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The fractional calculus has a very large diversification as it relates to applications from physical interpretations to experimental facts to
the modeling of new problems in the natural sciences. Within the framework of a recently published article, we obtained the fractional
derivative of the variable concentrationx(z), the effective mass of the electron dependent on the positionm(z) and the potential energyV (z),
produced by the confinement of the electron in a semiconductor of type AlxGa1−xAs, with which we can intuit a possible geometric and
physical interpretation. As a consequence, it is proposed the existence of three physical and geometric conservative quantities approximate
character, associated with each of these parameters of the semiconductor, which add to the many physical magnitudes that already exist in
the literature within the context of fractional variation rates. Likewise, we find that the fractional derivatives of these magnitudes, apart from
having a common critical point, manifest self-similar behavior, which could characterize them as a type of fractal associated with the type of
semiconductor structures under study.
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1. Introduction

For the scientific community, it is known the great number
of works related to the application of fractional calculation in
the different areas of knowledge [1-10]. In parallel, there
are efforts that continue with the objective of performing
physical and geometric interpretations of both the fractional
derivative and the fractional integral, as shown in recent con-
tributions. See for example: [11-14], where are shown ge-
ometric and physical interpretations of Volterra-type convo-
lution integrals a relationship between the fractal set of Can-
tor and the fractional integral, the presentation of the general
conformable fractional derivative, along with its physical in-
terpretation, and the geometric interpretation of the tangent
line angle of a polynomial with fractional derivative coeffi-
cients, respectively.

On the other hand, independently of the existence of di-
verse physical and geometric interpretations of what the frac-
tional derivative of the function of a physical system repre-
sents, it is important to mention that its use in different sci-
ences, as well as natural (physical) sciences, can be said to
be endorsed by the formulation of the variational principles

of fractional type, which describes with great success the evo-
lution of non-conservative systems, as mentioned in the refer-
ences [15,16]. Likewise, in related literature, we can find sev-
eral explicit applications of the fractional derivative in natural
systems; for example, in [17], a model is proposed to charac-
terize natural shapes such as neutral hydrogen emissions us-
ing the concept of a fractional derivative. Also, in [18], it is
found that an approximation can be established between the
concepts of relativistic kinetic energy and fractional kinetic
energy. The heterogeneous semiconductor structures do not
escape this multitude of applications of the fractional calcula-
tion; for example, in [19-25] just some of them can be found.
Thus, taking into account the favorable effect that the frac-
tional derivative can have on the different natural systems,
our present contribution consists in the direct application of
the framework developed in [14] to find, for the first time,
the approximate physical and geometric effect that produces
the fractional derivative of the variable the concentration of a
dopant, in this case, Aluminum deposited on a substrate, the
position-dependent effective mass adopted by the confined
electron, and the potential energy that the electron acquires
due to the semiconducting medium. It should be mentioned
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that we use these magnitudes in a recent contribution [26],
where we use the structure formed by AlxGa1−xAs as a semi-
conductor. Bearing this in mind, the second section contains
the description of the mathematical formalism. The third sec-
tion describes the application of such formalism to the semi-
conductor parameters of the mentioned type and, finally, in
the fourth section, a brief description of the obtained results
and the consequences inferred by them are made.

2. Description of the formalism

The concept of a fractional derivative is linked to that of the
minimum trajectory to go from a point(x1, f(x1)) to a point
(x2, f(x2)) in a planex, f(x), and then to get the Lagrangian
of the system. From the classical theory of differential calcu-
lus and integral calculus, we can see that for a functionf(x),
there is an infinite sequence of derivatives and integrals [27]

. . .
d2f(t)

dt2
,
df(t)
dt

, f(t),

t∫

a

f(τ)dτ,

t∫

a

τ1∫

a

f(τ)dτdτ1, . . . (1)

The fractional calculation tries to interpolate the se-
quence (1) in such a way that it allows generating any order
from an arbitrary order. Several definitions have been pro-
posed for the fractional derivative, among which are those of
Riemann-Liouville, Gr̈unwald-Letnikov, Weyl, Caputo, Mar-
chaud, and Riesz. In particular, in the present work, we make
use of a definition that is generated from the fractional deriva-
tive of Riemann-Liouville:

cD
α
x f(x) =

1
Γ(n− α)

(
d

dx

)n

×
x∫

c

(x− τ)n−α−1f(τ)dτ, (2)

with 0 < α < 1. Integrating by parts and making a change
of variable to introduce the definition of the beta function, it
can be seen that for a function of the typef(x) = xc, the
fractional derivative tof(x) is given by

Dα[xc] =
Γ(c + 1)

Γ(c + 1− α)
xc−α. (3)

This type of fractional derivative is used in [14], where
the result ofDα[xc] is multiplied by the result of the triangu-
lar areaAα

f formed between the tangent line in(x = b, f(x =
b)), the distance between the point where the tangent line
crosses the axisx andx = b, and the linex = b, which can
be visualized better inspecting the Fig. 1. The result of such
multiplication is a constant,i.e., Dα[xc]Aα

f
∼= constant.

The triangular areaAα
f of Fig. 1 will be given by

Aα
f =

(λα
f )[f(x = b)]

2
. (4)

The value ofλ is solved for the triangular area in the form

tan θα
f = mα

f . (5)

FIGURE 1. Graphic representation of the geometric and physical
elements, described by the mathematical formalism, adopting an
order of the fractional derivative ofα = 1/2.

In such a way that

θα
f = tan−1 mα

f = tan−1{Dα[bc]} = θα
0 , (6)

whereθα
0 is the value of the angle in radians, obtained for a

value ofα.
On the other hand, from the triangular area we also have

thatθα
f = [f(x = b)]/[λα

f ] thenλα
f = [f(x = b)]/[tan θα]

and substitutingθα
0 in θα we getλα

f = [f(x = b)]/[tan θα
0 ].

With this information, the triangular area is expressed as

Aα
f

[f(x = b)]2

2 tan θα
0

. (7)

As can be seen, once the values ofb andα are determined,
bothAα

f andDα[bc] can be obtained.
As mentioned in [14], the triangular areaAα

f represents a
physical magnitude by itself, where it is constructed in a geo-
metric form. The same geometrical and physical aspects can
be visualized in the fractional variation rateDα[bc]. These
aspects associated with bothAα

f andDα[bc] are combined
to produce another physical and geometric magnitude, which
arises with the multiplication of both, as mentioned in the
opening paragraph of this section. This magnitude of invari-
ant character could reflect a type of symmetry, which would
manifest depending on the system under study. In the next
section, an application of the present formalism is realized.

3. A direct application of the formalism

Using atomic units, the concentration of the semiconductor
is given byx(z) = (1.4/L2)z2 − (1.4/L)z + 0.35. The
position dependent effective mass of the electronm(z) =
(0.118/L2)z2−(0.118/L)z+0.096 and the potential energy
of the electronV (z) = (0.044/L2)z2−(0.044/L)z+0.0110
are polynomial type functions with position dependencez
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and whereL is the size of the crystalline structures. The three
magnitudes associated with the semiconductor under study
have a similar algebraic structure.

In applying the formalism described in the previous sec-
tion tox(z), m(z), V (z), respectively, is obtained

Dα[x(z)] = Dα

[
1.4
L2

z2

]
−Dα

[
1.4
L

z

]
+ Dα, (8)

Dα[m(z)] = Dα

[
0.118
L2

z2

]

−Dα

[
0.118

L
z

]
+ Dα[0.096], (9)

Dα[x(z)] = Dα

[
0.044
L2

z2

]

−Dα

[
0.044

L
z

]
+ Dα[0.0110]. (10)

The fractional derivatives (8), (9) y (10) have a graphic
structure equivalent to that described by Fig. 1, within the
framework of the formalism raised above.

Taking into account the above, the areasAα=α0
x , Aα=α0

m ,
Aα=α0

V , are given respectively by

Aα=α0
x =

(λα
x)[x(z = z0)]

2
, (11)

Aα=α0
m =

(λα
m)[m(z = z0)]

2
, (12)

Aα=α0
V =

(λα
V )[V (z = z0)]

2
, (13)

To solve the areas of (11), (12), and (13), respectively, it
is taken into account that

tan θα
x = mα

x = Dα[x(z = z0)] ⇒ θα
x = tan−1 θα

x , (14)

tan θα
m=mα

m=Dα[m(z = z0)] ⇒ θα
m = tan−1 θα

m, (15)

tan θα
V = mα

V = Dα[V (z = z0)] ⇒ θα
V = tan−1 θα

V , (16)

wheremα
x , mα

m, andmα
V are the slopes that touch the curves

x(z), m(z), andV (z), forming each of the pointsP that are
reached to be visualized in the previous figures. Likewise,
the anglesθα

x , θα
m andθα

V are given in radians.
On the other hand, from the same triangles with the areas

given by (11), (12), and (13), we also have, respectively that

tan θα
x =

x(z = z0)
λα

x

, (17)

tan θα
m =

m(z = z0)
λα

m

, (18)

tan θα
V =

V (z = z0)
λα

V

. (19)

Therefore, substituting the anglesθα
x , θα

m, andθα
V from

(14), (15), and (16), in (17), (18), and (19), respectively. With

this, it is possible to obtain the lengths of the basesλα
x , λα

m

andλα
V of the respective triangles, which finally are replaced

in (11), (12), and (13), to obtain the values corresponding to
the areasAα=α0

x , Aα=α0
m , andAα=α0

V .
Once these areas are obtained, the following physical

magnitudes can be constructed

Dα=α0 [x(z = z0)] ·Aα=α0
x

∼= Ξ, (20)

Dα=α0 [m(z = z0)] ·Aα=α0
m

∼= Υ, (21)

Dα=α0 [V (z = z0)] ·Aα=α0
V

∼= Ω, (22)

The Eqs. (20), (21) y (22) represent a type of conser-
vative magnitudes from a geometric and physical point of
view. By solving (20), (21), and (22), the constant numer-
ical values associated with the corresponding products are
obtained between the fractional derivatives and the respec-
tive areas, as can be observed through Tables I, II, and III,
whereα ∈ [0.1000, 1.000], with jumps of 0.1000, respec-
tively. Likewise, the value ofz = 75 was chosen arbitrarily
only to carry out the calculations.

Likewise, the semiconductor concentration functionx(z)
can be visualized through Fig. 2, where the triangular areas
obey the formalism used in this article.

Each of the other physical magnitudes (effective mass
m(z) and the confining potentialV (z)) also have geomet-
ric and physical elements, which manifest themselves anal-
ogously to the concentrationx(z). Once obtained the nu-
meric calculations for the effective mass and the confining
potential, it was found that the constant value associated with
each of these magnitudes was the same,i.e., it is found that
Ξ = Υ = Ω = 3.83× 10−3, which reflects intuitively the

TABLE I. The fractional-orderα of the derivative, the fractional
derivative of the concentrationx(z) evaluated inz = 75, the pro-
jected areaAα=α0

x for each of the slopes associated with each value
of α and the product between the fractional derivative of the con-
centration inz = 75 and theAα=α0

x respective. The numerical
value ofL = 100 is adopted for the size of the crystalline struc-
ture.

Dα=α0 [x(z)]

α = α0 Dα=α0 [x(z)] Aα=α0
x ·Aα=α0

x = Ξ

0.1000 0.0634 0.0604 3.83E-03

0.2000 0.0475 0.0805 3.83E-03

0.3000 0.0366 0.1046 3.83E-03

0.4000 0.0287 0.1332 3.83E-03

0.5000 0.0228 0.1679 3.83E-03

0.6000 0.0182 0.2107 3.83E-03

0.7000 0.0145 0.2647 3.83E-03

0.8000 0.0115 0.3343 3.83E-03

0.9000 0.0090 0.4255 3.83E-03

1.0000 0.0070 0.5469 3.83E-03
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FIGURE 2. Graphic representation of the geometric and physi-
cal elements of the concentrationx(z) described by the mathe-
matical formalism adopting an order of the fractional derivative of
α ∈ [0.1000, 1.000].

TABLE II. The fractional-orderα of the derivative, the fractional
derivative of the effective massm(z) evaluated inz = 75, the
projected areaAα=α0

m for each of the slopes associated with each
value ofα and the product between the fractional derivative of the
concentration inz = 75 and theAα=α0

m respective. The numerical
value ofL = 100 is adopted for the size of the crystalline structure.

Dα=α0 [m(z)]

α = α0 Dα=α0 [m(z)] Aα=α0
m ·Aα=α0

m = Υ

0.1000 0.0458 0.0837 3.83E-03

0.2000 0.0281 0.1363 3.83E-03

0.3000 0.0171 0.2237 3.83E-03

0.4000 0.0104 0.3694 3.83E-03

0.5000 0.0063 0.6121 3.83E-03

0.6000 0.0038 1.0129 3.83E-03

0.7000 0.0023 1.6635 3.83E-03

0.8000 0.0014 1.6900 3.83E-03

0.9000 0.0009 4.2452 3.83E-03

1.0000 0.0006 6.4883 3.83E-03

the possibility of new symmetries associated with the semi-
conductor system. Interestingly, the numerical coincidence
of these three new invariant magnitudes could indicate that
the semiconductor system has a certain self-similarity, which
allows us to characterize it as a structure of fractal type.

Likewise, as we mentioned in [26], there is a visible re-
lationship betweenx(z), m(z) andV (z), which we can ex-
press asx(z) = 31.818V (z), m(z) = 0.0665 + 2.681V (z).
This relationship allows us to draw some conclusions about
the relationship between these semiconductor parameters and
the quantum formalism that describes them, that is if we take
into account that the Hamiltonian we studied in [26] was
independent of time, from there it was. You can see that it

TABLE III. The fractional-orderα of the derivative, the fractional
derivative of the confining potentialV (z) evaluated inz = 75, the
projected areaAα=α0

V for each of the slopes associated with each
value ofα and the product between the fractional derivative of the
concentration inz = 75 and theAα=α0

V respective. The numerical
value ofL = 100 is adopted for the size of the crystalline structure.

Dα=α0 [V (z)]

α = α0 Dα=α0 [V (z)] Aα=α0
V ·Aα=α0

V = Ω

0.1000 0.0020 1.9202 3.83E-03

0.2000 0.0015 2.5622 3.83E-03

0.3000 0.0012 3.3274 3.83E-03

0.4000 0.0009 4.2393 3.83E-03

0.5000 0.0007 5.3419 3.83E-03

0.6000 0.0006 6.7037 3.83E-03

0.7000 0.0005 8.4230 3.83E-03

0.8000 0.0004 10.6375 3.83E-03

0.9000 0.0003 13.5397 3.83E-03

1.0000 0.0002 17.4006 3.83E-03

is a linked potential. Such characteristic allows us to infer
that (22) is continuous everywhere, as shown in [28]. The
fractional continuity of (22) is verified because thez coordi-
nate of the semiconductor crystal structure does not have a
discrete value spectrum. Likewise, such a continuity equa-
tion is a restriction to the wave function of the confined elec-
tron, as mentioned in [28]. Now, as we already mentioned,
the concentration and the mass effectively show a clear re-
lationship with potential, and that relationship allows us to
infer that the continuity Eqs. (20) and (21) have an interpre-
tation similar to the continuity (22) of the potential, which is
grounded sincex(z) ∈ [0, 0.35], m(z) ∈ [0.0665, 0.0960]
andV (z) ∈ [0, 2.75 × 10−3]. Some fact that results inter-
esting can be seen in the numerical calculation shown in the
Tables I, II, and III, where it is observed that the continuity
equations are verified even though the order of the derivative
α → 1.

On the other hand, from these continuity equations, it can
be seen that, inside the semiconductor, a fractional area is de-
fined when0.1000 ≤ α < 1.0000and only whenα = 1,
such area is transformed into one of integer degree. So, the
areas defined by the respective continuity equations are de-
fined by an inverse relationship with the rates of fractional
variation respective. This information could be telling us that
there is an areaAα inside the semiconductor, whereα may
be indicating the degree of irregularity it may have, which
is quite possible and real, at least from an intuitive point of
view. To go a little deeper into what was mentioned in the
previous paragraph. Let us start remembering how in [29],
it is mentioned that a semiconductor can be deposited on a
substrate, varying its concentration in one direction partic-
ular growth, which in turn will cause an effective mass of
the electron that will be dependent on its position within

Rev. Mex. F́ıs. 66 (6) 874–880
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the crystal structure. As you can see, the fact of deposit-
ing a semiconductor in a substrate in one direction, involves
an interaction between a quantity of semiconductor through
an area unit, that is, there is a correspondence between a
rate of change of concentrationDα=1[x(z)] and the cross-
sectional areaAα=1 where such rate of increase is happen-
ing. On the other hand, to guarantee compliance with the
energy conservation, we must take into account that the sub-
strate has negligible losses of the semiconductor and whose
correspondence happens through an inverse ratio relationship
like Aα=1 ∝ 1/Dα=1[x(z)], of such that this proportionality
implies the relationAα=1 = Ξ/Dα=1[x(z)], whose numeri-
cal value can be seen in Table I. Likewise, we can notice that
such cross-sectional areaAα=1 obeys the Euclidean standard
geometry and is due to an isotropic growth rate of concentra-
tion Dα=1[x(z)]. However, it is very interesting to observe
that whenα < 1, you haveAα<1 = Ξ/Dα<1[x(z)], that is
to say, the same quantityΞ preserved, only now you have a
cross-sectional area obeying the Hausdorff fractional geome-
try. This means, that the area cross-sectionAα<1 has a set of
degrees of irregularity, which correspond biunivocally with
the set of variation rates with equivalent degrees of irregular-
ity or anisotropy in thez direction, as expressed below:

∀Dα<1[x(z)] ∈ [0.1000, 0.9000]∃
Aα<1 ∈ [0.1000, 0.9000] (23)

with 0.1000 jumps. Such an interpretation can be visualized
through Fig. 3.

From the previous Fig. 3, you can see the visualization
of the variation rate ofx(z), with dependence on the degree
α of the derivative. In the initial timet = t0, the concentra-
tion undergoes an isotropic evolutionDα=1[x(z)] across a

FIGURE 3. Visualization of the variation rate ofx(z), involving
an isotropic and anisotropic evolution across cross-sectional areas
Euclidean and Hausdorff, respectively.

Euclidean-like cross-sectional areaAα=1. Later, in times
t > t0, the concentration of the semiconductor experiences
an anisotropic evolutionDα<1[x(z)]∀α ∈ [0.9000, 0.1000]
through a non-integer dimension Hausdorff cross-sectional
areaAα<1∀α ∈ [0.9000, 0.1000], where l0 is the initial
length that corresponds to the magnitude ofDα=1 andl0+∆l
the magnitude ofDα<1 corresponding toα = 0.9000 and so
on up toα = 0.1000. Therefore, the value ofα provides
us with information on the degree of anisotropy that the rate
of variation of the concentrationx(z) and the cross-sectional
area involved in the direction in which the concentration, with
anisotropy being null whenα = 1.000 and anisotropy not
null when0.1000 ≤ α < 1.000. This same interpretative
analysis of (20) can be applied to (21) and (22) for the effec-
tive mass of the electron and the confining potential, respec-
tively.

4. Critical points in the fractional derivative of
x(z), m(z), and V (z)

According to [14], the fractional derivative of polynomial-
type functions shows critical points when the base variable
and the largest exponent of the polynomial coincide. Then,
to visualize some critical points in the fractional derivative of
the concentration, effective mass of the electron, and poten-
tial energy of the system, it is necessary to pose the corre-
sponding equations of the formalism for each of the magni-
tudes. However, as all three have the same algebraic struc-
ture, we focus only on the concentrationx(z), as shown be-
low.

If the fractional derivative of the concentration x(z) of the
semiconductor under study is given by

Dα(z, β, α) = Dα

[
1.4
L2

zβ

]

−Dα

[
1.4
L

zβ−1

]
+ Dα

[
0.35zβ−2

]
. (24)

For z = β = 2, we must then have the possibility of
finding critical points. We examine this inspection in a next
way

∂Dα(β, β, α)
∂α

=
∂

∂α

{(
1.4
L2

)
Γ(β + 1)

Γ(β + 1− α)
β(β−α)

−
(

1.4
L

)
Γ(β)

Γ(β − α)
β(β−1)(β−1−α)

+ (0.35)
Γ(β − 1)

Γ(β − 1− α)
(β − 2)(β−2−α)

}
= 0. (25)

If β = 2, (12) is reduced only to the first two terms

∂Dα(β, β, α)
∂α

=
∂

∂α

{(
1.4
L2

)
Γ(β + 1)

Γ(β + 1− α)
β(β−α)

−
(

1.4
L

)
Γ(β)

Γ(β − α)
(β − 1)(β−1−α)

}
= 0. (26)
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TABLE IV. Critical points of the fractional derivative of the con-
centrationx(z) evaluated inz = 2, adopting the numerical value
of L = 100 for the size of the crystalline structure.

∆α α

[0.1000, 1.000] 0.5387

[2.1000, 3.000] 2.4956

[3.1000, 4.000] 3.5729

[4.1000, 5.000] 4.6105

[5.1000, 6.000] 5.6352

[6.1000, 7.000] 6.6532

[7.1000, 8.000] 7.6671

[8.1000, 9.000] 8.6784

[9.1000, 10.00] 9.6877

Solving the partial derivative (13), we obtain the next equa-
tion

(1.4× 10−4)2(2−α)Γ(3)[− log(2) + ψ(0)(3− α)]
Γ(3− α)

− (0.014)1(1−α)Γ(2)ψ(0)(2− α)
Γ(2− α)

= 0, (27)

which is a general equation for the variable called “critical
pointα” y whereψ(0) is the Polygamma function.

The solution of (26) provides us with the existence of the
critical point α = 0.5, which means that in the interval of
α ∈ [0.1000, 1.000], the fractional derivative ofx(z) reaches
a maximum inα = 0.5 and from there it starts to decrease
until it reachesDα=1.000[x(z)]. The equations analogous to
(26) can be obtained form(z), andV (z) and, as a conse-
quence, they will also have the same critical pointα = 0.5,
maintaining a very parallel behavior in its growth ratios and
fractional decrease within the crystalline size of the semicon-
ductor delimited in the present work. Likewise, the numeri-
cal solutions of (26), for the intervals of2 < α ≤ 4, show
critical values at the midpoint of the respective interval∆α,
while for the intervals of4 < α ≤ 10, such critical points are
displaced from the midpoint in an amount of≈ 0.1, as can be
seen in Table IV.

Something interesting that we can also observe, it has to
do with the numerical coincidence shown between the criti-
cal points shown in Table IV and specific values that involve
the Zeta function of Riemannς(k) given by the next set of
equations, respectively,

α1 = 0.5 =
∞∑

k=2

(−1)k(ς(k)− 1), (28)

αm
∼= m

∞∑

k=2

(ς(k)− 1) +
∞∑

k=2

(−1)k(ς(k)− 1)

for m = 2, 3 (29)

αn
∼= n

∞∑

k=2

(ς(k)− 1) +
∞∑

k=0

(ς(2k)− 1)

for n = 2, .., 9. (30)

Now, if we take into account that these series that involve
the Zeta function of Riemann are produced at the same time
by the generating function,

∞∑

k=2

ς(k)yk−1 = −ψ(0)(1− y)− γ

beingγ the constant of Euler-Mascheroni, [30] then we could
infer that the critical points predicted by (26) can be repre-
sented by a generating function like the one shown below

∞∑

k=2

ς(k)zk−1 = −ψ(0)(1− z)− γ. (31)

This coincidence allows us to strengthen the intuitive
character that we have towards the self-similar behavior of
the fractional derivatives ofx(z), m(z), andV (z).

5. Conclusions

In the present work, we carried out an analysis of the frac-
tional derivative applied to the concentrationx(z), the ef-
fective massm(z), and the confining potentialV (z), which
are magnitudes associated with a semiconductor of type
AlxGa1−xAs, studied by us in a previous work. We believe
that we have achieved, at least approximately, an interpreta-
tion possible with the direct application of a formalism that
uses the fractional derivative of polynomial-like functions.
From the results obtained in the present contribution, we can
state that the new constant magnitudes foundΞ, γ, andΩ,
show a self-similar process by visualizing the evolution of
each of the fractional variation rates over the respective frac-
tional areas (Eqs. (5), (6) and (7)), from an initial fractional-
orderαi to a final oneαi, in the space of the spatial coor-
dinatez. Also, such an evolution could be perceived, in an
intuitive way, as the description of “fractional flows through
fractional areas”. This result and the intuitive approach with
which we approach it leads us to the equation of continu-
ity inspected commonly in university textbooks, which has
a similar structure but with the difference that the variational
rates are non-fractional variational rates. In the same way, we
show, numerically, that the concentrationx(z) really behaves
as an invariable quantity, verifying the analytical result. The
same can be verified form(z) andV (z). We also find that
the fractional derivative of the concentration exhibits a set of
critical points, which depend on the interval associated with
the fractional order of the derivative.

Finally, it is interesting to reflect on the self-similar be-
havior in our system, within a given interval for the values
of the order of the fractional derivative, knowing that self-
similarity is a characteristic feature of a fractal, as mentioned
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above. This characteristic, together with the property of scale
invariance and the symmetry that could be associated with
each of the new magnitudes found for the semiconducting
system under study, it could be studied more deeply in a fu-
ture contribution.

It should be noted that the applications and topics re-
viewed, such as fractional calculation, fractals, and the Zeta
function of Riemann, are vitally important for a great diver-
sity of contemporary scientific research.
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