, Atanganat al. gave a new definition of oD{f(t)} = lim flttet™) - f(t). (1)

a fractional derivative called beta-derivative. In their arti- e=0 €

cles, they solved the Hunter Saxton equation [26]. Respec- Also, if f is «-differentiable in(0,a), a > 0, and
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lim._,o+ f(®)(t) exists, then it can be written g8)(0) = 3. The generalized Kudryashov method
lim__q+ f((2).
Definition 2. In [26], Atanganaet al. gave the beta-derivative In this section, the generalized Kudryashov method will be

or Atangana’s conformable as introduced in detail to obtain the exact solutions of FPDEs
—a defined by Atangana’s derivative [31-33].
f <t +e (t + ﬁ) > — f(t) Considering the following nonlinear FPDE with a beta-
ADf(t)} = Eh_r% 6 . (2 Serivative for a function of of two real variables, spacend
imet:

Although the conformable fractional derivative presented
by Khalil Qt al. provides some fundamental fgatqres_ such P(u,g‘D;’u, g, Us, ...) = 0. (10)
as the chain rule, the Atangana’s fractional derivative is pre-
ferred because it can provide the maximum properties of the The basi i ‘ fth lized Kud h
fundamental derivatives. There are several important proper- € basic operation steps ot Ihe generalized Rudryashov

ties for the beta-derivatives [26]: method (_:an be given as TOHOWS: ]
Step 1.First of all, to obtain the wave solution of Eq. (10), we

i) Taking that,g # 0 and f are two functions beta- should consider the traveling wave transformation as follows:
differentiable withg € (0, 1], then the following re-

lation can be easily written and satisfied u(z,t) = u(n),
4D {af(2) + byle)} = o DS ()} e ) R
+0Di{g@)} @

wherek and § are arbitrary constants. Then, by applying
for all « andb real numbers. Eg. (11) to Eg. (10), a nonlinear ordinary differential equa-

ii) Forcany constant, the following relation can be easily 0" ¢an be found as

satisfied N(u, v/, u” u"..) =0, (12)
0 Dg{ct=0. (4) . : o
where the prime indicates differentiation with respect.to
i) Step 2. Suppose that the exact solutions of Eq. (12) can be
investigated in the form

o DI{cH f(2)g(2)} = g(2)o DI{f(x)} v
iz () _ Alp(n)]

2)a D {g(x)}. u(n) = =

iv)
N N where
Apa [ f(@) } _9@)g Dg{f (@)} —f(x)g Dg{g(x)} 1
0 Ds {g(w) B 92 () O v =
Taking into account Eq. (2), We note that the functiott is the solution of the equation:
1 a—1
€= <x+r(a)> h, Uy = =% — . (14)

andh — 0, whene — 0, hence we get Taking into consideration Eq. (11), we obtain

l—«
ADa _ 1) df(x) 7 1R _ 101! ' _ /
with ' ’
5 1 \° = (p* - w)iA b BQAB , (15)
n==(e+=) . ®)
@)

P2 =9 P2y
wheres is a constant, and therefore the following relation can u’(n) = B2 (2 = 1)(A'B-AB")+ B
be given

(?Dg{f(n)} _ 5dfd(:) ©) X |:B(ANB—ABN)—QA/BB/+2A(B/)2:| } (16)
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Step 3. For the solutions of Eq. (10) or Eg. (12), the ra- formable derivative using the generalized Kudryashov
tional form of the two finite series defined using the solutionmethod.
function of Eq. (14) can be expanded as follows: Example 1: We consider the Hunter-Saxton with Atangana'’s

(i) = ao + a1 + agth? + ... + anN conformable derivatives [27]

= . a7)

b0+b1¢+b2w2+...+bM¢M A 2 1 2
. . . Dy T T z — F\Uzx) 0 < 1a 18
To find the values of\f and N in Eq. (13), that is the 0 Di{ua} + ()™ + uu 2(u ) =@ (18)

po[e orr]derl for Fhel Eezeral rs]olunonhof qu' él?)' We paogkrfs"?/vherex is the spatial variable andepresents the time. Also,
asint dec aSS||ga udryas 'ovEmet ?2 on da ancing t s ,'gh’[ is said that Atangana’s derivative is chosen in the way that
est -order nonlinear terms in Eq. (12) and we can obtain g, yecqver the traditional Hunter-Saxton equation in [27].

(rjgllfatlon peltweenM andNbVan(l)usi SOI(;"?OnS fo the rleleezs\;/{arfn We handle the traveling wave solutions of Eq. (18) and we
ifferential equation can be calculated for some value¥/o perform the transformation(z, t) — u(¢) and

andN.
Step 4. Replacing Eqg. (11) into Eq. (10) provides a poly- by 1 \*¢
nomial R(Q) of Q. Equating the coefficients aR(Q) to {=2—— ( + w) ,

zero, we get a system of algebraic equations. Solving this

system, we can compute and the variable coefficients of wherel is constant. Then, we reach

ag, 1,02, ...,an,bg, b1, ba, ..., bpr. With this approach, we

get exact solutions to Eq. (10). 20" — (u')? = 2uu’ = 0. (19)

L . . Putting Egs. (13) and (16) into Eg. (19) and balancing
4. Appllcgtlons to th_e t!me-fractlonal €qua-  the highest order nonlinear termswdf and(v)? in Eq. (19),
tions with beta-derivatives then the following formula is procured

In this section, we seek the exact solutions of the Hunter- N—-—M+2=2N-2M+2= N = M. (20)
Saxton and Schkidinger equations with Atangana’s con-
| If we chooseN = M = 2, then we get

ap + a1y + a — 2¢°
bo + Bitp + bytp?

(a142a21)) (bo+b11+batp?)— (b1 +2b21)) (ag+arp+azp?)
(bo + b11h + ba1p?)? ?

(21)

U(§) =

u'(€) = (V* =) (22)

(20 — 1)(¢p* — 1)
(bo + b11p + baep?)?
(Y? — )?

(bo + b1tp + ba1p?)

(¥* — )?
(bo + b1 + barp?

u"(§) =

[(a1+2a29) (bo+b19+bo)?) — (b1+2b21)) (ag+ar+azy?)]

5 [2a2(bo + b1y + batp?)? — 2ba (a1 + 2a21)) (bo + bitp + botp?)]

E [2(b1 4 2b29)% (a0 + a19 + axtp?)]. (23)

Therefore, the exact solutions of Eq. (18) are obtained as follows:
Case 1.

b
40 = 72’ a; =by =0, az=—Ab, by = —bo. (24)

When we substitute Eq. (24) into Eq. (21), we get the following solution of Eq. (18)

A {1 —4(1+ ew—(A/a)(H(l/F(a))“))*2}

up(z,t) = — —- (25)
(1 + ez*(/\/a)(H(l/F(a))a)) — (1 + eI*(A/a)(H(l/F(Q))“))
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FIGURE 1. Three-dimensional, density and contour plots of the solution (26) for the valee8.5 when\ = 0.5, k = 2.

FIGURE 2. Three-dimensional, density and contour plots of the solution (26) for the valaes when\ = 0.5, k = 2.

Using several simple transformations to this solution, we get new exact solutions to Eq. (18),

A {Ztanh [k:lx X (t + ﬁ)a] _ tanh? [k;lx ps (t + ﬁ)a} }

up(z,t) = = ; (26)
1 — tanh? {kle%( +ﬁ) ]
A @ 2 A 1 \°
M2coth [lnz — 2 (4 45) ] - coth? [k — 2 (t+ ) |}
ul,?(xat) = a ) (27)
1 — coth? [kw—%( +ﬁ) }
wherek; = 1/2 andA\; = A\/2.
Case 2.
as [ 3as
=222 =— bo = ba, by = —2bs. 28
ag 1 <)\b2 + 0) , a1 az, bo="bz, b1 2 (28)
When we substitute Eq. (28) into Eg. (21), we get the following solution of Eq. (18)
a a r— « o)) -1 xTr— o o)) -2
= {_?)’\Tz —10—14 (1 + er—(A/a)(t+(1/T(a)) )) +4 (1 + = (M) (t+(1/T(a)) )) }
us(z,t) = (29)

1—2(1 4 ex= W)+ 1/T@))) ™H (1 4 er=(W/a)(t+(1/T(@))) 72

15 ) Fe E]

FIGURE 3. Three-dimensional, density and contour plots of the solution (30) for the values0.5 when\ = 0.5, k = 2, a2 = 1,

by = V2.
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FIGURE 4. Three-dimensional, density and contour plots of the solution (30) for the valeed when) = 0.5, k = 2, a2 = 1, by = /2.

Using several simple transformations to this solution, we get new exact solutions to Eq. (18),

KO, {tanb? [y — 2 (14 145) "] — 11} = 3Ka

ug 1 (z,t) = o ) (30)
P 1
{1+tanh [lﬁx (t—l— F(a)) }}
K\by {coth2 {klx - % (t + ﬁ)a} - 1} —3Kas
ug 2(z,t) = o ) (31)
{1+ coth [z = 2 (¢4 5) |}
whereK = ay/(\b3).
Case 3.
3
apg = % <>§z — 2) 5 a] = —asg, bo = bl =0. (32)
When we substitute Eq. (32) into Eq. (21), we get the following solution of Eq. (18)
@ {—%ﬁ —2-4(1+ ew—(A/a><t+<1/F<a))“))*1 +a(1+ ew—(x/a><t+(1/r<a>>“>>*2} i
) =
us (@) (1 + eﬂﬁ*(/\/CV)(H(l/F(oc))"“))*2 (33)
Using several simple transformations to this solution, we can easily find new exact solutions to Eq. (18),
1O, {tanh? [k — 2 (14 15)"] -3} + 3Kas
U3,1(l‘, t) = 3 ) (34)
{1 — tanh [kla: —a (t—|— F(a)> }}
b, {eoth? [lnz — 2 (¢4 )| - 3} + 3Kas
us Q(l‘, t) = . (35)
) a 2
{1—coth [klx—— (t—i— o) ) ]}

Case 4.
ag = —2)\b2, a; = 4/\b2, bo = b2, b1 = —2b2. (36)
When we substitute Eq. (36) into Eq. (21), we get the following solution of Eq. (18)

2
1 1
—2Abg + 4Aby (1iem—(x/a>(t+<1/r(a>>a)) +asz (1iem—w0)<t+<1/r<a>)&))

ua(e,f) = . 37)
1 1
by — 2b2 (liezf(*/a)(ﬁr(l/l“(a))‘l)) + b2 (1iezf(/\/a)(t+(1/1"(a))‘1))
Using several simple transformations to this solution, we get new exact solutions to Eq. (18),
«@ 2 o
az {1 — tanh [klﬁc -2 (t + ﬁ) } } — 8\bs tanh [klx -4 (t + ﬁ) }
ugq(z,t) = L 7 (38)
bo {1 + tanh [klx — 2t <t+ F(a)) }}
« 2 -
az {1 —coth [z — 2 (t+ 5) |} = 8bacoth [z = 2 (¢4 )]
uaa(7) = . (39)

by {1 — coth [klx — 4 (t + F(a))a} }2

Rev. Mex. 5. 66 (6) 771-781
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Example 2: We consider the nonlinear Sdtfinger equation il gy du n 2pde " pdiu
[27] with Atangana’s derivatives dn dn dn?
ADMuY + pugs + qlulPu=0, 0<a<1, (40) — A+ pr?)u+qu’ = 0. (42)

wherew is a complex value function. We take the traveling From the imaginary part of Eq. (42), we have
wave solutions of Eq. (40) and we implement the transfor-

mation r= p{ (43)
; A 1 \“
u(z,t) = eu(n), 0=r1r+ > (t + F(a)) Also, the real part of Eq. (42) can be rewritten as
2 1 \“ u” — (N + pr?)u + qud = 0. 44
()

Putting Egs. (13) and (16) into Eqg. (44) and balancing
wherer, r and) are constants. Using Egs. (7)-(9) and substi-the highest order nonlinear terms@f andu® in Eq. (44),
tuting Eq. (41) into Eqg. (40), we obtain the following equa- then the following formula is found

tion including the imaginary and real part

| N-M+2=3N-3M=N=M+1. (45

If we chooseM = 1 andN = 2, then we have

ap + a1v) + azy)?

uln) = == R (46)
oy oo (a1 2a09) (bo + biy) — bi(ag + a1y + azy)?)
— 2 _
u”(n) = (2w(b0 i)gjfw)z & [(a1 + 2a2¢) (bo + b19p) — br(ao + a1y + azyp?)]
(¥? =) 2 2 2
+ (bo T bl’(/))3 [2&2([)0 + blw) 2by (a1 + 2&21#)(()0 + bl’(/)) + 2b1 (ao + a1y + (lg@b )} . (48)

The exact solutions of Eq. (40) are obtained as follows:

Case 1.
. 2p . 2p . 2p 2 T
ag 20\/q7 ax Zoy/q, as Zoy/q, p(2+77), T 2+ 72 (49)

When we substitute Eq. (49) into Eq. (46), we get the following solution of Eq. (40)

uy (z, ) =€ o= ((2H7)/@)(t+(1/T(@))"]

ibo\ /2 | -

| ES—

1 1 2
142 : )
1 £ e @p7/a)(t+(1/T(@))” 1 + er—@pr/a)(t+(1/T (@)

: (50)
bo + b !
0T P11 £ er—@pr/a)t+(1/T(@)"
Using several simple transformations to this solution, we get new exact solutions to Eq. (40),
1 + tanh? {k x+ 2 (t+ L)a}
uy 1 (z,t) = Lellre+(e/a)(t+1/T ()] T I(a) (51)
tanh {kzlx—i— ’\; (t+ ) ) }
, 1+ coth? [klsc—i—/\i‘ (t+r(1 ) }
uy 2(z,t) = Leilrat+(A2/a) (t+(1/T ()] ] (52)
coth {klx + a3 <t+ F(a)) }
wherel = \/Wy Ao = —p(2+ 72) and\3 = —2pr.
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—

FIGURE 6. Three-dimensional, density and contour plots of the solution (55) for the valeed whenp =k =2,¢q =17 = 0.5.

Case 2.

/ /2 2
ag = —ibg %, a1 =0, ao = 2iby Fp, by =2byg, A= _§<1 + 27’2), r = _T;ﬂ. (53)

When we substitute Eq. (53) into Eq. (46), we get the following solution of Eq. (40)

W
? 29

2
1
—i (1 + ew—<2p7/a)<t+<1/r<a>>>a) 1

us(z, t)zei[m—(p(1+2r2)/2a)(t+(1/r(a)))"] — : (54)
T2\ T =G /o a/r@ne
Applying simple transformations to this solution, we gain new exact solutions to Eq. (40),
7+ (/) (t+(1/T(@))?)] A3 L
U9 1(1;7 t) = Le 4 tanh klx + —t+ = 3 (55)
' o' ')
‘ o A 1 \“
Ug.o(m,t) = Lellrot /)TN coth |k + By — , (56)
’ a I'(a)
whereL = —i\/P/2q and\y = —(p(1 + 272)/2).
Case 3.
) / 27
aO:—zbg %, al :a2:0, b1 :—ng, A:—§(1+2T2), T:—m. (57)
When we replace Eq. (57) into Eq. (46), we obtain the following solution of Eq. (40)
—i. ]2
us(z,t) = eilrz—(p(1+27%)/20) (t+(1/T ()] 2 ) (58)

1
L =2 T aerare@ns )

Rev. Mex. 5. 66 (6) 771-781
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FIGURE 8. Three-dimensional, density and contour plots of the solution (59) for the valeed whenp = k =2,¢q =17 =0.5.

&

8

g

ulx, 1)

Fulfilling several transformations to this solution, we gain new exact solutions to Eq. (40),

—_

g (z,t) = Lellre+(a/e)(t+0/T(e))] 59)

tanh [kla: + %} (t + ﬁ) ]
1

ug 2 (z,t) = Lellret(ha/@)(t+1/T(@))?]

coth [klx + 2 (t + ﬁ)“] ’ (60)

2 2 b
(ZO:O, aq :—ibl —p, a2:ib1 —p, bOZ——l, )\:p(].—T2), T:L. (61)
q q 2 1—72

When we replace Eq. (61) into Eq. (46), we obtain the following solution of Eq. (40)

2i,/2’#q

Case 4.

2
1 1
<1 + z(2PT/a)(t+(1/F(a)))°‘> N <1 + w(2p‘r/a)(t+(1/1‘(a)))a> ]
wa(z. ) = @O0/ /)] e e

1
L-2 (1 + em—<2pr/a)<t+(1/r<a>>>a>

(62)

FIGURE 9. Three-dimensional, density and contour plots of the solution (63) for the valee®.5 whenp =2, =k =1,7 = 0.5.

Rev. Mex. 5. 66 (6) 771-781



THE GENERALIZED KUDRYASHOV METHOD FOR THE NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL. .. 779

u(x, £)

FIGURE 10. Three-dimensional, density and contour plots of the solution (63) for the valees whenp =2, ¢q =k =1,7 = 0.5.

Using several transformations to this solution, we procure new exact solutions to Eq. (40),
1

« a0
cosh [k1x+%(t+ ﬁ) }sinh [klir’\a—S(tJr ﬁ) }

ug(z, t) = Mellret s/ 1/T(e))?] (63)

whereM = Fiy/p/2q and)s = p(1 — 72).

Case5.
oo . / 2
a0:1b0 21;, ay :Z(2b0+b1) %, a2 :0, )\:—gp(1+27_2), T:—W. (64)

If we embed Eq. (64) into Eq. (46), we compute the following solution of Eq. (40)

1
WE [ @) (1 e )|
il —(p(1+272) /20) (t+(1/T()))*] 2 1 g2~ (p7/e)(+(1/T(e) )

i 1 (65)
bo+1 (1 + er—(2p7/)(t+(1/T(a)))> )
From this solution wheréV' = i/p/2q, we have new exact solutions to Eg. (40),
, by — (2bo + by) tanh {klx + A (t n ﬁ) }
us1(z,t) = Netlrat(Aa/a)(t+(1/T(@)))7] ) ] ©6)
b1 — 2by — by tanh {k1x+% <t+ﬁ }
b1 — (2bo + by) coth [k Y (”*ﬁ
ug,2(x,t) = Netlrz+(Aa/a)(t+(1/T ()] 1~ (2bo 1) 1 a (@) 67)

b172b0fb1coth[k1:r+%(tJrﬁ)a} )

Remark. The solutions of Egs. (18) and (40) were found by using the generalized Kudryashov method, have been checked
using Mathematica Release 9. To our knowledge, these solutions that we obtained in this paper, are new and are not shown i
the previous literature.

5. Conclusions

|

In this study, the generalized Kudryashov method was apHunter Saxton and Scbdinger equations defined by Atan-
plied to find new exact solutions of the Hunter-Saxton anddana’s conformable derivative. By applying this method to
Schibdinger equations defined by Atangana’s conformabldhe determined problems, rational hyperbolic function solu-
derivative. This method is defined by the rational form oftions were found. For some values of the parameters that
finite series, which includes the solution function of the Ric-are included in the solution functions, physical behaviors on
cati equation. The number of terms of the finite series is dethree-dimensional, density, and contour graphics were ex-
termined by the balance principle. The balance relation obamined. Thus, it has been observed that the generalized
tained by the application of the balance principle shows u&udryashov method gives very effective results in construct-
that the related problem can be solved for different values ofg the exact solutions of nonlinear FPDEs defined with
the finite series. In this study, different solution classes aré\tangana’s derivative. In our future studies, we will apply

classified for the upper values of finite series calculated fothe generalized Kudryashov method to some other nonlinear
fractional problems defined with Atangana’s derivative.

Rev. Mex. 5. 66 (6) 771-781



780

10.

11.

12.

13.

14.

YUSUF GU

REFE

. J.F. @mez-Aguilar, Space-time fractional diffusion equation 16
using a derivative with nonsingular and regular kerfélysica
A: Stat. Mech. App] 465(2017) 562 https://doi.org/
10.1016/j.physa.2016.08.072

. D. Kumar, J. Singh and D. Baleanu, A hybrid computational 1
approach for Klein-Gordon equations on Cantor skitlin-
ear Dyn, 87 (2017) 511 |https://doi.org/10.1007/
S110/1-016-305/-X

. K.M. Owolabi and A. Atangana, Numerical simulations of 18.

chaotic and complex spatiotemporal patterns in fractional re-
action diffusion systemsComput. Appl. Math.1 (2017) 1.
https://doi.org/10.1007/s40314-017-0445-x

. H.M. Srivastava, D. Kumar and J. Singh, An efficient analyti- 19
cal technique for fractional model of vibration equatiémpl.
Math. Model, 45 (2017) 192.

. K.M. Owolabi and A. Atangana, Numerical simulation of non-
integer order system in subdiffusive, diffusive, and superdif-
fusive scenariosJ. Comput. Nonlinear Dyn.12 (2017) 1.
https://doi.org/10.1115/1.4035195

. . Podlubny, Fractional Differential Equations, (Academic
Press, 1999).

. R. Metzler and J. Klafter,
to anomalous diffusion: a fractional dynamics approach,
Phys. Rep.339(2000) 1.https://doi.org/10.1016/
S03/70-15/3(00)000/0-3

. M. Caputo and M. Fabrizio, A new definition of frac-
tional derivative without singular kerneProgr. Fract. Dif-
fer. Appl, 1 (2015) 73.https://doi.org/10.12785/
ptda/010201

. G. Jumarie, Modified Riemann-Liouville derivative and frac-

tional Taylor series of nondifferentiable functions further re- 23.

sults, Comput. Math. Appl51(2006) 1367https://dol.
org/10.1016/.camwa.2006.02.001

A. Atangana and D. Baleanu, New fractional derivatives with
nonlocal and non-singular kernel: theory and application to
heat transfer modellherm. Sci.20 (2016) 763/https:/
doi.org/10.2298/TSCI160111018A

S. Zhang and H.Q. Zhang, Fractional sub-equation method
and its applications to nonlinear fractional PDBhys. Lett.
A, 375 (2011) 1069.https://doi.org/10.1016/].
physleta.2011.01.029

B. Lu, The first integral method for some time fractional differ- 2%
ential equationsl. Math. Anal. Appl|.395(2012) 684https:
//do1.org/10.1016/|.;maa.2012.05.066

Y. Pandir, Y. Gurefe and E. Misirli, The extended trial equation
method for some time-fractional differential equatiolss-
crete Dyn. Nat. Soc2013(2013) 491359https://doi.
0rg/10.1155/2013/491359

Y. Pandir, Y. Gurefe and E. Misirli, New exact solutions of
the time-fractional Nonlinear dispersive KdV equatidmt. J.
Model. Opt, 3 (2013) 349. DOI{10.7763/1JMO.2013.
V3.296

. N. Das, R. Singh, A.M. Wazwaz and J. Kumar, An algorithm
based on the variational iteration technique for the Bratu-type
and the Lane-Emden problends Math. Chem .54 (2016) 527.
https://doi.org/10.1007/s10910-015-0575-6

20.

The random walk?s guide 21.

22.

25.

27.

28.

. X. J. Yang and Y.D. Zhang, A new Adomian decomposition
procedure scheme for solving local fractional Volterra integral
equationAdv. Inf. Tech. Manag1l (2012) 158.

7. H.Jafari and H.K. Jassim, Numerical solutions of telegraph and

Laplace equations on cantor sets using local fractional Laplace
decomposition methodht. J. Adv. Appl. Math. Mech2 (2015)
144,

M.S. Hu, R.P. Agarwal and X.J. Yang, Local fractional Fourier
series with application to wave equation in fractal vibrating
string. Abstract. Appl. Ana).2012 (2012) 567401https:
/ldoi.org/10.1155/2012/567401

. G.H. Gao, Z.Z. Sun and Y.N. Zhang, A finite difference scheme
for fractional sub-diffusion equations on an unbounded do-
main using artificial boundary conditiond. Comput. Phys.
231(2012) 2865https://doi.org/10.1016/).Jcp.

2011.12.028

W. Deng, Finite element method for the space and time
fractional Fokker-Planck equatio®IAM J. Numer. Anal.47
(2008) 204 https://doi.org/10.1137/080714130

R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A
new definition of fractional derivativel. Comput. Appl. Math.
264 (2014) 65.|https://doi.org/10.1016/j.cam.

2014.01.002

Y. Cenesiz and A. Kurt, The solution of time fractional heat
equation with new fractional derivative definition. In 8th Inter-
national Conference on Applied Mathemati&mulation and
Modelling, 2014(2014) 195.

A. Atangana, D. Baleanu and A. Alsaedi, New properties of
conformable derivativeOpen Math, 13 (2015) 1-10https:
/ldoi.org/10.1515/math-2015-0081

24. Y. Cenesiz, D. Baleanu, A. Kurt and O. Tasbozan, New exact

solutions of Burgers’ type equations with conformable deriva-
tive. Waves Random Complex Med¥ (2016) 103https:
//dol.org/10.1080/17455030.2016.1205237

W.S. Chung, Fractional Newton mechanics with conformable
fractional derivativeJ. Comput. Appl. Math 290 (2015) 150.
https://doi.org/10.1016/j.cam.2015.04.049

. A. Atangana, D. Baleanu and A. Alsaedi, Analysis of time-
fractional Hunter-Saxton equation: a model of neumatic lig-
uid crystal.Open Phys 14 (2016) 145-14¢https://doi.
0org/10.1515/phys-2016-0010

H. Yépez-Marinez, J.F. Bmez-Aguilar and A. Atangana, First
integral method for non-linear differential equations with con-
formable derivativeMath. Model. Nat. Phenom13 (2018) 1.

H. Yépez-Marinez and J.F. Bmez-Aguilar, Fractional sub-
equation method for Hirota-Satsuma-coupled KdV equation
and coupled mKdV equation using the Atangana’s con-
formable derivativeWaves Random Complex Med28,(2019)
678. |https://doi.org/10.1080/17455030.2018.

1464233

Rev. Mex. 5. 66 (6) 771-781


https://doi.org/10.1016/j.physa.2016.08.072�
https://doi.org/10.1016/j.physa.2016.08.072�
https://doi.org/10.1007/s11071-016-3057-x�
https://doi.org/10.1007/s11071-016-3057-x�
https://doi.org/10.1007/s40314-017-0445-x�
https://doi.org/10.1115/1.4035195�
https://doi.org/10.1016/S0370-1573(00)00070-3�
https://doi.org/10.1016/S0370-1573(00)00070-3�
https://doi.org/10.12785/pfda/010201�
https://doi.org/10.12785/pfda/010201�
https://doi.org/10.1016/j.camwa.2006.02.001�
https://doi.org/10.1016/j.camwa.2006.02.001�
https://doi.org/10.2298/TSCI160111018A�
https://doi.org/10.2298/TSCI160111018A�
https://doi.org/10.1016/j.physleta.2011.01.029�
https://doi.org/10.1016/j.physleta.2011.01.029�
https://doi.org/10.1016/j.jmaa.2012.05.066�
https://doi.org/10.1016/j.jmaa.2012.05.066�
https://doi.org/10.1155/2013/491359�
https://doi.org/10.1155/2013/491359�
10.7763/IJMO.2013.V3.296�
10.7763/IJMO.2013.V3.296�
https://doi.org/10.1007/s10910-015-0575-6�
https://doi.org/10.1155/2012/567401�
https://doi.org/10.1155/2012/567401�
https://doi.org/10.1016/j.jcp.2011.12.028�
https://doi.org/10.1016/j.jcp.2011.12.028�
https://doi.org/10.1137/080714130�
https://doi.org/10.1016/j.cam.2014.01.002�
https://doi.org/10.1016/j.cam.2014.01.002�
https://doi.org/10.1515/math-2015-0081�
https://doi.org/10.1515/math-2015-0081�
https://doi.org/10.1080/17455030.2016.1205237�
https://doi.org/10.1080/17455030.2016.1205237�
https://doi.org/10.1016/j.cam.2015.04.049�
https://doi.org/10.1515/phys-2016-0010 �
https://doi.org/10.1515/phys-2016-0010 �
https://doi.org/10.1080/17455030.2018.1464233�
https://doi.org/10.1080/17455030.2018.1464233�

29.

30.

31.

THE GENERALIZED KUDRYASHOV METHOD FOR THE NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL. ..

H. Yépez-Marinez and J.F. Bmez-Aguilar, Optical solitons
solution of resonance nonlinear Sotinger type equation

with Atangana? s-conformable derivative using sub-equatior132_
method. Waves Random Complex Media, DQ0.10807/
1/455030.2019.1603413

B. Ghanbari and J.F. @nez-Aguilar, The generalized expo-
nential rational function method for Radhakrishnan-Kundu-33_
Lakshmanan equation with -conformable time derivatiRev.

Mex. Fis, 65(2019) 503.

ST. Demiray, Y. Pandir and H. Bulut, Generalized Kudryashov
method for time-Fractional differential equationg\bstr.

781

Appl. Anal, 2014(2014) 90154Chttps://doi.org/10.
1155/2014/901540

ST. Demiray and H. Bulut, Generalized Kudryashov method for
nonlinear fractional double sinh-Poisson equatidnNonlin-
ear Sci. Appl. 9 (2016) 1349http://dx.doi.org/10.
22436/|nsa.009.03.58

A.A. Gaber, A.F. Aljohani, A. Ebaid and J. Tenreiro Machado,
The generalized Kudryashov method for nonlinear space-time
fractional partial differential equations of Burgers typlanlin-

ear Dyn, 95 (2019) 361 https://doi.org/10.1007/
s110/1-018-4568-4

Rev. Mex. 5. 66 (6) 771-781


10.1080/17455030.2019.1603413�
10.1080/17455030.2019.1603413�
https://doi.org/10.1155/2014/901540�
https://doi.org/10.1155/2014/901540�
http://dx.doi.org/10.22436/jnsa.009.03.58�
http://dx.doi.org/10.22436/jnsa.009.03.58�
https://doi.org/10.1007/s11071-018-4568-4�
https://doi.org/10.1007/s11071-018-4568-4�

