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Phase transition in tumor growth VIII: The spatiotemporal avascular evolution
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e-mail: mansy@unam.mx

Received 1 July 2020; accepted 13 August 2020

A 2D cellular automata model, which allows a better understanding of the morphogenesis of the avascular tumor pattern formation, is
presented. Using thermodynamics formalism of irreversible processes and results of complex systems theory, we propose features that
establish, in a quantitative way, the degree of aggressiveness and the malignancy of tumor patterns, such as a fractal dimension and the
entropy production rate.
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1. Introduction

According to the WHO [1], cancer is the second leading
cause of death worldwide, and it is estimated that the num-
ber of new cases will increase in the coming years. There
is enough evidence [2,3] regarding the complexity of can-
cer. We mean that cancer is seen as a self-organizing non-
linear dynamic system, far from thermodynamic equilibrium
[4,5,6], exhibits a fractal structure that allows it to evade the
action of the immune system and host cells [7-12]. Shows
growth dynamics in the metastatic stage, deterministic chaos
type, which confers high robustness, poor long-term progno-
sis, adaptability, and learning capacity [13-16].

As we have shown in previous works [16], cancer can
be seen as a complex network made up of cells that have
lost their specialization and growth control, and that emerges
through what we can call “biological phase transition” [17-
19].

Cancer evolution and emergence are known to oc-
cur through three distinct stages (avascular, vascular, and
metastatic) [20]; researchers often concentrate their efforts
on answering specific questions on each of these stages. In
the avascular phase, the tumor grows to a state known as
a dormant state [21], with microscopic characteristics, this
process, occurs through a “second-order” phase transition
[19] through either logistic or Gompertz dynamic equations
equivalently [19], which corresponds to the fact that such
growth occurs silently.

The avascular phase, dormant state [22], is a stable sta-
tionary state, taking on a spheroid shape of a few millimeters
in diameter, whose histological examination shows three dif-
ferent concentric annular layers [23,24]. Proliferating cells
[7] are found in the thinner outer layer with a rough edge,

fractal [7]. In the contiguous layer, typically three times
thicker than the proliferation layer, inactive cells, quiescent
cells, exhibit little or no proliferation. The innermost nu-
cleus consists of necrotic remains [25]. The tumor can re-
main in this latent state for months or even years, reaching a
size between 1-2 mm in diameter and cannot be detected on
a macroscopic scale [26]; therefore, its detection is usually
limited.

This work aims to generalize the previously proposed
model of avascular tumor growth [19] with the inclusion of
spatiotemporal behavior. The manuscript is organized as fol-
lows: In Sec. 2, a two-dimensional (2D) cellular automata
model is presented for the spatiotemporal study of avascu-
lar tumor growth. Section 3 describes the experimental part:
the spatiotemporal avascular growth, including the dynamical
behavior, the fractal dimension, and the entropy production
rate of the tumor patterns. Finally, some concluding remarks
are presented.

2. A Two-Dimensional (2D) Cellular Au-
tomata Model for the Spatiotemporal of
Avascular Tumor Growth

Mathematical models [27] represent a language for formaliz-
ing the knowledge on living systems obtained in theoretical
biology [28,29,30]. Basic models of tumor growth [31,32]
make the description of the principal regularities possible and
are a useful guideline for cancer therapy, drug development,
and clinical decision-making.

These models can be classified into two general groups:
deterministic based on ordinary or partial differential equa-
tions (ODEs, PDEs) [33] and stochastic models [34-37].
On the other hand, to describe a spatial pattern formation
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has been used indistinctly, PDEs [38], agent-based models
(ABM) [39,40], particularly, cellular automata (CA) [41-43],
hybrid cellular automaton [44], and multi-scale models [45].

CAs have been widely used given their ability to generate
a broad spectrum of complex patterns from relatively simple
rules which capture many behavioral characteristics and the
complexity of real self-organizing systems far from thermo-
dynamic equilibrium [39].

The advantage of CA models is that they can directly in-
corporate the rules that define the processes of mitosis and
apoptosis, as pointed out by Basanta et al. [46] based on the
presence of cancer cell hallmarks [47].

The proposed CA cellular automaton is a reinterpretation
of the model of Pourhasanzadeet al. [48], a two-dimensional
(2D) stochastic agent-based model for the spatiotemporal
study of avascular tumor growth. For the development of the
CA model and spatial patterns, the Python 3 programming
language was used [49].

The main differences with the model of Pourhasanzade
et. al. [48] are:

1. Only one type of proliferative cell (PT) with its re-
spective probability of proliferation was considered,
and it was the one that considers the microenviron-
ment since this expression encompasses both expres-
sions and represents a more comprehensive concept of
tumor growth.

2. The immune system was not explicitly taken into ac-
count.

The proposed model is made up of a two-dimensional
square lattice (2D,n× n cells); each cell in the lattice is de-
fined by position coordinates (i, j), where0 < i, j ≤ n cells.
These agents can take 4 possible modes:0 - normal cells (N);
1 - proliferative cells (PT);2 - non-proliferative cells (NT);3
- necrotic cells (Ne). Besides the empty spaces in the lattice
are shown as agents in mode0.

The model includes a set of update rules at the cellular
level of the biological system consisting of two sets of tran-
sition rules for agents. Thus, it considers proliferative cell
mitosis (PT), competition between cell populations, and in-
teraction between normal and tumor cells.

The transition rules for this model are probabilistic, and a
Moore neighborhood [50] limits the interaction of each lattice
site with its neighborhood. On the other hand, the nutrients
are supposed to be evenly distributed in the lattice, where its
deficiency can be considered due to the lack of free space
within a certain distance from a cell. Therefore, a PT cell
can only be divided with some probability into two daugh-
ter cells as long as there is a space in its vicinity, placing a
daughter cell. In contrast, the other daughter cell will replace
the position from which it originated.

Each mode 1 agent (PT cell) can proliferate with a prob-
ability as a function of time and space, such that

P = P0 × n0 ×
(

1− r

Rmax

)
(1)

whereP0 is a base probability of proliferation, which in the
original work by Pourhasanzadeet al. [48] it is assigned an
arbitrary value, in our case, according to the temporal model
previously developed by us [19] we associate by ansatz to the
quotient of the mitosis(ψ) /apoptosis(η) constants,P0(ψ/η),
whose quotient characterizes a given tumor [51]. Conse-
quently, the probabilityP of proliferative cells (PT) is as-
sociated with the rates of mitosis (Vm) and apoptosis (Va),
respectively.

The n0 reflects the number of healthy cells (N ) in each
site’s vicinity, associated with the morphological character-
istics of the host tissue. Ther is the position of each cell
with respect to the center of the tumor andRmax is a con-
stant value that is prefixed and denotes the maximum diame-
ter between 1-2 mm that the tumor can reach [52] since it is
known that they grow in the avascular stage until they reach a
latent state. Appendix A shows a flowchart showing the sets
of rules for the agent-based model proposed.

In this way, it is ensured that the CA model results are
adjusted through either logistic or Gompertz dynamic equa-
tions equivalently [19] and that it follows a dynamic where
for radius greater thanRmax the probability of proliferation
is zero, thus showing the effect of the mechanic pressure ex-
erted by the host on tumor growth [24].

In each time iteration, if the agent mode is1, it is checked
if the agent has opportunities to proliferate. For this, there
must be at least one agent with mode0 in its vicinity. If so,
the corresponding PT cell will choose one of those possible
positions at random and divide with a probabilityP . Of the
two new cells created, one takes the position of the cell in
mode0, and the other remains in the position of the PT cell.

In case the PT cell cannot proliferate, either because it
cannot find a healthy neighbor in its vicinity or because it
cannot proliferate with a probabilityP , it will remain as a PT
cell for a certain time. Therefore, each PT cell has an age
counter that is incremented at each time step and is reset if
the cell undergoes mitosis. After reaching a certain time (age
threshold), the PT cell can change to the NT cell, changing
the mode from1 to 2 when it is at a greater distance thanδP ,
the one associated with a certain distance from the edge of
the tumor.

NT cells that are in mode2 can change to Ne cells
(necrotic cells, mode3) if they are at a greater distance than
δP + δn from the edge of the tumor due to the absence of
nutrients. These Ne cells are found in the center of the tumor
as a mass of dead cells and do not change their mode under
any circumstances.

The radius of the necrotic region (Rn) and the thickness
of the region of PT (δP ) and NT cells (δn) are obtained by
the following equations [40]:

Rn = Rt − (δP + δn),

δP = bR
2/3
t ; δn = aR

2/3
t , (2)
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TABLE I. Parameters used in the model.

Parameters Brief explanation value

P0¤ψ
η

Baseline probability of proliferation of PT cells,associated with to 0.1; 0.3; 0.5; 0.7

the quotient of mitosis(ψ) / apoptosis(η) constants, see Eq. (1).

Rmax Maximum tumor extent, controlled by pressure 37.5

of surrounding tissue, see Eq. (1).

a Base necrotic thickness, controlled by 0.42

the need for nutrients, see Eq. (2).

b Proliferative base thickness, controlled 0.11

by the need for nutrients, see Eq. (2).

FIGURE 1. Patterns formed during avascular growth obtained for different values ofp0 (0.1; 0.3; 0.5; 0.7) after 200 iteration steps have
reached the dormant state: healthy tissue (N, purple), proliferative cells (PT, blue), non-proliferative cells (NT, green), necrotic (Ne, yellow).

Rev. Mex. Fis.66 (6) 856–862
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wherea andb are constant parameters that reflect the need
for nutrients in tumor growth, andRt is the average radius of
the tumor. Table I shows the values of the parameters used in
the CA model. In all cases, the parameters used are dimen-
sionless.

3. Experimental Part: the Spatiotemporal
Avascular Tumor Growth

Figure 1 shows the patterns that are obtained for different val-
uesP0 after 200 iteration steps, when saturation is achieved,
that is, the dormant state. In purple, it represents healthy
tissue (N), blue is proliferative cells (PT), green is non-
proliferative cells (NT), and yellow is necrotic (Ne).

For each fractal pattern (see Fig. 1), the fractal dimension
df was determined using the box-counting method [53,54].
Each image was processed with the ImageJ 1.40 g soft-
ware by Wayne Rasband, National Institute of Health, USA
(http://rsb.info.nih.gov/ij).

As shown in previous work [36], the fractal dimension
df can be given as a function of the quotient between mi-
tosis(Vm) and apoptosis(Va) rates [36,55], different values
of df representing the “degree of malignancy” [56] which
quantifies the capacity of the tumor to invade and infiltrate
the healthy tissue, as

df =
5− Vm

Va

Vm

Va
+ 1

. (3)

From the Eq. (3) the quotient of mitosis/apoptosis rates
(Vm/Va) was determined (see Table II), which increases as
the value of growthsP0, which physically implies an increase
in the degree of malignancy of the patterns formed. Notably,
the fractal dimension values for the different patterns are in
the range of values reported by Brú [7] for different tumor
cell lines (see Fig. 1, Table II).

Figure 2 shows how the cell population varies with time,
for different valuesP0 after 200 iteration steps, so that satura-
tion is achieved, that is, the dormant state (see Appendix B).

FIGURE 2. Temporal variation of the cell population (PT) for dif-
ferent values ofP0 (0.1; 0.3; 0.5; 0.7) after 200 iteration steps.

FIGURE 3. The entropy production ratėSi for different values of
p0.

TABLE II. Fractal dimension valuesdf and quotient of mito-
sis/apoptosis rates (Vm/Va) for each of the patterns (see Fig. 1)
for different values ofP0.

P0 0.1 0.3 0.5 0.7

df 1.1869 1.1763 1.1324 1.1207

Vm/Va 1.7436 1.7570 1.8137 1.8293

As observed, a sigma-shaped curve the avascular growth
of the tumor, follows a growth dynamic, through either lo-
gistic or Gompertz dynamic equations equivalently [11,19].
As we pointed out in Sec. 2, the probabilityp of prolifer-
ative cells (PT) is associated with the rates of mitosis (Vm)
and apoptosis (Va), respectively. This shows how, for dif-
ferent types of tumors, characterized by theirPo value, the
tumor exhibit varying degrees of aggressiveness [19]. We
previously reported [36] the same behavior that in this work
is obtained for different types of tumor cell lines.

Previously we have shown [51] that the entropy produc-
tion rateṠi was determined for avascular tumor growth as a
physical function of cancer robustness, such as

Ṡi = R(Vm − Va) ln
(

5− df

1 + df

)
. (4)

The Eq. (4) shows two major properties associated with
the avascular tumor growth: The first is its growth rate, which
is associated with its invasive capacity, mitosis (Vm), and
apoptosis (Va) rates, related with the degree of aggressive-
ness. The second is its complexity, a morphology charac-
teristic, such as the fractal dimension of the tumor interface,
associated with malignancy, which quantifies the tumor ca-
pacity to invade and infiltrate the healthy tissue [56]. Figure
3 shows the entropy production rateṠi for different values of
p0.

As can be seen, the entropy production rateṠi shows how
the robustness of the tumor increases as its invasive capacity

Rev. Mex. Fis.66 (6) 856–862
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increases, degree of aggressiveness, and in turn, its malig-
nancy.

4. Conclusions and Remarks

In summary, in this paper, we have found that the proposed
two-dimensional (2D) cellular automata model generalized
the spatiotemporal behavior of avascular tumor growth, and
that allows a better understanding of the morphogenesis of
the tumor pattern formation.

Using thermodynamics formalism of irreversible pro-
cesses and complex systems theory, we propose and quantify
markers able to establish, in a quantitative way, the degree
of aggressiveness and the malignancy of tumor patterns, such
as:

1. The tumor complexity, such as a fractal dimension,
proves to be useful for describing the pathological ar-
chitecture of tumors and for yielding insights into the
mechanisms of tumor growth.

2. The entropy production rate is a physical hallmark of
cancer robustness that allows us the possibility of prog-
nosis of tumor proliferation and invasion capacities,
key factors to improve cancer therapy.

The current theoretical framework will hopefully provide
a better understanding of cancer growth and contribute to
cancer treatment improvements.

APPENDIX A. Flowchart showing the sets of rules for agent-based
model proposed.

APPENDIX B. Figure showing different time stages
(30,50,100,200) of the spatial system forp0 = 0.3.
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