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electromagnetic waves in plasma and dielectric media with Caputo generalized fractional derivatives. Theρ−Laplace transform introduced
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1. Introduction

Fractional calculus has several applications in science and en-
gineering. Fractional-order modeling has proved to be ben-
eficial, particularly for systems where memory or hereditary
properties play a significant role. This is the main advantage
of fractional calculus in comparison with the ordinary calcu-
lus models in which such effects are in fact neglected. The re-
cent investigations of application of fractional calculus were
published in different areas [22, 27]. The popularity of frac-
tional calculus is due to the variety of the fractional derivative
operators such as Caputo fractional derivative [26], Caputo-
Fabrizio fractional derivative [23], Atangana-Baleanu frac-
tional derivative [24], fractal-fractional derivative [25].

Several applications of fractional calculus for electro-
magnetism can be found in the literature [1-3]. For exam-
ple, the fractional curl operator and the fractional paradigm
in electromagnetic theory were introduced in [4]. The appli-
cation of the fractional curl operator to electromagnetic prob-
lems is discussed in Ref. [5]. In Ref. [6], a generalization of
vector calculus for a non-integer dimensional space using a
product measure approach is presented. The integration over
non-integer-dimensional spaces is considered and differen-
tial operators of first and second orders for fractional space
and non-integer dimensional space are suggested. Gómezet
al. [21] described the fractional space-time electromagnetic
waves in dielectric media, for these representations the di-
mensionality of the ordinary derivative operator was analyzed
in order to include it into a fractional derivative operator. Re-
cently, Kachhia and Atangana [13] interpret the electromag-
netic waves by a fractional derivative of variable and constant
order with non-singular kernel. Recently, Gómezet al. [21]
suggested an alternative representation in the Caputo sense

for the fractional waves in dielectric media. The authors con-
sidered source-free Maxwell equations in isotropic and ho-
mogeneous dielectric medium. Other applications of frac-
tional calculus in electromagnetic theory are given in [7–9].

The generalized Caputo fractional derivative is intro-
duced by Katungampola [10]. Sene and Gómez-Aguilar [12]
have studied the analytical solutions of the electric circuits
described by Caputo generalized fractional derivatives. Sene
[11] has obtained both an analytic and a numerical solution
for certain generalized fractional diffusion equations. In the
aforementioned work, the jump from ordinary to fractional
derivatives is direct albeit the physical parameters used for
the differential equations have different physical dimensions.

In this article, we study some fractional differential equa-
tions arising in electromagnetism more precisely. We solve
the electromagnetic waves in a plasma and an oscillating
electric field. The paper is organized as follows: In Sec. 1,
we present the basic details regarding the generalized Caputo
fractional derivative. Section 2 deals with an analysis of frac-
tional modelling of electromagnetic waves in plasma under
various conditions and finally, in Sec. 3, we present an anal-
ysis of electromagnetic waves in dielectric using the new dif-
ferential operator under different instances.

Definition 1.1 The generalized fractional integral of orderα
of a continuous functionf : [0, +∞] → R is defined in[29]
as

(Iα,ρf)(t) =
1

Γ(α)

t∫

0

(
tρ − sρ

ρ

)α−1
f(s)ds

s1−ρ
, (1)

whereΓ(·) denotes the gamma function,ρ > 0, t > 0 and
0 < α < 1.
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Definition 1.2 The left generalized fractional derivative of
the orderα of a continuous functionf : [0,+∞] → R is
defined in[29] as

(Dα,ρf)(t) =
(
I1−α,ρf

)
(t) =

1
Γ(1− α)

(
d

dt

)

×
t∫

0

(
tρ − sρ

ρ

)−α

f(s)
ds

s1−ρ
, (2)

whereΓ(·) denotes the gamma function,ρ > 0, t > 0 and
0 < α < 1.
Definition 1.3 The Caputo generalized fractional derivative
of order α of a continuous functionf : [0,+∞] → R is
defined in[29] as

(
GCDα,ρf

)
(t) =

1
Γ(1− α)

×
t∫

0

(
tρ − sρ

ρ

)−α

γf(s)
ds

s1−ρ
, (3)

whereρ > 0, t > 0, γ = t1−ρ(d/dt) and0 < α < 1.
The Caputo fractional derivative explains the memory ef-

fect, while the characteristics of the Caputo generalized frac-
tional derivative is highly affected by the value ofρ, so it
provides a new direction for the control applications.
Definition 1.4 The ρ−Laplace transform of a continuous
functionf : [0, +∞] → R is defined in[29] as

Lρ{f(t)}(s) =

∞∫

0

e−s tρ

ρ f(t)
dt

t1−ρ
. (4)

Theρ−Laplace transform of the Caputo generalized frac-
tional derivative of a continuous functionf is given in[29]
as

Lρ{(Dα,ρf) (t)} = sαLρ{f(t)}

−
n−1∑

k=0

sα−k−1 (Iα,ργnf) (0). (5)

Definition 1.5 The genearlized Mittag-Leffler function is de-
fined in[15] as

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, (6)

whereα > 0, β > 0 and in particularEα,1(z) = Eα(z).

2. Fractional modelling of electromagnetic
waves in Plasma

Consider absolutely ionized gasoline; this type of fuel is, in
physical terms, a hydrogen plasma with an equal amount of
electrons and protons. The hydrogen plasma is considered

as a uniform slab of plasma of thicknessL in the x direc-
tion and having very large dimensions in they andz dimen-
sions. We take proton mass to be effectively infinite com-
pared to the electron mass and the positive charges are there-
fore effectively fixed in a place. Suppose that we displaced
the electrons from the protons by a distancex ¿ L. An
electric field is set up that would exert a force on the elec-
trons, pulling them back to the protons. Letting the elec-
trons run, they would rush again in the direction of the pro-
tons, overshoot and an oscillations could be set up with a
feature frequency [14]. We will develop a simple model,
i.e. we regard the medium as an electric (restoring) force,
−kx(t) = 4πne2x(t), is produced in the direction of equi-
librium position. The equation of motion of each electron is
therefore

d2x(t)
dt2

+
4πne2

me
x(t) = E(t), (7)

where−nel is the charge per unit area the force per unit area
is F = −4πn2e2Lx, and the mass per unit area isnmeL.
Equation (7) corresponds to a harmonic oscillator with a fre-
quency

ω0 =

√
4πne2

me
, (8)

called the electron plasma frequency.

2.1. Zero electric fields

Let us consider Eq. (7) with the Caputo generalized fractional
derivative in following way

1
σ2(1−ν)

GCD2α,ρ
t x(t) +

4πne2

me
x(t) = E(t),

0 < α ≤ 1, ρ > 0. (9)

The auxiliary parameterσ2(1−ν) is introduced with the final-
ity to keep consistency with the dimensionality of the frac-
tional differential equation; hereσ has dimensions of time
(in seconds) [30].

ConsiderE(t) = 0, x(0) = x0, ẋ(0) = 0

GCD2α,ρ
t x(t) + ω2x(t) = 0, (10)

where

ω2 =
4πne2σ2(1−ν)

me
= ω2

0σ2(1−ν), (11)

is the fractional electron plasma frequency for different value
of ν. Applying ρ-Laplace transform of Eqs. (5)-(10) and
consideringx(0) = x0 andẋ(0) = 0, yields

s2αx̄(s)− s2α−1x0 + ω2x̄(s) = 0, (12)

and by simplifying the above equation, we have

x̄(s) =
s2α−1

s2α + ω2
x0 (13)
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FIGURE 1. Wave solutions to Eq. (14) for a zero electric field in
a plasma for different values of the parameterα. Here,ρ = 1,
x0 = 1.2, andω = 0.5.

As derived in [12], Eq. (13) gives

x(t) = x0E2α

[
−ω2

(
tρ

ρ

)2α
]

. (14)

Figures 1 and 2 show the behavior of wave solutions to
Eq. (14) for a zero electric field in a plasma for different
values of the parametersα andρ, respectively.

2.2. Static electric fields

Now we apply a static field,E(t) = E0, with the initial con-
ditions x(0) = x0 (x0 > 0) andẋ(0) = 0.
Equation (9) may be written as follows

GCD2α,ρ
t x(t) + ω2x(t) = Ω, (15)

where

Ω =
E0ω

2

4πne
. (16)

FIGURE 2. Wave solutions to Eq. (14) for a zero electric field in
a plasma for different values of the parameterρ. Here,α = 0.95,
x0 = 1.2, andω = 0.5.

FIGURE 3. Wave solutions to Eq. (19) for a static electric field
in a plasma for different values of the parameterα. Here,ρ = 1,
x0 = 1.2, Ω = 0.6, andω = 0.5.

Applying theρ-Laplace transform to Eq. (15) and using
x(0) = x0 andẋ(0) = 0, we obtain

s2αx̄(s)− s2α−1x0 + ω2x̄(s) = Ω
1
s
. (17)

Simplifying above equation, we have

x̄(s) =
x0s

2α−1

s2α + ω2
+

Ω
ω2

(
1
s
− s2α−1

s2α + ω2

)
. (18)

As derived in [12], Eq. (18) gives

x(t) =
(

x0 − Ω
ω2

)
E2α

(
−ω2

(
tρ

ρ

)2α
)

+
Ω
ω2

. (19)

Figures 3 and 4 depicts depict the behavior of wave so-
lutions to Eq. (19) for a static electric field in a plasma for
various values of the parametersα andρ, respectively.

FIGURE 4. Wave solutions to Eq. (19) for a static electric field in
a plasma for different values of the parameterρ. Here,α = 0.99,
x0 = 1.2, Ω = 0.6, andω = 0.5.
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3. Fractional modeling of electromagnetic
waves in dielectric media

The Maxwell equations in dielectric media [21] are

∇ · ~E =
%

ε0
, (20)

∇ · ~B = 0, (21)

∇× ~B = µ~J + µε
∂ ~E

∂t
, (22)

∇× ~E = −∂ ~B

∂t
. (23)

Taking the curl of Eq. (23) and using vector identities, we
have

∇×∇× ~E = ∇(∇ · ~E)−∇2 ~E = −∇× ∂ ~B

∂t
, (24)

which becomes, after using Eq. (20)

∇2 ~E = ∇× ∂ ~B

∂t
. (25)

Taking the time derivative of (22) gives

∇× ∂ ~B

∂t
= µε

∂2 ~E

∂t2
. (26)

Combining Eqs. (25) and (26), the wave propagation in thex
direction is written as

∂2 ~E(x, t)
∂x2

− µε
∂2 ~E(x, t)

∂t2
= S(x, t), (27)

whereS(x, t) is the current density source, which may be
constant, sinusoidal, or stepped [16–18]. IfS(x, t) = 0
then Eq. (27) is called a homogeneous wave equation and
if S(x, t) 6= 0 then (27) is called an inhomogeneous wave
equation.

In the present case, we are considering unit step source
S(x, t) = 1 for x ≥ 0 andS(x, t) = 0 for x < 0 is often the
current density source [28].

In order to make the fractional differential equation di-
mensionally consistent, an alternative procedure for con-
structing fractional equations was reported in [19]. The pro-
posed alternative is the introduction of an additional parame-
ter α, which must have dimension of seconds or meters (for
the temporal or spatial operator, respectively) to be consis-
tent with the dimension of the ordinary operator. To do this,
we replace the ordinary time operator by the fractional one as
follows,

∂

∂x
→ αδ−1

x

∂δ

∂xδ
, n− 1 < δ ≤ n. (28)

In the spatial case, we can replace the ordinary operator by
the fractional spatial operator as so that

∂

∂t
→ αγ−1

t

∂γ

∂tγ
, n− 1 < γ ≤ n, (29)

whereαx has dimension of length andαt has dimension of
time. These parameters characterize the fractional spatial or
fractional temporal structures (components that show an in-
termediate behaviour between a system conservative and dis-
sipative), whenδ andγ are equal to 1, the expression (28)
and (29) reduce to ordinary derivative. Considering (28) and
(29), the fractional representation of (27) is

α2δ−1
x

∂2δ ~E(x, t)
∂x2δ

−α2γ−1
t µε

∂2γ( ~E(x, t))
∂t2γ

= S(x, t), (30)

the order of the derivative to be considered is0 < δ, γ ≤ 1
for the fractional wave equation in space-time domain, re-
spectively.

3.1. Fractional space wave equation in dielectric media

In this section, we will investigate the solutions of the frac-
tional space-time wave equation in dielectric media via frac-
tional derivative of constant order with generalised Caputo
fractional derivative.

Let us consider Eq. (30) the spatial fractional wave equa-
tion with the Caputo generalized fractional derivative is given
by

GCD2α,ρ
x (E(x, t))− µεα2(1−α)

x

∂2E(x, t)
∂t2

= α2(1−α)
x S(x, t), (31)

whereS(x, t) = 1 for x ≥ 0 andS(x, t) = 0 for x < 0.
Now, assuming its solution

~E(x, t) = R( ~E0e
iωtu(x)), (32)

whereR is the real part and substituting Eqs. (31) and (32)
into (30), we have

GCD2α,ρ
x (u(x)) + θ̂2u(x) = α2(1−α)

x , (33)

FIGURE 5. Spatial wave solution for dielectric media fields for dif-
ferent values of the parameterα. Here,ρ = 1, u0 = 1.2, θ2 = 0.7,
αx = 1.25, andE0 = 12.

Rev. Mex. F́ıs. 66 (6) 848–855



852 N. BHANGALE AND K. B. KACHHIA

FIGURE 6. Spatial wave solution for dielectric media fields for
different values of the parameterρ. Here,α = 0.95, u0 = 1.2,
θ2 = 0.7, αx = 1.25, andE0 = 12.

whereθ2 = µεω2 is the wave number and̂θ2 = θ2α
2(1−δ)
x is

the wave number in presence of fractional space components.
Equation (33) is often referred to as the fractional Helmholtz
equation with generalized Caputo fractional derivative. For
this equation, if̂θ2 has a negative value, then the behavior of
~E(x, t) for the space coordinate grows or decays exponen-
tially, but if θ̂2 has a positive value, then~E(x, t) will vary
sinusoidally or cosinusoidally for the space coordinate and
varies with time in a simple harmonic motion.

Applying ρ−Laplace transform to Eq. (33) and consider-
ing u(0) = u0 andu̇(0) = 0, yields

s2αū(s)− s2α−1u0 + θ2ū(s) =
α

2(1−α)
x

s
(34)

After simplification, we get

ū(s) =
α

2(1−α)
x

s(s2α + θ̂2)
+

s2α−1u0

s2α + θ̂2
(35)

FIGURE 7. Time wave solution for dielectric media fields for dif-
ferent values of the parameterα. Here,ρ = 1, u0 = 1.2, ω = 0.5,
Ω = −0.06, andE0 = 12.

As derived in [12], Eq. (35) gives

u(x) = α2(1−α)
x

{
1

θ̂2
− 1

θ̂2
E2α

[
−θ̂2

(
xρ

ρ

)2α
]}

+ u0E2α

[
−θ̂2

(
xρ

ρ

)2α
]

. (36)

Therefore we get solution of Eq. (31)

E(x, t) = R
[
eiωtu(x)

]
, (37)

whereu(x) is given in Eq. (36)

3.2. Fractional time wave equation in dielectric media

Considering the Eq. (30), the temporal fractional wave equa-
tion via Caputo generalized fractional derivative is given by

GCD2α,ρ
t ( ~E(x, t))− α

2(1−α)
t

µε

∂2E(x, t)
∂x2

=
α

2(1−α)
t

µε
S(x, t) (38)

whereS(x, t) = 1 for t ≥ 0 andS(x, t) = 0 for t < 0. Now,
assuming the following solution

~E(x, t) = R( ~E0e
iωxu(t)), (39)

yields, after substituting into Eq. (30), we have

GCD2α,ρ
t (u(t)) + ω2u(t) = −Ω2, (40)

FIGURE 8. Time wave solution for dielectric media fields. Here,
α = 0.75, ρ = 1, u0 = 1.2, ω = 0.5, Ω = −0.06, andE0 = 12.
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FIGURE 9. Time wave solution for dielectric media fields. Here,
α = 0.85, ρ = 1, u0 = 1.2, ω = 0.5, Ω = −0.06, andE0 = 12.

where ω2 = (k2/µε)α2(1−α)
t = ω2

0α
2(1−α)
t is the frac-

tional relation,ω0 is natural frequency of the wave andΩ2 =
(1/µε)α2(1−α)

t is the velocity of the electromagnetic wave
considering fractional components.

Applying ρ−Laplace transform to Eq. (40) and consider-
ing u(0) = u0 andu̇(0) = 0 yields the following expression

ū(s) =
u0s

2α−1

s2α + ω2
− Ω2

s (s2α + ω2)
, (41)

As derived in [12], Eq. (41) gives rise to the following solu-
tion to Eq. (38)

~E(x, t) = R

{
eiωx

[(
u0 +

Ω2

ω2

)

× E2α

[
−ω2

(
tρ

ρ

)2α
]
− Ω2

ω2

]}
. (42)

FIGURE 10. Time wave solution for dielectric media fields. Here,
α = 0.85, ρ = 0.75, u0 = 1.2, ω = 0.5, Ω = −0.06, and
E0 = 12.

FIGURE 11. Time wave solution for dielectric media fields. Here,
α = 0.85, ρ = 1.25, u0 = 1.2, ω = 0.5, Ω = −0.06, and
E0 = 12.

For the time wave solutions within a dielectric medium,
a gradual increase in the value ofα results in an increase of
frequency and a corresponding decrease in wavelength. This
effect can be directly observed from Figs. 8 and 9. Similarly,
a variation ofρ also results in a frequency increase.

4. Conclusion

In this paper, we have studied the behavior of electromag-
netic waves described by a fractional differential equation of
order0 < α < 1 in the the plasma and dielectric media mod-
elled with Caputo generalized fractional derivatives. With the
purpose of maintaining the physical units of the system, the
auxiliary parametersαx andαt are introduced to characterize
the existence of the fractional space and time components,
respectively; these parameters show that the system has an
intermediate behavior between a conservative and dissipative
system. For vanishing and static electric fields, the analytical
solutions are given in terms of the Mittag-Leffler function.
Theρ−Laplace transform is used to derive exact solution of
models.

The solution of Eqs. (10) and (15) correspond to zero
electric field and static electric field using generalized Caputo
fractional derivative in a plasma, respectively. From Fig. 1,
it was found that a decrease in the value ofα implies a wave-
length increase; hence, both the frequency and the wave am-
plitude decrease in the case of vanishing electric field within
a plasma. In Fig. 2, we observe a similar behavior where an
increase inρ gives rise to a decrease in both amplitude and
wavelength. The solution of zero electric field and static field
is obtained in Mittag-Leffler function such as given in Eqs.
(14) and (19), respectively. In the case of a static field, Fig. 3
shows that if the value of the parameterα is decreased, the
wavelength increases and, consequently, both the frequency
and amplitude decrease. Figure 4 depicts a similar effect for
an increase inρ, where wavelength decreases, frequency in-
creases, and the amplitude remains the same.

Rev. Mex. F́ıs. 66 (6) 848–855
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The solution of Eqs. (31) and (38) correspond to the spa-
tial and time wave equations in a dielectric medium using
Caputo generalized fractional derivatives. Figure 5 shows
that when we decrease a value ofα, both wavelength and
frequency remain the same while there is a change in the am-
plitude for the spatial wave within dielectric media. From
Fig. 6, it can be concluded that as the value ofρ decreases,
wavelenth increases and both the amplitude and frequency
decrease. The solutions for spatial and time waves in dielec-
tric media were also obtained using the Mittag-Leffler funci-
ton as given in (37) and (42), respectively. Ifθ̂2 has a negative
value, then the behavior of~E(x, t) for the space coordinate
grows or decays exponentially, but ifθ̂2 has a positive value,
then~E(x, t) will vary sinusoidally or co-sinuosoidally for the
space coordinate and varies with time in a simple harmonic
motion. In Fig. 7, asα decreases, the wavelength increases
and therefore, frequency and amplitude decrease. We can
also conclude that asα → 0, the wave periodicity disappears
as can be seen from the same figure.

The solutions of fractional differential equations with
generalized Caputo fractional derivatives display a change
within the amplitude of the electric field and variations in
the phase exhibit fractality in time to different scales and
suggests the existence of heterogeneities within the medium.
These behaviors depend on the fractional derivative order
of α andρ. The systems exhibit a quick stabilization than
it takes the integer exponent. We showed the electric field
waves that are transmitted in the material present anomalous
behavior depending of the value ofα orρ in the fractional dif-
ferential equation. Usually this anomalous behavior is known
in the literature as centrovelocity or propagation of energy in
dissipative systems [20].

Further analysis of this article may prove to be helpful
for a better understanding of electrical systems, wave propa-
gation, and scattering in radom media.
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