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The fractional calculus has a very large diversification as it relates to applications from physical interpretations to experimental facts to
the modeling of new problems in the natural sciences. Within the framework of a recently published article, we obtained the fractional
derivative of the variable concentratiafiz), the effective mass of the electron dependent on the positian and the potential enerdy(z),

produced by the confinement of the electron in a semiconductor of typ8aAl . As, with which we can intuit a possible geometric and

physical interpretation. As a consequence, it is proposed the existence of three physical and geometric conservative quantities approximate
character, associated with each of these parameters of the semiconductor, which add to the many physical magnitudes that already exist in
the literature within the context of fractional variation rates. Likewise, we find that the fractional derivatives of these magnitudes, apart from
having a common critical point, manifest self-similar behavior, which could characterize them as a type of fractal associated with the type of
semiconductor structures under study.
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equations.
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1. Introduction of fractional type, which describes with great success the evo-
lution of non-conservative systems, as mentioned in the refer-
For the scientific community, it is known the great numberences [15,16]. Likewise, in related literature, we can find sev-
of works related to the application of fractional calculation in eral explicit applications of the fractional derivative in natural
the different areas of knowledge [1-10]. In parallel, theresystems; for example, in [17], a model is proposed to charac-
are efforts that continue with the objective of performing terize natural shapes such as neutral hydrogen emissions us-
physical and geometric interpretations of both the fractionalng the concept of a fractional derivative. Also, in [18], it is
derivative and the fractional integral, as shown in recent confound that an approximation can be established between the
tributions. See for example: [11-14], where are shown geeoncepts of relativistic kinetic energy and fractional kinetic
ometric and physical interpretations of Volterra-type convo-energy. The heterogeneous semiconductor structures do not
lution integrals a relationship between the fractal set of Canescape this multitude of applications of the fractional calcula-
tor and the fractional integral, the presentation of the generaion; for example, in [19-25] just some of them can be found.
conformable fractional derivative, along with its physical in- Thus, taking into account the favorable effect that the frac-
terpretation, and the geometric interpretation of the tangentional derivative can have on the different natural systems,
line angle of a polynomial with fractional derivative coeffi- our present contribution consists in the direct application of
cients, respectively. the framework developed in [14] to find, for the first time,
On the other hand, independently of the existence of dithe approximate physical and geometric effect that produces
verse physical and geometric interpretations of what the fracthe fractional derivative of the variable the concentration of a
tional derivative of the function of a physical system repre-dopant, in this case, Aluminum deposited on a substrate, the
sents, it is important to mention that its use in different sci-position-dependent effective mass adopted by the confined
ences, as well as natural (physical) sciences, can be said &ectron, and the potential energy that the electron acquires
be endorsed by the formulation of the variational principlesdue to the semiconducting medium. It should be mentioned
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that we use these magnitudes in a recent contribution [26], ™ )
where we use the structure formed by, 8l As as a semi-
conductor. Bearing this in mind, the second section contains Plx=x,,f(x=x,)]
the description of the mathematical formalism. The third sec-
tion describes the application of such formalism to the semi-
conductor parameters of the mentioned type and, finally, in fx,)
the fourth section, a brief description of the obtained results
and the consequences inferred by them are made.

2. Description of the formalism

The concept of a fractional derivative is linked to that of the T
minimum trajectory to go from a poiritzy, f(z1)) to a point
(z2, f(z2)) inaplaner, f(x), and then to get the Lagrangian
of the system. From the classical theory of differential calcu-
lus and integral calculus, we can see that for a funcﬁm, FIGURE 1. Graphic representation of the geometric and physical

there is an infinite sequence of derivatives and integrals [27]elements, described by the mathematical formalism, adopting an
order of the fractional derivative @f = 1/2.
()

d . . t tT
i »%,f(t),/f(T)dT»//f(T)deﬁa~- (1) In such a way that

The fractional calculation tries to interpolate the se- § = tan‘lm‘; = tan"{D*[b°]} = 63, (6)
guence (1) in such a way that it allows generating any order
from an arbitrary order. Several definitions have been prowhereds is the value of the angle in radians, obtained for a
posed for the fractional derivative, among which are those o¥alue ofa.
Riemann-Liouville, Ganwald-Letnikov, Weyl, Caputo, Mar- On the other hand, from the triangular area we also have
chaud, and Riesz. In particular, in the present work, we makéhatd¢ = [f(z = b)]/[\}] thenA§ = [f(z = b)]/[tan 6]
use of a definition that is generated from the fractional derivaand substitutingg in 6 we get\¢ = [f(z = b)]/[tan 6 ].

tive of Riemann-Liouville: With this information, the triangular area is expressed as
1 a\"
e () =
I'(n —a) \dz A 7
T( ) I 2tan 0y "
X /(93 — )" f(r)dr, 2 As can be seen, once the values ahda are determined,
¢ both A$ and D [b°] can be obtained.

with 0 < a < 1. Integrating by parts and making a change ~ AS mentioned in [14], the triangular aref} represents a
of variable to introduce the definition of the beta function, it Physical magnitude by itself, where it is constructed in a geo-

can be seen that for a function of the typer) = z¢, the ~ metric form. The same geometrical and physical aspects can
fractional derivative tof (z) is given by be visualized in the fractional variation rafe*[b°]. These

aspects associated with battf and D*[b] are combined
Fletl) o : . . .

T pe-a (3)  toproduce another physical and geometric magnitude, which
Fle+1-a) arises with the multiplication of both, as mentioned in the

This type of fractional derivative is used in [14], where opening paragraph of this section. This magnitude of invari-
the result ofD®[z¢] is multiplied by the result of the triangu- ant character could reflect a type of symmetry, which would
lar areaA$ formed between the tangentline(in= b, f(x =  manifest depending on the system under study. In the next
b)), the distance between the point where the tangent linéection, an application of the present formalism is realized.
crosses the axis andx = b, and the liner = b, which can
be visualized better inspecting the Fig. 1. The result of such ) o _
multiplication is a constant.e., D*[x] A} = constant. 3. Adirect application of the formalism

The triangular areal of Fig. 1 will be given by

D [z] =

Using atomic units, the concentration of the semiconductor
a_ (APLf (@ =10)] 4 is given byxz(z) = (1.4/L%)z? — (1.4/L)z + 0.35. The
! 2 ' position dependent effective mass of the electrofy) =
The value of\ is solved for the triangular area in the form (0.118/L?)2* —(0.118/L)=+-0.096 and the potential energy
N N of the electror/(z) = (0.044/L?)2z?—(0.044/L)z+0.0110
tan 0y = mf. ®)  are polynomial type functions with position dependence
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and wherel is the size of the crystalline structures. The threethis, it is possible to obtain the lengths of the basgs\S,
magnitudes associated with the semiconductor under studgndAs; of the respective triangles, which finally are replaced

have a similar algebraic structure.

in (11), (12), and (13), to obtain the values corresponding to

In applying the formalism described in the previous secthe areasi?=>°, A%=>°, and A}y ~*°.

tion tox(z), m(z), V(z), respectively, is obtained

'22} - D° [1;12’] + D% (8)

+ D*[0.096], 9)

<
—_
oo
-

- D [Lz} + D*[0.0110]. (10)

The fractional derivatives (8), (9) y (10) have a graphic
structure equivalent to that described by Fig. 1, within th

framework of the formalism raised above.
Taking into account the above, the areffs=°, A%=%0,
Ay, are given respectively by

paman _ ODlr(z = 20)]

=2 (12)
A%:ao — ()\%)[m(éz = ZO)]7 (12)
aion = OOV G =) 13

e

Once these areas are obtained, the following physical
magnitudes can be constructed

D= [z(z = 29)] - AJTO = E, (20)
D= m(z = z9)] - A @0 2 T, (21)

D=0V (2 = 29)] - AFT 2

The Egs. (20), (21) y (22) represent a type of conser-
vative magnitudes from a geometric and physical point of
view. By solving (20), (21), and (22), the constant numer-
ical values associated with the corresponding products are
obtained between the fractional derivatives and the respec-
tive areas, as can be observed through Tables I, I, and I,
wherea € [0.1000, 1.000], with jumps of 0.1000, respec-
tively. Likewise, the value ot = 75 was chosen arbitrarily
only to carry out the calculations.

Likewise, the semiconductor concentration functign)
can be visualized through Fig. 2, where the triangular areas
obey the formalism used in this article.

Each of the other physical magnitudes (effective mass
m(z) and the confining potentidl (z)) also have geomet-
ric and physical elements, which manifest themselves anal-
ogously to the concentration(z). Once obtained the nu-
meric calculations for the effective mass and the confining
potential, it was found that the constant value associated with
each of these magnitudes was the saimae, it is found that
==7T=0Q=3.83x 1072, which reflects intuitively the

To solve the areas of (11), (12), and (13), respectively, it™ —

is taken into account that
tanf® = m® = D%[x(z = 29)] = 0% = tan"' 62, (14)
(15)

tan 0% = m$ = D[V (2 = z9)] = 6% = tan~' 6%, (16)

tan 0% =m® =D%m(z = zp)] = 0% = tan~' 0%,

ture
wherem$, mg,, andmg; are the slopes that touch the curves

z(z), m(z), andV(z), forming each of the point® that are

reached to be visualized in the previous figures. Likewise,

the angle9?, 0<

xr’m

anddy; are given in radians.

On the other hand, from the same triangles with the areas

TABLE |. The fractional-ordery of the derivative, the fractional
derivative of the concentratian(z) evaluated in: = 75, the pro-
jected aread S =<0 for each of the slopes associated with each value
of o and the product between the fractional derivative of the con-
centration inz = 75 and theAS™“° respective. The numerical
value of L = 100 is adopted for the size of the crystalline struc-

given by (11), (12), and (13), we also have, respectively that

x(z = 2p)

tan 0 = === 17)

tan 02, = @’ (18)
A

tan g — LZ=20). (19)
o

Therefore, substituting the anglé$, 6%, andég, from

(14), (15), and (16), in (17), (18), and (19), respectively. With

D=0 (2)]
a=ao De=0[z(2)] Ag=o CASTO0O = F
0.1000 0.0634 0.0604 3.83E-03
0.2000 0.0475 0.0805 3.83E-03
0.3000 0.0366 0.1046 3.83E-03
0.4000 0.0287 0.1332 3.83E-03
0.5000 0.0228 0.1679 3.83E-03
0.6000 0.0182 0.2107 3.83E-03
0.7000 0.0145 0.2647 3.83E-03
0.8000 0.0115 0.3343 3.83E-03
0.9000 0.0090 0.4255 3.83E-03
1.0000 0.0070 0.5469 3.83E-03
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05~

TABLE Ill. The fractional-order of the derivative, the fractional
i derivative of the confining potential (z) evaluated in: = 75, the
projected arealy,~“° for each of the slopes associated with each
§ value of« and the product between the fractional derivative of the
* 034 concentration ire = 75 and theA(,~"° respective. The numerical
;“'{ value of L = 100 is adopted for the size of the crystalline structure.
T 024 D=0 [V (z)]
= a=ay  DTN[V(z)] AT AT —Q
1 01 0.1000 0.0020 1.9202 3.83E-03
0.2000 0.0015 2.5622 3.83E-03
0.3000 0.0012 3.3274 3.83E-03
- 0.4000 0.0009 4.2393 3.83E-03
z 0.5000 0.0007 5.3419 3.83E-03
FIGURE 2. Graphic representation of the geometric and physi-  0.6000 0.0006 6.7037 3.83E-03
cal _eleln;ents Ipf thedcor}centrati%(z) ?escrfibed_ by Itr:je _mat_he- f 0.7000 0.0005 8.4230 3.83E-03
matical formalism adopting an order of the fractional derivative o
a € [0.1000, 1.000]. 0.8000 0.0004 10.6375 3.83E-03
0.9000 0.0003 13.5397 3.83E-03
1.0000 0.0002 17.4006 3.83E-03

TABLE |l. The fractional-orderx of the derivative, the fractional

der?vative of thiffeCtive mass(z) evaluated "‘Z. = 75',”‘6 is a linked potential. Such characteristic allows us to infer

projected areal, “° for each of the slopes associated with each that (22) is continuous everywhere, as shown in [28]. The

value ofa and the product between the fractional derivative of the . A . e .

concentration ire = 75 and theA;,,”“° respective. The numerical fra::tlor;?Lcontlm_Jlty ?jf (2t2) IS vetrlfllec: betcaUS§ meoo;d;]

value of L = 100 is adopted for the size of the crystalline structure. ng € of the semiconductor (_:rys _a structure oe_s n_o ave a
discrete value spectrum. Likewise, such a continuity equa-

D= [m(z)] tion is a restriction to the wave function of the confined elec-
a=w D=0 [m(z)] Ao=e0 LASE0 =7 tron, as mentioned in [28]. Now, as we already mentioned,
0.1000 0.0458 0.0837 3 83E-03 ;[hte; cor;]gentrf\rflontans tlhe n;atshs teﬁelc'[;yelyhshov:/l a cleartre-

ationship with potential, and that relationship allows us to
0.2000 0.0281 0.1363 3.83E-03 infer that the continuity Eqs. (20) and (21) have an interpre-
0.3000 0.0171 0.2237 3.83E-03 tation similar to the continuity (22) of the potential, which is
0.4000 0.0104 0.3694 3.83E-03 grounded since:(z) € [0,0.35], m(z) € [0.0665,0.0960]
0.5000 0.0063 0.6121 3.83E-03 andV(z) € [0,2.75 x 1073]. Some fact that results inter-
0.6000 0.0038 1.0129 3.83E-03 esting can be seen in the qu_merical calculation showr_1 in_ the
0.7000 0.0023 1.6635 3.83E-03 Table_s I, 1, and II_I,_ where it is observed that the contlnun_y

equations are verified even though the order of the derivative
0.8000 0.0014 1.6900 3.83E-03 a— 1.
0.9000 0.0009 4.2452 3.83E-03 On the other hand, from these continuity equations, it can
1.0000 0.0006 6.4883 3.83E-03 be seen that, inside the semiconductor, a fractional area is de-

fined when0.1000 < « < 1.0000and only whem = 1,
the possibility of new symmetries associated with the semisuch area is transformed into one of integer degree. So, the
conductor system. Interestingly, the numerical coincidenceareas defined by the respective continuity equations are de-
of these three new invariant magnitudes could indicate thafined by an inverse relationship with the rates of fractional
the semiconductor system has a certain self-similarity, whiclvariation respective. This information could be telling us that
allows us to characterize it as a structure of fractal type. there is an area® inside the semiconductor, whesemay
Likewise, as we mentioned in [26], there is a visible re-be indicating the degree of irregularity it may have, which
lationship between:(z), m(z) andV(z), which we can ex- is quite possible and real, at least from an intuitive point of
press ag:(z) = 31.818V(z), m(z) = 0.0665 + 2.681V(z).  view. To go a little deeper into what was mentioned in the
This relationship allows us to draw some conclusions abouprevious paragraph. Let us start remembering how in [29],
the relationship between these semiconductor parameters aitds mentioned that a semiconductor can be deposited on a
the quantum formalism that describes them, that is if we taksubstrate, varying its concentration in one direction partic-
into account that the Hamiltonian we studied in [26] wasular growth, which in turn will cause an effective mass of
independent of time, from there it was. You can see that ithe electron that will be dependent on its position within
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the crystal structure. As you can see, the fact of depositEuclidean-like cross-sectional areg=!. Later, in times

ing a semiconductor in a substrate in one direction, involves > t, the concentration of the semiconductor experiences
an interaction between a quantity of semiconductor througlan anisotropic evolutiod*<![z(z)]Va € [0.9000, 0.1000]

an area unit, that is, there is a correspondence betweentlrough a non-integer dimension Hausdorff cross-sectional
rate of change of concentratidn®=![z(z)] and the cross- area A*<'Va € [0.9000,0.1000], wherel, is the initial
sectional areal®=! where such rate of increase is happen-length that corresponds to the magnitudéof=! andly+ Al

ing. On the other hand, to guarantee compliance with théhe magnitude of>*<! corresponding tex = 0.9000 and so
energy conservation, we must take into account that the sulon up toaw = 0.1000. Therefore, the value ok provides
strate has negligible losses of the semiconductor and whoses with information on the degree of anisotropy that the rate
correspondence happens through an inverse ratio relationship variation of the concentratian(z) and the cross-sectional
like A>=! oc 1/D*=![z(z)], of such that this proportionality area involved in the direction in which the concentration, with
implies the relatiord®=! = =/D>=![z(z)], whose numeri- anisotropy being null when = 1.000 and anisotropy not
cal value can be seen in Table I. Likewise, we can notice thatull when0.1000 < « < 1.000. This same interpretative
such cross-sectional argi@=" obeys the Euclidean standard analysis of (20) can be applied to (21) and (22) for the effec-
geometry and is due to an isotropic growth rate of concentrative mass of the electron and the confining potential, respec-
tion D*=1[x(z)]. However, it is very interesting to observe tively.

that whena < 1, you haveA®<! = =/D><1[z(z)], that is

to say, the same quantiy preserved, only now you have a 4 - cyjiical points in the fractional derivative of
cross-sectional area obeying the Hausdorff fractional geome-

try. This means, that the area cross-sectléri! has a set of x(z), m(z), and V(Z)

degrees of irregularity, Wh,iCh correspond biunivocglly with According to [14], the fractional derivative of polynomial-
the set of variation rates with equivalent degrees of |rregular,fype functions shows critical points when the base variable

ity or anisotropy in the: direction, as expressed below: and the largest exponent of the polynomial coincide. Then,

VD*<z(z)] € [0.1000, 0.9000]3 to visualize some critical points in the fractional derivative of
- the concentration, effective mass of the electron, and poten-
A®=" € [0.1000, 0.9000] (23)  tial energy of the system, it is necessary to pose the corre-

with 0.1000 jumps. Such an interpretation can be visualize§PONding equations of the formalism for each of the magni-
through Fig. 3. tudes. However, as all three have the same algebraic struc-

From the previous Fig. 3, you can see the visualizatiorfUre: We focus only on the concentratio(x), as shown be-

of the variation rate of(z), with dependence on the degree ow. . o .
o of the derivative. In the initial time = £o, the concentra- If the fractional derivative of the concentration x(z) of the

tion undergoes an isotropic evolutid*="[xz(z)] acrossa  Semiconductor under study is given by

x(z)

1.4
- D~ [Lzﬁ—l] + D [0.352°7%] . (24)

A% E For z = B = 2, we must then have the possibility of
"**I_,‘-- . t>to finding critical points. We examine this inspection in a next
T. ................. 4 ‘* = Wa.y
8Da(ﬂaﬂa Oé) — i E F(ﬁ + 1) ﬁ(ﬂ—a)
lo+ Al L Do dax 9o\ \L? ) T(B+1—a)
- () e
o ] w0 L) tG-a)
YIS B
T i + (0.35)%(,@ - 2)“—2—00} =0. (25)
lo A®=! | pe=l B-1-aq)
If 8 =2, (12) is reduced only to the first two terms
—_— . L BB D[ (LAY T
o 7 i Oa O L2)T(B+1—«)
FIGURE 3. Visualization of the variation rate af(z), involving (14 I'(B) (8- pe-1-al _ g (26)
an isotropic and anisotropic evolution across cross-sectional areas L )T(B-a) o

Euclidean and Hausdorff, respectively.
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TABLE IV. Critical points of the fractional derivative of the con- o s
centrationz(z) evaluated in: = 2, adopting the numerical value ap =n Z(c(k) -1+ Z(g(%) —1)
of L = 100 for the size of the crystalline structure. k=2 k=0
Ao a for n=2,..,9. (30)
[0.1000, 1.000] 0.5387 Now, if we take into account that these series that involve
[2.1000, 3.000] 2.4956 the Zeta function of Riemann are produced at the same time
[3.1000, 4.000] 3.5729 by the generating function,
[4.1000, 5.000] 4.6105 o0 1 ©)
[5.1000, 6.000] 5.6352 D ekt = =01 —y) —y
[6.1000, 7.000] 6.6532 . b= _
[7.1000, 8.000] 7 6671 _bemg'y the cons_tr_ant of Euler—Magcherom, [30] then we could
infer that the critical points predicted by (26) can be repre-
[8-1000,9.000] 8.6784 sented by a generating function like the one shown below
[9.1000, 10.00] 9.6877 -
. . . (k)" = —pO(1 = 2) — . (31)
Solving the partial derivative (13), we obtain the next equa- P
tion . o S
This coincidence allows us to strengthen the intuitive
(1.4 x 10~4)22=9T7(3)[— log(2) + v (3 — a)] character that we have towards the self-similar behavior of
T'(3—a) the fractional derivatives af(z), m(z), andV (z).
0.014)10-2I1(2)() (2 — .
_ (0.014) @2 —a) _, 27) 5. Conclusions

I'2-a)

_ . . « ...__.In the present work, we carried out an analysis of the frac-
W:iﬁtha!’s %V%E?G?:;Lfguglogoﬁor g:ﬁn::?l?:(l;?i(;?IIEd CrItICaltionf';ll derivative applied to thel goncentrati_m(lz), the.ef—
P y Wh Y9 _ ) fective massn(z), and the confining potentidf'(z), which

The solution of (26) provides us with the existence of the, .o magnitudes associated with a semiconductor of type
critical pointa = 0.5, which means that in the interval of Al,Ga_,As, studied by us in a previous work. We believe
a € [0.1000, 1.000], the fractional derivative of (z) reaches 4t e have achieved, at least approximately, an interpreta-
a maximum ina iloégoand from there it starts to decrease yjo nossible with the direct application of a formalism that
until it reachesD®="""[z:(z)]. The equations analogous {0 \;ses the fractional derivative of polynomial-like functions.
(26) can be obtained far(z), andV(2) and, as a conse- o the results obtained in the present contribution, we can
guence, they will also have the same critical paeint 0.5, state that the new constant magnitudes folndy, and <2,
maintaining a very parallel behavior in its growth ratios andgp o\ a self-similar process by visualizing the evolution of
fractional errease within the crystalling sizg of the semicopéach of the fractional variation rates over the respective frac-
ductor d_el|m|ted in the prese_nt work. Likewise, the NUMeri-yonal areas (Egs. (5), (6) and (7)), from an initial fractional-
cal solutions of (26), for the intervals @f < a < 4, show g qer . 10 a final onea;, in the space of the spatial coor-
critical values at the midpoint of the respective intemal,  yinate,. Also, such an evolution could be perceived, in an
while for the intervals oft < a < 10, such critical points are .y, jitive way, as the description of “fractional flows through
displaced from the midpointin an amountefi.1, as canbe g5 fional areas”. This result and the intuitive approach with
seen in Table IV, _ _ which we approach it leads us to the equation of continu-

Something interesting that we can also observe, it has tQy inspected commonly in university textbooks, which has
do with the numerical coincidence shown between the criti similar structure but with the difference that the variational
cal points shown in Table IV and specific values that involverates are non-fractional variational rates. In the same way, we
the Zeta function of Riemanq(k) given by the next set of - show, numerically, that the concentratiofr) really behaves

equations, respectively, as an invariable quantity, verifying the analytical result. The
o same can be verified for(z) andV (z). We also find that
a; = 0.5 = Z(_l)k(g(k) —1), (28) the fractional derivative of the concentration exhibits a set of

critical points, which depend on the interval associated with
the fractional order of the derivative.

y, mZ(g(k‘) 1)+ Z(_l)k(g(k) —1) Finally, it is interesting to reflect on the self-similar be-
k=2 k=2

k=2

havior in our system, within a given interval for the values
of the order of the fractional derivative, knowing that self-
for m=2,3 (29) similarity is a characteristic feature of a fractal, as mentioned
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