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In this article, we consider the exact solutions of the Hunter-Saxton and Schrödinger equations defined by Atangana’s conformable derivative
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1. Introduction

Recently, many articles have been made about obtaining ana-
lytical, numerical, exact solutions of the mathematical prob-
lems expressed by these events and some physical events
that can be mathematically modeled and defined using frac-
tional derivatives [1-5]. These and similar events are usu-
ally expressed in non-linear FPDEs. Besides the mentioned
fractional differential equations have many application areas.
Some of them are dynamics, engineering, physics, chem-
istry, biology, signal processing, continuum mechanics, con-
trol theory, respectively. Many different types of fractional
derivative operators have been identified, some of which are
as follows: Caputo derivative [6], Riemann-Liouville deriva-
tive [7], Caputo-Fabrizio [8], Jumarie’s modified Riemann-
Liouville derivative [9], Atangana-Baleanu derivative [10].
With the help of these derivative operators, various tech-
niques have been developed that provide analytical, approx-
imated, and exact solutions of nonlinear FPDEs such as the
sub-equation method [11], the first integral method [12], the
extended trial equation method [13], the modified trial equa-
tion method [14], the variational iteration method [15], lo-
cal fractional Adomian decomposition method [16], Laplace
transforms [17], local fractional Fourier series method [18],
finite difference method [19], finite element method [20] and
so on.

In [21], a new fractional derivative called conformable
derivative has been defined, and then exact solutions of the
time-heat differential equation obtained using this derivative
have been obtained [22]. On the other hand, Atangana et
al. have given some definitions, theorems, and features on
the subject of conformable derivative [23]. Therefore, some
applications have been made with the use of these features
[24,25]. Finally, Atanganaet al. gave a new definition of
a fractional derivative called beta-derivative. In their arti-
cles, they solved the Hunter Saxton equation [26]. Respec-

tively, fractional Hunter Saxton, fractional Sharma-Tasso-
Olver, the space-time fractional modified Benjamin-Bona-
Mahony, time fractional Schrödinger equations with Atan-
gana’s conformable derivative has been solved by the first
integral method [27]. In [28,29], Martı́nez and Aguilar ap-
plied the fractional sub-equation method to construct exact
solutions of the space-time conformable generalized Hirota-
Satsuma-coupled KdV equation, coupled mKdV equation,
the space-time resonant nonlinear Schrödinger equation with
Atangana’s conformable derivative. The authors in [30] con-
sider the generalized exponential rational function method
for the Radhakrishnan-Kundu-Lakshmanan equation with
beta-conformable time derivative.

In this article, the effectiveness of the generalized
Kudryashov method was investigated to determine the exact
solutions of the FPDEs with Atangana’s conformable deriva-
tives. In some studies in the literature, this method has been
applied to various nonlinear fractional problems [31-33].

The rest of the paper is organized as follows: In
Sec. 2, some basic properties concerning the Atangana’s
conformable derivative are examined. Then the generalized
Kudryashov method has been introduced in detail in Sec. 3.
Section 4 includes some applications. This study was com-
pleted with a conclusion in Sec. 5.

2. Atangana’s conformable derivatives (beta-
derivatives)

Definition 1. In [21], a new fractional derivative called
as conformable derivative is defined by Khalilet al. Let
f : [0,∞) be a functionα-th order, the conformable deriva-
tive of f(t) for all t > 0, α ∈ (0, 1) is given as follows:

0D
α
t {f(t)} = lim

ε→0

f(t + εt1−α)− f(t)
ε

. (1)

Also, if f is α-differentiable in (0, a), a > 0, and
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limε→0+ f (α)(t) exists, then it can be written asf (α)(0) =
limε→0+ f (α)(t).
Definition 2. In [26], Atanganaet al. gave the beta-derivative
or Atangana’s conformable as

A
0 Dα

t {f(t)} = lim
ε→0

f

(
t + ε

(
t + 1

Γ(α)

)1−α
)
− f(t)

ε
. (2)

Although the conformable fractional derivative presented
by Khalil et al. provides some fundamental features such
as the chain rule, the Atangana’s fractional derivative is pre-
ferred because it can provide the maximum properties of the
fundamental derivatives. There are several important proper-
ties for the beta-derivatives [26]:

i) Taking that, g 6= 0 and f are two functions beta-
differentiable withβ ∈ (0, 1], then the following re-
lation can be easily written and satisfied

A
0 Dα

x{af(x) + bg(x)} = aA
0 Dα

x{f(x)}
+ bA

0 Dα
x{g(x)}, (3)

for all a andb real numbers.

ii) For c any constant, the following relation can be easily
satisfied

A
0 Dα

x{c} = 0. (4)

iii)

A
0 Dα

x{c}{f(x)g(x)} = g(x)A
0 Dα

x{f(x)}
+ f(x)A

0 Dα
x{g(x)}. (5)

iv)

A
0 Dα

x

{
f(x)
g(x)

}
=

g(x)A
0 Dα

x{f(x)}−f(x)A
0 Dα

x{g(x)}
g2(x)

. (6)

Taking into account Eq. (2),

ε =
(

x +
1

Γ(α)

)α−1

h,

andh → 0, whenε → 0, hence we get

A
0 Dα

x{f(x)} =
(

x +
1

Γ(α)

)1−α
df(x)
dx

, (7)

with

η =
δ

α

(
x +

1
Γ(α)

)α

, (8)

whereδ is a constant, and therefore the following relation can
be given

A
0 Dα

x{f(η)} = δ
df(η)
dη

. (9)

3. The generalized Kudryashov method

In this section, the generalized Kudryashov method will be
introduced in detail to obtain the exact solutions of FPDEs
defined by Atangana’s derivative [31-33].

Considering the following nonlinear FPDE with a beta-
derivative for a function of of two real variables, spacex, and
time t:

P (u, A
0 Dα

t u, ux, uxx, ...) = 0. (10)

The basic operation steps of the generalized Kudryashov
method can be given as follows:
Step 1.First of all, to obtain the wave solution of Eq. (10), we
should consider the traveling wave transformation as follows:

u(x, t) = u(η),

η = kx− δ

α

(
t +

1
Γ(α)

)α

, (11)

wherek and δ are arbitrary constants. Then, by applying
Eq. (11) to Eq. (10), a nonlinear ordinary differential equa-
tion can be found as

N(u, u′, u′′, u′′′, ...) = 0, (12)

where the prime indicates differentiation with respect toη.
Step 2. Suppose that the exact solutions of Eq. (12) can be
investigated in the form

u(η) =
∑N

i=0 aiψ
i(η)∑M

j=0 bjψj(η)
=

A[ψ(η)]
B[ψ(η)]

, (13)

where

ψ(η) =
1

1± eη
.

We note that the functionψ is the solution of the equation:

ψη = ψ′ = ψ2 − ψ. (14)

Taking into consideration Eq. (11), we obtain

u′(η) =
A′ψ′B −AB′ψ′

B2
= ψ′

A′B −AB′

B2

= (ψ2 − ψ)
A′B −AB′

B2
, (15)

u′′(η) =
ψ2 − ψ

B2

{
(2ψ − 1)(A′B−AB′)+

ψ2−ψ

B

×
[
B(A′′B−AB′′)−2A′BB′+2A(B′)2

]}
. (16)
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Step 3. For the solutions of Eq. (10) or Eq. (12), the ra-
tional form of the two finite series defined using the solution
function of Eq. (14) can be expanded as follows:

u(η) =
a0 + a1ψ + a2ψ

2 + ... + aNψN

b0 + b1ψ + b2ψ2 + ... + bMψM
. (17)

To find the values ofM andN in Eq. (13), that is the
pole order for the general solution of Eq. (10). We progress
as in the classical Kudryashov method on balancing the high-
est -order nonlinear terms in Eq. (12) and we can obtain a
relation betweenM andN . Various solutions to the relevant
differential equation can be calculated for some values ofM
andN .
Step 4. Replacing Eq. (11) into Eq. (10) provides a poly-
nomial R(Ω) of Ω. Equating the coefficients ofR(Ω) to
zero, we get a system of algebraic equations. Solving this
system, we can computeλ and the variable coefficients of
a0, a1, a2, ..., aN , b0, b1, b2, ..., bM . With this approach, we
get exact solutions to Eq. (10).

4. Applications to the time-fractional equa-
tions with beta-derivatives

In this section, we seek the exact solutions of the Hunter-
Saxton and Schrödinger equations with Atangana’s con-

formable derivative using the generalized Kudryashov
method.
Example 1: We consider the Hunter-Saxton with Atangana’s
conformable derivatives [27]

A
0 Dα

t {ux}+ (ux)2 + uux =
1
2
(ux)2, 0 < α ≤ 1, (18)

wherex is the spatial variable andt represents the time. Also,
it is said that Atangana’s derivative is chosen in the way that
we recover the traditional Hunter-Saxton equation in [27].
We handle the traveling wave solutions of Eq. (18) and we
perform the transformationu(x, t) = u(ξ) and

ξ = x− λ

α

(
t +

1
Γ(α)

)α

,

whereλ is constant. Then, we reach

2λu′′ − (u′)2 − 2uu′ = 0. (19)

Putting Eqs. (13) and (16) into Eq. (19) and balancing
the highest order nonlinear terms ofu′′ and(u′)2 in Eq. (19),
then the following formula is procured

N −M + 2 = 2N − 2M + 2 ⇒ N = M. (20)

If we chooseN = M = 2, then we get

U(ξ) =
a0 + a1ψ + a− 2ψ2

b0 + B1ψ + b2ψ2
, (21)

u′(ξ) = (ψ2 − ψ)
(a1+2a2ψ)(b0+b1ψ+b2ψ

2)−(b1+2b2ψ)(a0+a1ψ+a2ψ
2)

(b0 + b1ψ + b2ψ2)2
, (22)

u′′(ξ) =
(2ψ − 1)(ψ2 − ψ)
(b0 + b1ψ + b2ψ2)2

[
(a1+2a2ψ)(b0+b1ψ+b2ψ

2)− (b1+2b2ψ)(a0+a1ψ+a2ψ
2)

]

+
(ψ2 − ψ)2

(b0 + b1ψ + b2ψ2)3
[
2a2(b0 + b1ψ + b2ψ

2)2 − 2b2(a1 + 2a2ψ)(b0 + b1ψ + b2ψ
2)

]

+
(ψ2 − ψ)2

(b0 + b1ψ + b2ψ2)3
[
2(b1 + 2b2ψ)2(a0 + a1ψ + a2ψ

2)
]
. (23)

Therefore, the exact solutions of Eq. (18) are obtained as follows:

Case 1.

a0 =
λb2

4
, a1 = b0 = 0, a2 = −λb2, b1 = −b2. (24)

When we substitute Eq. (24) into Eq. (21), we get the following solution of Eq. (18)

u1(x, t) =
λ
4

{
1− 4

(
1± ex−(λ/α)(t+(1/Γ(α))α)

)−2
}

(
1± ex−(λ/α)(t+(1/Γ(α))α)

)−2 − (
1± ex−(λ/α)(t+(1/Γ(α))α)

)−1 . (25)
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FIGURE 1. Three-dimensional, density and contour plots of the solution (26) for the valuesα = 0.5 whenλ = 0.5, k = 2.

FIGURE 2. Three-dimensional, density and contour plots of the solution (26) for the valuesα = 1 whenλ = 0.5, k = 2.

Using several simple transformations to this solution, we get new exact solutions to Eq. (18),

u1,1(x, t) =
λ

{
2 tanh

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]
− tanh2

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]}

1− tanh2
[
k1x− λ1

α

(
t + 1

Γ(α)

)α] , (26)

u1,2(x, t) =
λ

{
2 coth

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]
− coth2

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]}

1− coth2
[
k1x− λ1

α

(
t + 1

Γ(α)

)α] , (27)

wherek1 = 1/2 andλ1 = λ/2.
Case 2.

a0 = −a2

4

(
3a2

λb2
+ 10

)
, a1 = −a2, b0 = b2, b1 = −2b2. (28)

When we substitute Eq. (28) into Eq. (21), we get the following solution of Eq. (18)

u2(x, t) =
a2
4b2

{
− 3a2

λb2
− 10− 4

(
1± ex−(λ/α)(t+(1/Γ(α))α)

)−1
+ 4

(
1± ex−(λ/α)(t+(1/Γ(α))α)

)−2
}

1− 2
(
1± ex−(λ/α)(t+(1/Γ(α))α)

)−1 +
(
1± ex−(λ/α)(t+(1/Γ(α))α)

)−2 . (29)

FIGURE 3. Three-dimensional, density and contour plots of the solution (30) for the valuesα = 0.5 whenλ = 0.5, k = 2, a2 = 1,
b2 =

√
2.
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FIGURE 4. Three-dimensional, density and contour plots of the solution (30) for the valuesα = 1 whenλ = 0.5, k = 2, a2 = 1, b2 =
√

2.

Using several simple transformations to this solution, we get new exact solutions to Eq. (18),

u2,1(x, t) =
Kλb2

{
tanh2

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]
− 11

}
− 3Ka2

{
1 + tanh

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]}2 , (30)

u2,2(x, t) =
Kλb2

{
coth2

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]
− 11

}
− 3Ka2

{
1 + coth

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]}2 , (31)

whereK = a2/(λb2
2).

Case 3.

a0 =
a2

4

(
3a2

λb2
− 2

)
, a1 = −a2, b0 = b1 = 0. (32)

When we substitute Eq. (32) into Eq. (21), we get the following solution of Eq. (18)

u3(x, t) =
a2
4b2

{
− 3a2

λb2
− 2− 4

(
1± ex−(λ/α)(t+(1/Γ(α))α)

)−1
+ 4

(
1± ex−(λ/α)(t+(1/Γ(α))α)

)−2
}

(
1± ex−(λ/α)(t+(1/Γ(α))α)

)−2 . (33)

Using several simple transformations to this solution, we can easily find new exact solutions to Eq. (18),

u3,1(x, t) =
Kλb2

{
tanh2

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]
− 3

}
+ 3Ka2

{
1− tanh

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]}2 , (34)

u3,2(x, t) =
Kλb2

{
coth2

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]
− 3

}
+ 3Ka2

{
1− coth

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]}2 . (35)

Case 4.

a0 = −2λb2, a1 = 4λb2, b0 = b2, b1 = −2b2. (36)

When we substitute Eq. (36) into Eq. (21), we get the following solution of Eq. (18)

u4(x, t) =
−2λb2 + 4λb2

(
1

1±ex−(λ/α)(t+(1/Γ(α))α)

)
+ a2

(
1

1±ex−(λ/α)(t+(1/Γ(α))α)

)2

b2 − 2b2

(
1

1±ex−(λ/α)(t+(1/Γ(α))α)

)
+ b2

(
1

1±ex−(λ/α)(t+(1/Γ(α))α)

)2 . (37)

Using several simple transformations to this solution, we get new exact solutions to Eq. (18),

u4,1(x, t) =
a2

{
1− tanh

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]}2

− 8λb2 tanh
[
k1x− λ1

α

(
t + 1

Γ(α)

)α]

b2

{
1 + tanh

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]}2 , (38)

u4,2(x, t) =
a2

{
1− coth

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]}2

− 8λb2 coth
[
k1x− λ1

α

(
t + 1

Γ(α)

)α]

b2

{
1− coth

[
k1x− λ1

α

(
t + 1

Γ(α)

)α]}2 . (39)
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Example 2: We consider the nonlinear Schrödinger equation
[27] with Atangana’s derivatives

iA0 Dα
t {u}+ puxx + q|u|2u = 0, 0 < α ≤ 1, (40)

whereu is a complex value function. We take the traveling
wave solutions of Eq. (40) and we implement the transfor-
mation

u(x, t) = eiθu(η), θ = τx +
λ

α

(
t +

1
Γ(α)

)α

η = x− 2rλ

α

(
t +

1
Γ(α)

)α

, (41)

whereτ , r andλ are constants. Using Eqs. (7)-(9) and substi-
tuting Eq. (41) into Eq. (40), we obtain the following equa-
tion including the imaginary and real part

i

[
−2rλ

du

dη
+ 2pτ

du

dη

]
+ p

d2u

dη2

− (λ + pτ2)u + qu3 = 0. (42)

From the imaginary part of Eq. (42), we have

r =
pτ

λ
. (43)

Also, the real part of Eq. (42) can be rewritten as

pu′′ − (λ + pτ2)u + qu3 = 0. (44)

Putting Eqs. (13) and (16) into Eq. (44) and balancing
the highest order nonlinear terms ofu′′ andu3 in Eq. (44),
then the following formula is found

N −M + 2 = 3N − 3M ⇒ N = M + 1. (45)

If we chooseM = 1 andN = 2, then we have

u(η) =
a0 + a1ψ + a2ψ

2

b0 + b1ψ
, (46)

u′(η) = (ψ2 − ψ)
(a1 + 2a2ψ)(b0 + b1ψ)− b1(a0 + a1ψ + a2ψ

2)
(b0 + b1ψ)2

, (47)

u′′(η) =
(2ψ − 1)(ψ2 − ψ)

(b0 + b1ψ)2
[
(a1 + 2a2ψ)(b0 + b1ψ)− b1(a0 + a1ψ + a2ψ

2)
]

+
(ψ2 − ψ)2

(b0 + b1ψ)3
[
2a2(b0 + b1ψ)2 − 2b1(a1 + 2a2ψ)(b0 + b1ψ) + 2b2

1(a0 + a1ψ + a2ψ
2)

]
. (48)

The exact solutions of Eq. (40) are obtained as follows:
Case 1.

a0 = −ib0

√
2p

q
, a1 = 2ib0

√
2p

q
, a2 = −2ib0

√
2p

q
, λ = −p(2 + τ2), r = − τ

(2 + τ2)
. (49)

When we substitute Eq. (49) into Eq. (46), we get the following solution of Eq. (40)

u1(x, t)=ei[τx−(p(2+τ2)/α)(t+(1/Γ(α)))α]

×
ib0

√
2p
q

[
−1+2

(
1

1± ex−(2pτ/α)(t+(1/Γ(α)))α

)
− 2

(
1

1± ex−(2pτ/α)(t+(1/Γ(α)))α

)2
]

b0 + b1

(
1

1± ex−(2pτ/α)(t+(1/Γ(α)))α

) . (50)

Using several simple transformations to this solution, we get new exact solutions to Eq. (40),

u1,1(x, t) = Lei[τx+(λ2/α)(t+(1/Γ(α)))α]
1 + tanh2

[
k1x + λ3

α

(
t + 1

Γ(α)

)α]

tanh
[
k1x + λ3

α

(
t + 1

Γ(α)

)α] , (51)

u1,2(x, t) = Lei[τx+(λ2/α)(t+(1/Γ(α)))α]
1 + coth2

[
k1x + λ3

α

(
t + 1

Γ(α)

)α]

coth
[
k1x + λ3

α

(
t + 1

Γ(α)

)α] , (52)

whereL = −i
√

P/2q, λ2 = −p(2 + τ2) andλ3 = −2pτ .
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FIGURE 5. Three-dimensional, density and contour plots of the solution (55) for the valuesα = 0.001, whenp = k = 2, q = 1 τ = 0.5.

FIGURE 6. Three-dimensional, density and contour plots of the solution (55) for the valuesα = 1 whenp = k = 2, q = 1 τ = 0.5.

Case 2.

a0 = −ib0

√
p

2q
, a1 = 0, a2 = 2ib0

√
2p

q
, b1 = 2b0, λ = −p

2
(1 + 2τ2), r = − 2τ

1 + 2τ2
. (53)

When we substitute Eq. (53) into Eq. (46), we get the following solution of Eq. (40)

u2(x, t)=ei[τx−(p(1+2τ2)/2α)(t+(1/Γ(α)))α]

i
√

p
2q

[
−1+2

(
1

1± ex−(2pτ/α)(t+(1/Γ(α)))α

)2
]

1 + 2
(

1
1± ex−(2pτ/α)(t+(1/Γ(α)))α

) . (54)

Applying simple transformations to this solution, we gain new exact solutions to Eq. (40),

u2,1(x, t) = Lei[τx+(λ4/α)(t+(1/Γ(α)))α] tanh
[
k1x +

λ3

α

(
t +

1
Γ(α)

)α]
, (55)

u2,2(x, t) = Lei[τx+(λ4/α)(t+(1/Γ(α)))α] coth
[
k1x +

λ3

α

(
t +

1
Γ(α)

)α]
, (56)

whereL = −i
√

P/2q andλ4 = −(p(1 + 2τ2)/2).
Case 3 .

a0 = −ib0

√
p

2q
, a1 = a2 = 0, b1 = −2b0, λ = −p

2
(1 + 2τ2), r = − 2τ

1 + 2τ2
. (57)

When we replace Eq. (57) into Eq. (46), we obtain the following solution of Eq. (40)

u3(x, t) = ei[τx−(p(1+2τ2)/2α)(t+(1/Γ(α)))α]
−i

√
p
2q

1− 2
(

1
1± ex−(2pτ/α)(t+(1/Γ(α)))α

) . (58)
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FIGURE 7. Three-dimensional, density and contour plots of the solution (59) for the valuesα = 0.01 whenp = k = 2, q = 1 τ = 0.5.

FIGURE 8. Three-dimensional, density and contour plots of the solution (59) for the valuesα = 1 whenp = k = 2, q = 1 τ = 0.5.

Fulfilling several transformations to this solution, we gain new exact solutions to Eq. (40),

u3,1(x, t) = Lei[τx+(λ4/α)(t+(1/Γ(α)))α] 1

tanh
[
k1x + λ3

α

(
t + 1

Γ(α)

)α] , (59)

u3,2(x, t) = Lei[τx+(λ4/α)(t+(1/Γ(α)))α] 1

coth
[
k1x + λ3

α

(
t + 1

Γ(α)

)α] , (60)

Case 4 .

a0 = 0, a1 = −ib1

√
2p

q
, a2 = ib1

√
2p

q
, b0 = −b1

2
, λ = p(1− τ2), r =

τ

1− τ2
. (61)

When we replace Eq. (61) into Eq. (46), we obtain the following solution of Eq. (40)

u4(x, t) = ei[τx+(p(1−τ2)/α)(t+(1/Γ(α)))α]

2i
√

p
2q

[(
1

1± ex−(2pτ/α)(t+(1/Γ(α)))α

)
−

(
1

1± ex−(2pτ/α)(t+(1/Γ(α)))α

)2
]

1− 2
(

1
1± ex−(2pτ/α)(t+(1/Γ(α)))α

) .

(62)

FIGURE 9. Three-dimensional, density and contour plots of the solution (63) for the valuesα = 0.5 whenp = 2, q = k = 1, τ = 0.5.
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FIGURE 10. Three-dimensional, density and contour plots of the solution (63) for the valuesα = 1 whenp = 2, q = k = 1, τ = 0.5.

Using several transformations to this solution, we procure new exact solutions to Eq. (40),

u4(x, t) = Mei[τx+(λ5/α)(t+(1/Γ(α)))α] 1

cosh
[
k1x + λ3

α

(
t + 1

Γ(α)

)α]
sinh

[
k1x + λ3

α

(
t + 1

Γ(α)

)α] , (63)

whereM = ∓i
√

p/2q andλ5 = p(1− τ2).
Case 5 .

a0 = ib0

√
p

2q
, a1 = i(2b0 + b1)

√
p

2q
, a2 = 0, λ = −p

2
p(1 + 2τ2), r = − 2

1 + 2τ2
. (64)

If we embed Eq. (64) into Eq. (46), we compute the following solution of Eq. (40)

u5(x, t) = ei[τx−(p(1+2τ2)/2α)(t+(1/Γ(α)))α]

i
√

p
2q

[
b0 + (2b0 + b1)

(
1

1± ex−(2pτ/α)(t+(1/Γ(α)))α

)]

b0 + b1

(
1

1± ex−(2pτ/α)(t+(1/Γ(α)))α

) . (65)

From this solution whereN = i
√

p/2q, we have new exact solutions to Eq. (40),

u5,1(x, t) = Nei[τx+(λ4/α)(t+(1/Γ(α)))α]
b1 − (2b0 + b1) tanh

[
k1x + λ3

α

(
t + 1

Γ(α)

)α]

b1 − 2b0 − b1 tanh
[
k1x + λ3

α

(
t + 1

Γ(α)

)α] , (66)

u5,2(x, t) = Nei[τx+(λ4/α)(t+(1/Γ(α)))α]
b1 − (2b0 + b1) coth

[
k1x + λ3

α

(
t + 1

Γ(α)

)α]

b1 − 2b0 − b1 coth
[
k1x + λ3

α

(
t + 1

Γ(α)

)α] , (67)

Remark. The solutions of Eqs. (18) and (40) were found by using the generalized Kudryashov method, have been checked
using Mathematica Release 9. To our knowledge, these solutions that we obtained in this paper, are new and are not shown in
the previous literature.

5. Conclusions

In this study, the generalized Kudryashov method was ap-
plied to find new exact solutions of the Hunter-Saxton and
Schr̈odinger equations defined by Atangana’s conformable
derivative. This method is defined by the rational form of
finite series, which includes the solution function of the Ric-
cati equation. The number of terms of the finite series is de-
termined by the balance principle. The balance relation ob-
tained by the application of the balance principle shows us
that the related problem can be solved for different values of
the finite series. In this study, different solution classes are
classified for the upper values of finite series calculated for

Hunter Saxton and Schrödinger equations defined by Atan-
gana’s conformable derivative. By applying this method to
the determined problems, rational hyperbolic function solu-
tions were found. For some values of the parameters that
are included in the solution functions, physical behaviors on
three-dimensional, density, and contour graphics were ex-
amined. Thus, it has been observed that the generalized
Kudryashov method gives very effective results in construct-
ing the exact solutions of nonlinear FPDEs defined with
Atangana’s derivative. In our future studies, we will apply
the generalized Kudryashov method to some other nonlinear
fractional problems defined with Atangana’s derivative.
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