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The investigation of a classical particle in the presence of fractional calculus
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In this article, by applying a preliminary and comprehensive definition of the fractional calculus, its effect on different aspects of physics

is specified, as in the case of Laplace transforms, Riemann-Liouville, and Caputo derivatives. Applications of the fractional calculus in
studying the dynamics of particle motion in classical mechanics are investigated analytically. Furthermore, we compare our results with
those obtained from the usual methods and we show that both solutions coincide provided the fractional effects are removed.
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1. Introduction a projectile by using the Riemann-Liouville fractional deriva-
tive and the Caputo approach is studied in Refs. [40,41].
Recently, using fractional calculus, the dynamics of a
particle have been studied for resisted horizontal motion
within a viscoelastic medium and in the presence of a uni-
gorm force [22]. Moreover, in Ref. [23], in the framework

The calculus of differentiation and integration is known as
the fractional calculus. The fractional derivatives for the first
time were proposed by Gottfried Wilhelm Leibniz in (1695)

[1]. Now the fractional calculus has been considered as ; .
of conformable fractional quantum mechanics, the three-

new tool for modeling the complex systems [2-16]. Sinced_ ional fractional h ) illator is studied and b
then, the fractional derivative was examined for various func- imensional fractional harmonic osciliator IS studied and by

tions. The fractional derivative of the exponential function using an effective and efficient formalism, Setiinger equa-

and the power function, respectively, are obtained by Liou—tion’ probability density, probability flux and continuity equa-

ville in (1832) and Riemann in (1847) [1]. Many researcherstion have been investigated and in Ref. [24]. Fractional cal-

consider an integral form for the fractional derivative and theCUIUS has also been studied for the Dirac equation, the result-

two most popular types of fractional derivatives are Riemann!"9 Wave funcuqn, and the energy eigenvalue _equatlo_n.
There are different methods to solve fractional differen-

Louville and Caputo. The fractional derivative has many in- i g _
teresting and unexpected properties; for example, under spi@! €quations analytically. One of the most common, simple,
cial conditions, the derivative of a constant can be nonzercnd practical methods used is the Laplace transform [25]. In

such as the case of the Riemann-Liouville fractional derivathis paper, the Laplace transform of fractional operators is

tive. On the other hand, the Caputo derivative of a constanfePresented, and some related formula is introduced. Frac-
as the ordinary derivative, vanishes. For further informational calculus has been considered for modeling viscoelastic

tion on fractional calculus, the interested reader is referre§YStems that cover various fields and subjects [22]. Here, we
to Refs. [17-21]. show that the proposed fractional model has a better result as

) o ) o compared to that of the non-fractional models have shown for
Different de_fmmons of fractional dgnvatlves can be pro- probing the different aspects of mechanical physics.
posed, each with remarkable properties [22-26], all of them This work is organized as follows. We first review the

valid and mathematically acceptable. fractional calculus in Sec. 2. Next, we investigate dynam-

In Ref. [37], the authors proposed a new fractional dif-ics of a particle within a viscoelastic medium in Sec. 3. In
ferential equation to describe the mechanical oscillations oSec. 4, by considering a retarding force proportional to the
a simple system and they analyzed the systems mass-sprifrgctional velocity, vertical motion of a body in a resisting
and spring-damper. In Ref. [38], the authors proposed a fraanedium is studied and in the last section, to provide a better
tional differential equation to describe the vertical motion of understanding of the motion of a projectile in a resisting vis-
a body through the air. Two-dimensional projectile motion incoelastic medium, we will discuss it under the condition that
a free and in a resistive medium were investigated using ththere exists a retarding force proportional to the fractional ve-
so-called conformable derivative in Ref. [39]. The motion of locity.
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2. Introduction to Fractional Calculus where0 < a < 1 andf (z) is a continuous function. Also
the Caputo fractional derivative is introduced as [22]

The Riemann-Louville fractional integral is defined as .

n—v— d"
o D50 = ey | =0 T O @
Sul @)= 7y [ - O 250 @ g
0 wheren = [v] + 1 and[z] implies a Gauss symbol.

The Laplace transform of Caputo fractional derivative can
| be represented by the following form

sSME(s) — sm g —gm=2y! — ... —gm=1
L[DSx (1) = F(s) (0) (0) (0)7 3)

Sm—a

and by insertingyr = 1 andm = 2 in Eq (1), we have
L/vherecl represents the fractional time in the system [37].
L[Djx(t)] = s°F (s) — s (0) — 2’ (0). (4)  Then, in Eq. (8), we changg to (C/C} ).

In this case, the Newtonian equation satisfies the equation

The Mittag-Leffler functions and the generalized Mittag- Lef- ¢ motion as follows

fler functions fora’, 3’ > 0 andz € C are defined as [34]

C
o n mDjx (t) = ———Dgxz (t), (10)
z i«
Bu(x)=S — 2 5 1
(2) ;}F(na’—i-l) ©)
"= with the following initial conditions
Zn
E. 5 = —_—
w8 &)= 2 T ) ©) 2 (0) = Vo, x(0)=0. (11)
Fora/,' > 0, a € Rands® > |a| inverse Laplace trans- On the other hand we know that(s) = L [x (¢)], therefore
form formula has the form we have
P B () @) L [mD2 (t)] = —L {?apgx (t)] . (12
s +a P ' C

then by substituting Eq. (1) and Eq. (2) into Eqg. (12), we find
3. Resisted motion of a particle in a viscoelas- the following relation:

tic medium
m {s’F (s) — sz (0) — 2’ (0)}
Now let us investigate the dynamics of a particle in a vis- C N ot
coelastic medium. In reality, per cycle of motion the part of - {5 F(s)—s""z (0)} ) (13)
the energy is destroyed. In the other words, the measure of !
damping is determined by the amount of energy lost. which, upon substitution of Eq. (11), becomes

Experimentally, we can consider the horizontal motion
in a viscoelastic medium as the simplest example of the re-

2 _ «
sisted motion of a particle. By considering a general order of m {S F(s) - VO} o Ccl-« SON (14)
viscoelastic damping, the frictional force takes the following
form where
F,=—-CD%x(t), 0<a<l. (8) F(s) = mVOC (15)

ms2 + o= s
In order to be consistent with the time dimensionality, we !

consider, the fractional derivative operator as Therefore, we can write
d 1 d°
—_ A—a Jra’ (9) —1 —1 1
e C{T*dt> x(t)=L""[F(s)]=WL |, (16)
82 + == s
m 1
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2t e
C
o =2—q, =2, 0= —- 17
g e (17)
after which the solution for(¢) reads
C 1
— o 03 z (t) = VotEz—q, 2 (—ﬁ‘“) = Vot{ =7ov
© mCY r(2)
— =0
1 C 2 C 2-a)’
_—_ = _ — _ —
I n mC%fﬂt n ( mC%fo‘t )
! ; : 3 : : T(4—a) T (6—20)
t
c 2—q
FIGURE 1. Horizontal component of the positiar{t) as a function (_ mc}*at ) 18
for timet, given by Eq. (18). + I'(8—3a) T (18)
" ix\\ — a=03 In Fig. 1, z(¢) with three different values af as a func-
i\\ \ e tion of ¢ with parameter€” = 0.8, C; = 1.2, m = 1 and
. \\\\ B Vo = 10 has been plotted. Using the equation above, the
‘\\\\ ==l velocity can be written as
el \\
> \\ B C 9_
\\ V(t) = —t a% mt Eg_a72< 1= t a)
e A\ mCy ™"
\ C C
2+ \\\\ N 1_at2 E2—a,3—a < — 2a)
\ T~ O O
S T S S c
t — EQ,QA,OL (—Wt O‘) ‘| } (19)

FIGURE 2. Velocity V (t) as a function of time, given by Eq. (19).
In Fig. 2, we have plotted’ (¢) with three different values
which can be compared with Eq. (5) to obtain the following of o as a function of with parameterg” = 0.8, C; = 1.2,

parameters: m = 1 andV, = 10. Then, we have obtained the acceleration
| as
1 C 1—2« 2 C 2—a O 2
a(t) = 3 Cll_"t VO{ C’ll_“t Eraa-2a| — Wt +@B+a) @t Es o524
X | — T — t°Fo_q6-2a|l — ——t" | + Mt | Eo_p 30| — ——t7¢
( mCl— ) Clro et < mCl = Zras mCl—
C

—FEs_na-a ( — mcll_atz—a)H} (20)

Special cases:

1)Fora=1/2
Recalling Egs. (4) and (17) and substituting into Eq. (18), the obtained solution becomes
2 3
o () ()
z(t)=VotEs o — Clt% S pptd mcf b mod + mci +..p. (2D
7\ me? re  r() I'(5) L (%)

So, velocity and acceleration can be calculated as follows:
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1 1 Es s <_ Cltg> +Es 1 <_ Cltg>]} (22)
mC? ok P\ mCp P\ mC?
1 : : :
a(t)= —2%\/%1/0 ~5m B3 s (— Clt3> +2 Clt%Eg,g (- C1t3>
2m Clz 272 me 012 2 mclz
+5mEs 1 <— Cﬁ) -5 Clt%EgA (— Cﬁ) +5 Clt%E;,S (— Cf)] : (23)
2\ mCy cy mC? cy m(C'z

in view of other special approaches as follayg~or C' = 0, Eq. (21) leads

z(t)=Vot (24)
4. \fertical motion of a body in a resisting
medium IUsing the inverse Laplace transfomnit) = L~ [F(s)], we
have

Now let us consider the vertical motion of a body in a re- c 5

. s . . . . . y(t) = yOEQ— 1 -t «
sisting medium in which there exists a retarding force pro- & mCi=«
portional to the fractional velocity. In this case, we consider

that the body is projected downward with zero initial velocity + gt2Fo_0s (_ c t?—a) + ¢ yot2 ™
v(0) = 0 in a uniform gravitational field. Then the equation ’ mCy~* mCy~*
of motion is given by C
C X By 03 (—latQ‘a> : (30)
mDZy (t) = mg — cimaDiy(®),  0<as<l (25 mCy
_ ot N For the special case when= 1, we obtain
with the following initial condition 8. , C
t) =yl ——t t°F ——t
y(0)=vo, ¥ (0)=0 (26) y(t) = o M( m>+g 1’3( m>
Taking the Laplace transform of both side of the Eq. (25), we N gyotg_aEm (—Ct> 7 (31)
get m m
, m C i i i
m [52F (s) — sy (0) —y (0)} _ ?9 - o which can be expanded in series as ,
' (t)= g L (L) g L (C) gy
sF (s) — y (0) . Y= 98 T \ T ) T\ ) T T
|\ | @7) (32)
Solving the Eq. (27) with respect its), we have so that in the limit ofC' — 0,
1
F(s) = 9 + L y (1) = yo + 591" (33)
|:53 + mccll’*‘l 5a+1:| |:S + mc’cll'*a Sa—l !

On the other hand, fax = 1/2 we will have

C

m == Yo

T - c 1 (28) y(t)yoEe,l( C1t2>+gt2E373 ( Clt%>
[+ ]

which can be rewritten as 3 C s
g Yo + TYot2 By s | ———=t2 (34)
T 71 T 71 2 2
[s3+ mci;’a Sa+1] [S+ mccif*”‘ ga—1 mcl mCl
) ) For simplicity above equation can be written as
ﬁ/:37 a/:2—a /6/:17 0/22—04 1
t =
cp, v =)
[ mC’1 :| . .
s3—ap G g - T2 c? .3
mC @ . (29) mCQ m t
: +gt? ol r(é) + r?a) 1.5, (35)
B =3—-a, o =2-a 2
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where, after usin@'(3) = 2!, the result is read as =

7
C; gtz 15t
mC12 :

1
y(t):yo+—gt2—w+... (36)

2

5. Motion of a projectile in a resisting medium

In this section we are interested in considering motion of a
projectile in a resisting viscoelastic medium in which there
exists a retarding force proportional to the fractional velocity.
In this case we have the following equations

FIGURE 4. Vertical component of the positiaj(¢) as a function of

C . .
mD?z (t) = —FD?JJ (t), time ¢, given by Eq. (42).

' c where F' (s) andG (s) are Laplace transforms af (¢) and
mD?y (t) = —mg — ——D%y(t), 0<a<1 (37) y(t),respectively. Using the inverse Laplace transform and

e properties of Mittag-Leffler function, we have
with the initial conditions
z(0) =0, y(0) =0, z(t) =VocosOt Ea_oo (—Cl_aﬂa) , (41)
mC|

2’ (0) = Vg cos ¥, y' (0) = Vysin 6. (38)

C
42 _ 2—«
Taking the Laplace transform of both on both sides of Eq. y(t) = —g1"Er—a3 ( mCll‘“t )
(39), we can find

C
Vo cos + VosinOt Es_, —t2_°‘> . 42
F(s)= —5—a— (39) " . ( mC{—° “2
ms< + o= s
1
mg Vysin In Fig. 3, we have plotted(t) with three different values
G(s)= T O gatl ey C g (40)  of o as a function of with parametere’ = 0.8, C; = 1.2,
et S m =1,0 = r/6 andVy = 10. Also, in Fig. 4, we have

plottedy(t) with three different values af as a function of
t with parameters” = 0.8, Cy = 1.2, m = 1, g = 10,
6 = 7/6 andV, = 10.

Differentiatingz (¢t) andy (¢) with respect to the time, the
velocity can be calculated as

1
2 (t) = —t"“Vycosf {mto‘ Es_o2 ( ¢ t2a>
m

mCi
os 0z 0 06 08 — Ea 2 By o3-a —%ﬂ_a
t Cl mC’l
FIGURE 3. Horizontal component of the positiar{t) as a function
of timet, given by Eq. (41). o o ¢ 2—a 43
| EQ—aA—(x 1—« ) ( )
mC|
and
1 — 1+« C 2—a C 3 C 2—a
y/ (t) = Et [ — Zth E2—o¢,3 ( — Wll_at — 2011_0‘ gt Eg_a75_a _Wll_at
C C C
+mt®Vy sinbFy_qo| —————27 | — t2VysinbEs_ g 5 | —————t27¢
0 2 ,2 < mC%,a > 011704 0 2 ,3 mcll,a
c , C
+ 2 gt + Vo sinb | By qa-o| — ——1>7||. 44
Cll_a (9 0 > 2—a,4 ( mCll_O‘ )] (44)
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If we denote the range and the time required for the entire trajectofy/ lapndT” respectively, the following representation is
obtained

y(t=T)=0. (45)
Now consider the case that= 1 — ¢ ande is sufficiently small. In this case we have

-2 n
1 ——C ¢ C

By gy~ ——p e "7 — (— t)
(_ < t)e 1 [ n=0 me

£
mC§

> n C " > n C "
—F f—1)(— t Int — t) . 46
“;r(nw) (n+ )< me) e nz_;)l"(n—kﬁ)( me) (46)

By using Egs. (45) and (46), up to a first ordeejrwe have

2V sin 0 C'Vpsin 6 20V, 2sin0 13 2Vpsin 6
=" (- Ayt — I 47
g < 3mng> Tamgcr e TN ) “n
which, whena goes to 1, can be simplified into
T’HT:QVOSIHQ 1iC’V0s1n0 ' (48)
g 3mgCT

The range is obtained from the relati® = z(7”) as

R Vi sin 26 | ACVysing 2C’V03sin20(:080, (49)
g 3mgCs Img2Ce

which can be reduced, whengoes to 1, to we can also have
V2 sin 20 4CV, sin nvestigate_d applic_:ations of thi_s a_pproat_:h in three different
T T3maCe (50)  problems in classical mechanics including the study of re-
g _ 1 _ ~_ sisted motion of a particle in a viscoelastic medium, the ver-
Therefore, the change due to the fractional resistance is give§tal motion of a body in a resisting medium and the mo-
by tion of a projectile in a resisting medium. The obtained re-
20V sin0 cos 0 sults satisfy the ordinary results of classical mechanics in.
—o 3= >0 (531) It has also been proved that the ordinary solutions are ob-
9I9mg?C5s . . .
) . tained provided the fractional effects are removed. Thus,
Thus, the range becomes larger for the fractional resistang@e results demonstrate that the proposed fractional model

R — R=

AR=R —R=¢

when compared with the linear resistance case. presents an enhanced description as compared to that of the
non-fractional models have shown when probing the different
6. Conclusion aspects of mechanical physics.
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