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Stochastic dynamics for epidemics based on a compartmental
scheme: An application to the AH1N1 influenza
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Apartado Postal 20-364, 01000, Ciudad de México, Ḿexico.
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In this paper a stochastic formulation for describing the dynamics of an epidemic is established. We state our model in the language of
a compartmental scheme of three population groups susceptible, infected, and removed, for which the model parameters are extended to
be statistical distributions of time. A master equation is established for the dynamics of the probability densityP of finding the system in
the state characterized by the values of the aleatory variables susceptible, infected, removed, and timet. Our stochastic formalism allows
us to recover the associated deterministic model in terms of the expected values of susceptible, infected, and removed; whereas the second
momenta ofP provides us with statistical standard deviations for these three variables which delimit the region in which most of the particular
realizations are to be expected. We have applied the analysis developed here, for studying the specific case of the influenza AH1N1 that took
place in Mexico in 2009. The reported data by the main Mexican Health institution are in good agreement with the predictions of our model
for the standard deviation of the aleatory variables.
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1. Introduction

Epidemic spread in human populations is a complex phe-
nomenon, throughout human history infectious diseases have
caused debilitation and premature death to large portions of
the human population, leading to serious social-economic
concerns. The bubonic plague, smallpox, dengue, ebola, yel-
low fever, influenza, malaria, polio, avian flu, leprosy, tuber-
culosis, whooping cough, severe acute respiratory syndrome
(SARS), among others, are examples of the most devastating
ones (see [1]). Although, some viruses and bacterias causing
these diseases have been completely eradicated others have
only been possible to be controlled and are a health problem
yet. A recent case took place in the late March and early
April 2009, when reports of respiratory hospitalizations and
deaths among young adults in Mexico alerted local health of-
ficials to the occurrence of atypical rates of respiratory illness
at a time when influenza was not expected to reach epidemic
levels. Infections with novel swine-origin influenza AH1N1
virus were confirmed in California, (United States), on April
21 (see [2]) and in Mexico on April 23 (see [3]).

The formulation of theories on the nature of infections
diseases dates back to ancient times; they have evolved and
currently modern theories of differential equations have been
widely adopted in the analyses, and simulation of biologi-
cal populations including the evolution of epidemics. The

first mathematical model to describe an epidemic was devel-
oped by D. Bernoulli which was applied to smallpox. Later,
W. Heaton formulated a model to analyze the propagation
of measles and R. Ross developed a work on malaria trans-
mission. On the basis of a scheme with three elementary
compartments: susceptible, infected, and removed, a math-
ematical model more general commonly known as SIR, was
developed by [4] for describing any disease of viral kind.

Most epidemic models are based on dividing the host
population into a small number of compartments, each con-
taining individuals that are identical in terms of their status
with respect to the disease in question. For instance, the
standard approaches are the so-called susceptible-infected-
removed (SIR) and susceptible-exposed-infected-removed
(SEIR) models have contributed much in the present for un-
derstanding the nature of recurrent epidemics. Traditionally,
deterministic models have been the base of mathematical epi-
demiology, however, stochasticity has been recognized as an
important tool within epidemic modelling, but there is still
much concerning its precise dynamical role and how it can
be understood from a theoretical point of view. Neverthe-
less, stochastic models have recently been considered as a
more realistic descriptions of epidemics. This is evidenced
by the large amount of systematic treatments of the subject,
for instance, the first stochastic simulation on epidemiolog-
ical system, was implemented by Bartlett, who was inter-
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ested in extinction dynamics (see [5]). In more recent stud-
ies, [6], have applied the well known Van Kampen method to
the SEIR model with distributed exposed and infectious peri-
ods for studying whooping cough. Moreover, McKaneet al.
developed a method for fluctuations around cycles of forced
or unforced systems, a method which was extended by [7] to
a seasonally forced SEIR model in a realistic parameter re-
gion for childhood infectious diseases where different attrac-
tors exist or coexist. According to studies on avian flu [8],
its is argued that a fully stochastic theory based on environ-
mental transmission provides a simple, plausible explanation
for the phenomenon of multi-year periodic outbreaks. On the
other hand, a stochastic theory for the major dynamical tran-
sitions in epidemics from regular to irregular cycles, which
relies on the discrete nature of disease transmission and low
spatial coupling was proposed by [9], while a study on the es-
timation the parameters in dengue fever case studies was per-
formed by [10]. Among the studies on epidemics in Mexico,
we can mention, for instance, the study performed by [11],
who used a time dependent modification of the [4] model
to study the evolution of the influenza AH1N1 epidemic re-
ported in the Mexico City area under the control measures
used during April and May 2009. Meanwhile, [12] analyzed
the epidemiological patterns of the pandemic during April-
December 2009 in Mexico and evaluated the impact of non-
medical interventions, school cycles, and demographic fac-
tors on influenza transmission.

This work is organized as follows. In order to establish
the terminology and nomenclature used in our analysis, in
Sec. 2 we summarize a deterministic mathematical model
SIR and we give a brief description of the general master
equation. An application of the stochastic formalism that we
have developed on a realistic case is presented in Sec. 3.
In Sec. 4, we present an analysis where the important pa-
rameters and numerical comparison are discussed. Finally in
Sec. 5 we address our concluding remarks and conclusions.

2. The SIR model

In Mathematical Epidemiology, one of the most widely used
models still is the simple SIR model developed in Ref. [4].
In Subsec. 2.3, we will present a stochastic extension of such
model. For context, we will briefly review the deterministic
SIR model. For more details on this mathematical formula-
tion, Ref. [1] can be consulted.

2.1. Model description and assumptions

In a classic model SIR , individuals within the populationN
belong to one of three compartments: susceptible, infected,
and removed, which are denoted byS, I, andR, respectively.
These groups are defined as follows, the susceptibles: those
susceptible to contract the disease, but who are not yet in-
fected at a timet, the infected: those which are infected with
the disease, and are able to spread it through contact with
susceptibles. The final class are the removed: those that have

been removed from the infected and cannot spread the infec-
tion (for instance, because they are immunized).

The following hypotheses are assumed: 1) it is considered
a homogeneous population without demographic dynamic, in
which individuals have the same characteristics; age, sexual
gender, among others, 2) it is neglected a possible seasonal
period in which the dynamics of the epidemic vary, 3) it is ex-
cluded the possibility that the removed individuals lose their
immunity to the disease so that they cannot belong to the
susceptible group again, 4) it is ignored the virus incubation
time, which implies that when a subject is infected it becomes
infectious immediately, 5) it is considered that two individu-
als have the same probability of interacting each other, 6) it
is supposed that infected persons, that are within the incuba-
tion period but do not exhibit any symptoms, are unable to
contaminate to other individuals, 7) the rate of the number
of infected per unit of time increases proportionally to the
number of infected and susceptible, namelyβSI/N where
β > 0 constant and the number of susceptible members de-
creases with the same rate of infected, 8) the recovery rate of
infected is proportional to the number of infected, this isγI
with γ > 0 constant and the number of retrieved increases at
the same rate. Here, the parameterβ represents the transmis-
sion rate (per capita) whileγ represents the recovery rate, so
the mean infectious period is1/γ.

2.2. Governing equations

Under the conditions mentioned above, the model can be
mathematically expressed by the following set of ordinary
differential equations,

dS

dt
= − β

N
SI, S(0) = S0 ≥ 0,

dI

dt
=

β

N
SI − γI, I(0) = I0 ≥ 0,

dR

dt
= γI, R(0) = R0 ≥ 0, (1)

whereN = S + I + R is the fixed total population. If ev-
eryone is initially susceptible (S(0) = N ), then a newly in-
troduced infected individual can be expected to infect other
people at the rateβN during the expected infectious period
1/γ. Thus, this first infected individual can be expected to
infectR0 = β/γ individuals. The numberR0 is called the
basic reproduction number and is unquestionably the most
important quantity to consider when analyzing any epidemic
model for an infectious disease. In particularR0 determines
whether there is an epidemic or not. IfR0 < 1 the infection
dies out, while ifR0 > 1 there is an epidemic.

2.3. General master equation

The master equation governs the stochastic dynamics of
Markov process. This equation is universal and has been ap-
plied in problems in biology and population dynamics which
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can be modeled as Markovian events. A process is consid-
ered Markovian if it is possible to make predictions and in-
deed know the full history of the process about the system,
based solely on its present state, which implies that the past
and future state of the system are independent. Therefore,
a suitable description for Markovian systems is given by the
master equation, that specifies how the probabilityP (ni, t)
that the system is in the stateni at timet changes with time.
Its general form is given by,

dP (ni, t)
dt

=
∑

n′i 6=ni

T (ni | n
′
i)P (n

′
i, t)

−
∑

n′i 6=ni

T (n
′
i | ni)P (ni, t). (2)

Equation (2) manifests explicitly that the temporal changes
of the probability are controlled by a balance equation that
takes into account both transition probabilities per unit time
T (ni | n

′
i) andT (n

′
i | ni). The transition rateT (ni | n

′
i)

corresponds to a system for whichni individuals in the pop-
ulation groupi migrates to the compartmenti′ which was
originally formed byn

′
i members of the whole population.

Similarly, the second transition rateT (n
′
i | ni) is measuring

the probability for occur the inverse process. In this sense,
the positive terms of this balance account for individuals en-
tering into the population groupi and the negative ones to
those members of the population leaving the same compart-
ment (see [13]).

2.4. One step master equation

In what follows, the description done so far on the master
equation, will be limited only to the three population groups:
susceptible, infected, and removed, as was discussed above
are denoted byS, I, andR, respectively. We also will con-
sider that an individual only has interaction with their nearest
neighbour.

We suppose that the transition rule of the population
members between the groupsS, I, R is as follows: The sus-
ceptible individuals, initially healthy, may become infected
with a rateβSI/N , whereas the infected individuals, have
the disease and are able to transmit it to other individuals at
a rateγI, the removed individuals are immune to the disease
after recovery. For simplicity in this model, it is assumed that
during the epidemic, the virus is transmitted only between
close neighbours with the possibility that an infected individ-
ual may be removed. Figure 1 illustrates schematically the
transition flows from one group to another. The elementary
processes occurring into the system can be divided in two

FIGURE 1. Flow chart for the SIR model.

FIGURE 2. Processes of interaction between individuals.

elementary groups; infection and recovery, which are defined
as follows: An infection process implies that a susceptible
individual enters in contact with an infected individual, gen-
erating therefore a newly infected individual. The recovery
process signifies that an infected individual who is able to re-
cover from the disease, cannot be susceptible again, because
he has acquired immunity. In summary, the transition rates
expressed in terms of the SIR model variables are defined by
the following events,

{S, I} −→ {S − 1, I + 1}
{S, I} −→ {S, I − 1} , (3)

which are represented schematically in Fig. 2 together with
their respective transition rates. We take just two variables
n = {S, I}, because the variableR can be completely deter-
mined by the restrictionN = S + I + R. In this way Eq.(2),
can be written explicitly as

dP (S, I, t)
dt

= T (S, I | S + 1, I − 1)P (S + 1, I − 1, t)

+ T (S, I | S, I + 1) P (S, I + 1, t)

− T (S − 1, I + 1 | S, I) P (S, I, t)

− T (S, I − 1 | S, I)P (S, I, t). (4)

Equation (4) is a master equation describing a one-step
process, whose corresponding associated transition rates we
shall assume by proposing the following expressions,

T (S − 1, I + 1 | S, I) =
βSI

N
, (5)

T (S, I − 1 | S, I) = γI. (6)

Here,T (S − 1, I + 1 | S, I) measures the probability rate
for an infected individual to become susceptibleI, while the
number of removedR is constant. We take this quantity to be
proportional to the temporal rate of change ofS provided by
the Kermack McKendrick model, as given by the first equa-
tion of Eq. (1), which is conceptually resembling. Similarly,
T (S, I − 1 | S, I) gives the transition probability at which
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the number of infected individuals increase by one while the
susceptible onesS is kept constant. Because the total number
is constant, this is related with the reduction of the recovery
individualsR whose temporal ratio is provided by the last
equation of Eq. (1). We identify both quantities as propor-
tional to construct our master equation. For convenience, the
one-step operatorE, is defined through its effect on an arbi-
trary functionf(m) asE±1f(m) = f(m± 1), thus in terms
of the step operator, the probability transitions given by Eqs.
(5) and (6), can be rewritten as follows

E±1f(m) = T (S, I | S + 1, I − 1)P (S + 1, I − 1, t)

= E+1
S E−1

I

(
βSI

N

)
P (S, I, t) (7)

and

E±1f(m) = T (S, I | S, I + 1) P (S, I + 1, t)

= E+1
I γIP (S, I, t). (8)

From transition rates represented by expressions (7) and
(8), Eq. (4) can be written in a compact form as

dP

dt
=

[(
E+1

S E−1
I − 1

)
,

(
βSI

N

)
+

(
E+1

I − 1
)
γI

]
P.

(9)
In order to solve Eq. (9), we use the method that has

been proposed by [13]. This method suppose that the proba-
bility distributionP behaves like a sharp Gaussian statistical
distribution, where the random variables are rewritten as the
superposition of a macroscopic deterministic variable and a
mesoscopic random variable. According to this formulation,
the following ansatz for the independent variables are sug-
gested, namely,

S(t) = N(φ(t) + qx) (10)

I(t) = N(ψ(t) + qy), (11)

whereφ andψ are the macroscopic variables which repre-
sent both to susceptible individuals and infected individuals,
respectively, andx andy are small stochastic corrections to
these variables,q = 1/

√
N is a smallness parameter. The

Van Kampen approximation allows us to find the determinis-
tic evolution ofφ(t) andψ(t) as well as the two first momenta
of the distributionP in terms of the correctionsx andy. If
we apply the step operatorsE±1

S andE±1
I to expressions (10)

and (11), we have to replacex → x + q andy → y + q, so
the resulting expressionsE±1

S (x + q) andE±1
I (y + q) are

expanded in Taylor’s series,

E±1
S = 1± q

∂

∂x
+

q2

2
∂2

∂x2
+ O(q3), (12)

E±1
I = 1± q

∂

∂y
+

q2

2
∂2

∂y2
+ O(q3). (13)

Inserting expressions (10-13) into Eq.(9), and multiplying
the hand right side byNP , it becomes

[
β

{(
1 + q

∂

∂x
+

q2

2
∂2

∂x2

)(
1− q

∂

∂y
+

q2

2
∂2

∂y2

)
− 1

}

×(φ + qx)(ψ + qy)+γq

(
∂

∂y
+

q

2
∂2

∂y2

)
(ψ + qy)

]
. (14)

Notice that the expression between square brackets up to sec-
ond order inq2 can be approximated as

(
1 + q

∂

∂x
+

q2

2
∂2

∂x2

)(
1− q

∂

∂y
+

q2

2
∂2

∂y2

)
− 1

=q

[
∂

∂x
− ∂

∂y

]
+

q2

2

[
∂2

∂x2
+

∂2

∂y2
− 2

∂2

∂x∂y

]
+O(q3).

(15)

Thus, if we expand the other terms and group the resulting
ones in powers ofq we can obtain

dP

dt
=

1
q

(
βφψ

∂P

∂x
+ (γψ − βψφ)

∂P

∂y

)
+

[
∂

∂x
− ∂

∂y

]

× (xψ + φy)P +
ψφ

2

[
∂2

∂x2
+

∂2

∂y2
− 2

∂2

∂x∂y

]
P

+
γ

2
ψ

∂2P

∂y2
+ γ

∂

∂y
yP, (16)

where the terms of orderq have been neglected. It is impor-
tant to remark that Eq. (16) is the Fokker-Planck’s equation
(see [13]). Moreover, it is useful to express the probability
distribution in terms ofS andI, which in turn can be writ-
ten as a function of the continuous variablesx andy, namely,
P (S, I, t) = Π(x, y, t), it yields

dP

dt
=

∂Π
∂t

− 1
q

dφ

dt

∂Π
∂x

− 1
q

dψ

dt

∂Π
∂y

. (17)

By comparing the right hand side of the Eq. (16) and that
of the Eq. (17), it can be infered by equating the lowest power
in q that

dφ

dt
= −βφψ, (18)

dψ

dt
= βφψ − γψ. (19)

Notice that the system of Eqs. (18-19), has the same func-
tional form that SIR model described by Eq. (1), whose so-
lutionsφ = E[S] andψ = E[I], are the expected value of
the Eqs. (10-11). On the other hand, up to zero orderq the
following equation is fulfiled.

∂Π
∂t

= β

[
∂

∂x
− ∂

∂y

]
(xψ + φy)Π + β

ψφ

2

[
∂2

∂x2

+
∂2

∂y2
− 2

∂2

∂x∂y

]
Π +

γ

2
ψ

∂2Π
∂y2

+ γ
∂

∂y
yΠ (20)
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which can be expressed as a continuity balance equation for
the probabilityΠ given by

∂Π
∂t

+∇ · J = 0, (21)

where the two dimensional probability current vectorJ is de-
fined as

J = β

(
1
−1

)
(xψ + φy)Π

+ β
ψφ

2

(
1 −1
−1 1

) ( ∂Π
∂x
∂Π
∂y

)

+
(

0
1

)(
γ

2
+

∂Π
∂y

+ γyΠ
)

. (22)

We remark that Eq.(21) guaratees the conservation of proba-
bility.

To analyze the dynamics of the expected values of the
ramdom variablesx andy we multiply byx or by y Eq.(20)
and integrate over the whole domain. It yields

d < x >

dt
= −β < xψ + φy >, (23)

d < y >

dt
= β < xψ + φy − γy >, (24)

where as usual the expected value is given by

< u >=

∞∫

−∞

∞∫

∞
uΠ(x, y)dxdy. (25)

Hereu is a variable which can be a function ofx andy. By
adding Eqs. (23) and (24) we get the expression

d

dt
(< x > + < y > −γy) = 0, (26)

which allows us to find a time invariant of the system. To find
the dynamics of the second momenta, we proceed similarly
and integrate by parts the resulting expressions by assuming
that the density of probabilityΠ and its partial derivatives
with respect tox and y vanish atx = ±∞. It leads to

d < x2 >

dt
= −2β < x(xψ + φy) > +βψφ, (27)

d < y2 >

dt
= 2β < y(xψ + φy) >

+ βψφ + γψ − 2γ < y2 >, (28)

d < xy >

dt
= β < (y − x)(xψ + φy) >

− γ < xy > −βψφ. (29)

After adding the first and second expressions and sub-
stracting the third one we obtain following relation

d

dt
< (x− y)2 >= γψ − 2γ < y(x + y) >, (30)

It is convenient to stress that the model described by the
set of Eqs.(23), (24), (27), (28), and (29) is general and there-
fore, it can be applied to any epidemic of viral transmission
fulfilling the restriction of having a narrow statistical distri-
bution; it means that he solutionP (S, I, t) of Eq. (9) obeys
a Gaussian distribution with averagesφ(t) andψ(t), whose
fluctuations bandsφ(t)± σS andψ(t)± σI , are given by the
solutions of the Eqs.(23), (24), (27), (28), and (29). Here the
respective standard deviations of each variable are defined as
usual:σ2

S = E[x2]− E[x]2 andσ2
I = E[y2]− E[y]2.

3. Application of this model to study a realistic
case

Before applying our stochastic formulation, it is good to men-
tion that although the behavior of the groupsS andR can be
predicted by using a deterministic model, in contrast with in-
fected group, its quantification for the whole population is
very difficult, and, in consequence, there is not enough field
data. The infected group is considered as the variable with
more impact and as such, it is therefore the most commonly
used in epidemiological predictions. For these reasons, we
focus our discussion mainly in infected casesI.

In what follows, we apply the mathematical model de-
veloped in Sec. 2.1 and summarized by Eqs. (23)-(29) to
analize the influenza AH1N1 spread in Mexico in 2009. We
use real data reported by Mexican Institute for Social Secu-
rity (IMSS) in that year. In Table I it is presented the total
number of infected people, this information includes 35 geo-
graphical regions stipulated by the [14]. We use the follow-
ing methodology: even though it is well known that one epi-
demiological year encompasses a whole period of 52 weeks,
of which we only consider those weeks in which there was
a significant number of infected casesN0. In regard to the
proportion of the susceptible membersS(t), in the relation
N(t) = S(t) + I(t) + R(t), it is taken those individuals who
finally became infected, which implies the initial condition
I(t) = S(0). In addition, to estimate the order of magnitude
of the parametersβ andγ we apply the Levenberg-Marquardt
algorithm, whereas the valueR0 it is computed directly from
the ratioβ/γ. In order to complete the problem formulation,
we have also imposed the initial conditionS(0) = 1, which
implies that final epidemic size for the deterministic SIR epi-
demic model can be computed from the implicit relation

S(∞) =
Nγ

β
ln

(
S(∞)
N − 1

)
+ N. (31)

Hence, the total number infected during the outbreak is
I = N − S(∞) and the above expression can be expressed
as

Nγ

β
ln

(
N − I

N − 1

)
+ I, (32)

this implicit relation is used to calculate the number of sus-
ceptible people, by using the Generalized Reduced Gradient

Rev. Mex. F́ıs. 66 (6) 863–873



868 A. REYES-ROMERO, J. E. FERŃANDEZ AND J. ADRIAN REYES

TABLE I. Total number of cases and parameters estimated by geographical region [14].

Geographical region N Infected cases β γ R0

Aguascalientes 20,910 825 6.69 6.04 1.11

Baja California 43,918 1,050 9.98 9.64 1.03

Baja California Sur 11,289 565 5.82 5.13 1.13

Campeche 4,703 151 7.14 6.62 1.08

Coahuila 26,988 516 7.78 7.32 1.06

Colima 20,346 924 5.19 4.77 1.09

Chiapas 22,694 1,311 8.29 7.77 1.07

Chihuahua 21,309 458 9.56 8.85 1.08

Durango 17,154 752 5.00 4.43 1.13

Guanajuato 30,909 557 8.43 7.98 1.06

Guerrero 15,536 484 11.16 10.25 1.09

Hidalgo 15,193 758 6.58 5.71 1.15

Jalisco 91,003 1,576 8.52 8.12 1.05

Mexico Oriente 66,957 1,677 10.67 10.17 1.05

Mexico Poniente 40,153 1,245 7.21 6.55 1.10

Michoacan 22,708 607 6.76 6.25 1.08

Morelos 6,482 187 6.59 6.04 1.09

Nayarit 15,605 569 4.74 4.38 1.08

Nuevo Leon 69,512 1,571 10.49 10.01 1.05

Oaxaca 30,087 1,484 6.84 6.52 1.05

Puebla 24,470 685 8.54 7.79 1.10

Queretaro 30,237 834 8.91 8.59 1.04

Quintana Roo 6,365 203 17.25 15.43 1.12

San Luis Potosi 43,847 1,989 5.87 5.31 1.11

Sinaloa 17,395 441 7.82 7.14 1.09

Sonora 21,681 777 9.76 8.55 1.14

Tabasco 13,616 1,020 10.75 8.74 1.23

Tamaulipas 43,708 1,672 11.12 9.94 1.12

Tlaxcala 9,151 491 5.97 5.17 1.16

Veracruz Norte 29,404 749 10.54 9.82 1.07

Veracruz Sur 32,401 870 11.39 10.62 1.07

Yucatan 26,875 1,187 8.12 7.49 1.09

Zacatecas 9,915 385 8.85 7.94 1.11

D.F. Norte 60,936 2,063 11.18 10.68 1.05

D.F. Sur 52,399 1,253 8.09 7.47 1.08

Whole country 1,441,331 31,887 13.09 12.77 1.02

(GRG) nonlinear algorithm. Also, for the other expected
variables we assume the following initial conditions:E[x =
0] = E[y = 0] = E[x2] = E[y2] = E[xy] = 0. Under
these conditions, we have solved numerically the set of equa-
tions given by Eqs.(23), (24), (27), (28), and (29) by using a
standard Runge-Kutta algorithm (see [15]).

4. Results and discussion

In Table I, we present the corresponding values of the typical
parametersβ, γ, andR0 that we have estimated. The main
results for parameterR0 are as follow: we have estimated
the parameter magnitudeR0 = 1.05 andR0 = 1.08 for the
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FIGURE 3. a) Probability distribution theoretical and observed. b)
Ep=Extinction probability. Hereψ = E[I] is the expected value of
the theoretical distribution andσI is the standard deviation around
the expected value.

FIGURE 4. a) Probability distribution theoretical and observed. b)
Ep=Extinction probability. Hereψ = E[I] is the expected value of
the theoretical distribution andσI is the standard deviation around
the expected value.

geographical region Distrito Federal Norte and Distrito Fed-
eral Sur respectively, whereas a valueR0 = 1.72 has been
estimated by [11] for the same geographical region so called
Distrito Federal (include both regions Distrito Federal Norte
and Distrito Federal Sur). On the other hand, for the whole
country, we have estimated the valueR0 = 1.02, while Fraser
et al. estimated this value within the interval(1.4, 1.6); thus,

FIGURE 5. a) Probability distribution theoretical and observed. b)
Ep=Extinction probability. Hereψ = E[I] is the expected value of
the theoretical distribution andσI is the standard deviation around
the expected value.

FIGURE 6. a) Probability distribution theoretical and observed. b)
Ep=Extinction probability. Hereψ = E[I] is the expected value of
the theoretical distribution andσI is the standard deviation around
the expected value.

in a similar analysis done for members belonging IMSS, [12]
estimated season values toR0 between (1.8 − 2.1) during
Spring, of(1.6 − 1.9) for Summer and(1.2 − 1.3) for Fall.
We must notice that the order of magnitude of the parameter
R0 for all the geographical regions is very close to the value
that has been estimated by those authors, who have used dif-
ferent techniques than those we have discussed here.
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FIGURE 7. a) Probability distribution theoretical and observed. b)
Ep=Extinction probability. Hereψ = E[I] is the expected value of
the theoretical distribution andσI is the standard deviation around
the expected value.

FIGURE 8. a) Probability distribution theoretical and observed. b)
Ep=Extinction probability. Hereψ = E[I] is the expected value of
the theoretical distribution andσI is the standard deviation around
the expected value.

Figures 3-8 exhibit all the events that we have analyzed.
The corresponding comparison between real infected casesI
and its respective theoretical averageE[I] has been presented
for each geographical region. In the same Figs. 3-8, also is
illustrated the corresponding associated curves with the ex-
tinction probability of the epidemic as a function of the time.

FIGURE 9. a) Probability distribution theoretical and observed. b)
Ep=Extinction probability. Hereψ = E[I] is the expected value of
the theoretical distribution andσI is the standard deviation around
the expected value.

FIGURE 10. a) Probability distribution theoretical and observed. b)
Ep=Extinction probability. Hereψ = E[I] is the expected value of
the theoretical distribution andσI is the standard deviation around
the expected value.

The results show that the best fit correspond to geograph-
ical regions Distrito Federal Sur, Guanajuato, Hidalgo, Mi-
choacan, Estado de Mexico Poniente, Tlaxcala and Sonora,
because real data are accumulated around the expectation
value E[I]. Moreover, the geographical regions Aguas-
calientes, Baja California Sur, Campeche, Coahuila, Chihua-
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FIGURE 11. a) Probability distribution theoretical and observed. b)
Ep=Extinction probability. Hereψ = E[I] is the expected value of
the theoretical distribution andσI is the standard deviation around
the expected value.

FIGURE 12. a) Probability distribution theoretical and observed. b)
Ep=Extinction probability. Hereψ = E[I] is the expected value of
the theoretical distribution andσI is the standard deviation around
the expected value.

hua, Durango, Guerrero, Morelos, Puebla, Sinaloa, Veracruz
Norte, Zacatecas, Nayarit, and San Luis Potosi, also exhibit
a good fit with real data more scattered around its theoreti-
cal average. However all of them are still within the calcu-
lated probabilistic bands given byE[I]±σI . Similar behavior
around the expected valueE[I] is observed in the regions

FIGURE 13. a) Probability distribution theoretical and observed. b)
Ep=Extinction probability. Hereψ = E[I] is the expected value of
the theoretical distribution andσI is the standard deviation around
the expected value.

FIGURE 14. a) Probability distribution theoretical and observed. b)
Ep=Extinction probability. Hereψ = E[I] is the expected value of
the theoretical distribution andσI is the standard deviation around
the expected value

Jalisco, Quintana Roo, Tabasco, and Tamaulipas, but some
real cases are slightly out of the bandsE[I]± σI .

In contrast, the results show that the largest spread of real
cases around the theoretical averageE[I] correspond to ge-
ographical regions Chiapas, Colima, Estado de Mexico Ori-
ente, Yucatan, Baja California, Distrito Federal Norte, Nuevo
Leon, Oaxaca, Queretaro, and Veracruz Sur as well as for the
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whole country. It can seen that in some of these regions and
in the whole country, a considerable number of real cases are
outside of the theoretical standard deviation bandsE[I]±σI .

On the other hand, it is also important to point out that
in the geographical regions Puebla, Sinaloa, Colima, Jalisco,
Estado de Mexico Oriente, Nayarit, San Luis Potosi, Yucatan,
Distrito Federal Norte, Nuevo Leon, Oaxaca, Queretaro, and
Veracruz Sur an oscillatory trend is observed particularly no-
torious at the level of the entire country. The origin of these
discrepancies probably, is owing to two main reasons: 1) the
simplicity of the model that we have utilized and / or 2) inac-
curacies in the acquisition of field data. A possible solution
in order to have a better fit, could be the implementation of
a more realistic model that takes into account infected death,
vaccination, births, population migration, incubation period
of the virus, among other factors which we have neglected.
Moreover, the oscillatory behavior observed, characteristic in
large populations, suggests the necessity of introducing sea-
sonal forcing into the model. In parallel, suitably trained staff
would represent a direct improvement on the quality and re-
liability of the data.

In regard to extinction probability as a function of time,
we have identified the week for which there is a 90% of
extinction probability of the epidemic -a threshold that has
been chosen arbitrarily and could easily be changed-. Un-
der this criteria, the average extinction time for each geo-
graphical region as well as for whole country was around 13
and 30 weeks respectively. Moreover, geographical regions
in which it is observed a longer period of extinction corre-
sponding to 90% are, Colima, Nayarit, and Queretaro with 19
weeks, Jalisco and Baja California with 20 weeks and Oaxaca
with 21 weeks. Complementary, shorter periods were found
for geographical regions Quintana Roo and Tabasco with 4
weeks.

As already mentioned, these estimates values could be
improved with the implementation of a more realistic model
and a more reliable registration of infected cases. However,
a lot of the neglected processes and unrevealed variables can
be incorporated to some extent, within the standard deviation
band that we have computed. This is indeed the power of our
stochastic approach because even though there exist various
additional variables, not considered here, which modify our
epidemic evolution, we can embody all of them within the
statistical distribution of the parameters of a quite simple dy-
namic model which describes the dominant behavior of the
phenomenon.

5. Concluding remarks

We have established a stochastic model based on a simple
compartmental SIR formalism. Using this approach we have
studied the propagation of the AH1N1 influenza that took
place in Mexico in 2009. We have restricted this study to

fected cases reported by Mexican Institute for Social Security
(IMSS) in that year.

Our main conclusions are the following: the order of
magnitude estimated for the basic reproductive number of
infection R0 is within the interval (1.03 − 1.23) which is
shorther than those previously has been reported in the lit-
erature. The model that we have developed is quite general
and therefore is not only applicable to influenza viruses, but
it can also be applied to any epidemic in which the following
conditions are fulfilled: the infectious agent is a virus, there
are not demographic dynamics, the population is homoge-
neous, the seasonal period is negligible, removed individu-
als may not be susceptible again, the incubation time of the
virus is not taken into account, any two individuals have the
same probability of contacting each other, and the duration
of the epidemic is short compared with the life expectancy
of the individuals. This type of study, applied to real cases,
the first of its type in Mexico, as far as we know. In spite
of the simplicity of the model that we have implemented,
the results show clearly that the probability distribution pre-
dicted by the stochastic method for the infected individuals
is in good agreement with the distribution obtained from the
dataset provided by IMSS. This is very important because
provides a solid confidence in our formalism for working in
subsequent developments. Thus, the results of this research
may have immediate practical application because they con-
stitute a tool for taking decisions and for the optimization of
resources against possible epidemic scenarios. The small dis-
crepancies between the forecast and observed data in some
geographical regions, might have their origin in: 1) the sim-
plicity of the model implemented; in this case, a more com-
plete formulation is needed in order to provide a better de-
scription with respect to the real data. For instance, the im-
plementation of a model with seasonal forcing would be suit-
able for those regionswhich do not evidently exhibit a Gaus-
sian distribution around the average and 2) data reliability. It
is advisable to implement strategies that contribute to train
staff effectively; hence, achieving a better quality on the in-
formation gathered.

As future work, it will be interesting to formally extend
the present study by including the main health agencies that
have a presence throughout the country, such as the Mexi-
can Secretariat of Health (SSA), Institute for Social Security
and Services for State Workers (ISSSTE) and Navy Secre-
tariat (SEMAR). The data set coming from these institutions
would complement the information provided by the Mexican
Institute for Social Security (IMSS) for a nationwide study.
We can even consider other kind of epidemics, as well as
an extension to our model by means of incorporating impor-
tant variables such as: vaccination, demographic dynamics
(emigration, immigration, births, and deaths), information on
passive immunity, age and sex of the population, quarantine
period, incubation period of the infectious agent, loss of im-
munity, forcing seasonal, among other factors. It would also
be interesting to consider an interaction between individuals
beyond their immediate neighbors, that is, second and third
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neighbors. Nevertheless, we should be aware of including
only a few additional important variables in order to keep a
very simple and easy-to-use description.
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