https://rmf.smf.mx/ojs/index.php/rmf/issue/feed Revista Mexicana de Física 2025-07-01T01:03:48+00:00 Alfredo Raya Montaño rmf@ciencias.unam.mx Open Journal Systems <p><strong><em>Revista Mexicana de Física</em></strong> (Rev. Mex. Fis.) is a bimonthly publication of Socie­dad Mexicana de Física, A. C. Publishes original papers of interest to the physical science community. Language may be English or Spanish, however, given the nature of our readership, English is recommended. The fundamental purpose of the Revista Mexicana de Física is to publish the research work in physics carried out by the institutions of Mexico and Latin America</p> https://rmf.smf.mx/ojs/index.php/rmf/article/view/7631 Numerical study on the fluid-structure interaction and species transport in a piezoresistive microcantilever-based biosensor 2024-12-18T16:50:19+00:00 James Pérez-Barrera james.perezb@comunidad.unam.mx Saúl Piedra González saul.piedra@cidesi.edu.mx Daniela Díaz-Alonso daniela.diaz@cidesi.edu.mx David Fernández-Benavides david.fernandez@cidesi.edu.mx <p>In this study, we present numerical simulations of the flow-induced deflection of a microcantilever beam and the distribution of a passive analyte inside a microfluidic cell for a piezoresistive biosensor. The numerical implementation was validated using semi-analytical models and previously reported experimental measurements. The primary objective of the study is to understand the impact of the flow on the cantilever's behavior and use this knowledge in the decision-making process for a microfluidic cell design for a piezoresistive biosensor. To accomplish this, the results for three different inlet/outlet configurations allow us to describe the dynamics of the fluid-structure interaction, finding that, for small times, the flow is symmetrical around the microcantilever. As time passes, two vortices surround the microcantilever, resulting in an asymmetric flow distribution. Throughout the entire range of analyzed inlet flow rates, it is evident that the inlet/outlet configuration significantly influences the deflection and stress sustained by the cantilever. Similarly, these configurations affect how the concentration of an analyte sample distributes on the detecting surface. The in-depth understanding of the flow dynamics within the microfluidic cell and its effect on the cantilever, as provided by the simulations, can be used to propose design recommendations aimed at reducing the noise due to the flow, ultimately achieving high sensitivity in these types of devices.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 J. Pérez-Barrera, S. Piedra, D. Díaz Alonso, D. A. Fernández-Benavides https://rmf.smf.mx/ojs/index.php/rmf/article/view/7908 Plain convolution encryption as an alternative to overcoming the limitations of synchronization-based methods 2025-02-22T17:27:07+00:00 Flavio Rosales-Infante flavio.rosales.infante@umich.mx M. L. Romero-Amezcua maria.romero.amezcua@umich.mx Iván Álvarez-Rios ivan.alvarez@umich.mx Francisco S. Guzman francisco.s.guzman@umich.mx <p>This paper revisits the send/retrieve message process using synchronization of the Lorenz system with a monochromatic message. We analyze how the fidelity of the retrieved signal depends on the message frequency and demonstrate message hacking through Fourier spectrum analysis. Various parameters affecting fidelity and noise in the hacked signal are also examined. Additionally, we transmit text messages recovered through synchronization and investigate their vulnerability to hacking. As a countermeasure, we propose a method to send both types of messages using the convolution as the encryption function to hide the message in the chaotic signal. This approach enhances retrieval fidelity and significantly increases resistance to hacking compared to synchronization-based methods.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 F. Rosales-Infante, M. L. Romero-Amezcua, I. Álvarez-Ríos, F. S. Guzmán https://rmf.smf.mx/ojs/index.php/rmf/article/view/7573 Theoretical investigation of mechanical, thermodynamic, electronic and transport properties of Ni2P 2024-12-19T23:30:42+00:00 Yacine BENDAKMOUSSE yacine.bendakmousse@univ-batna.dz N. Baadji nadjib.baadji@univ-msila.dz K. Zanat zanat.k@gmail.com <p>The all-electron full-potential linearized augmented plane-wave method is used to investigate the structural, electronic, and thermodynamic properties of the hexagonal structure of Ni<sub>2</sub>P. We show that Ni<sub>2</sub>P is stable and has interesting mechanical and thermodynamical properties. While we used the non-equilibrium Green’s function formalism to investigate electronic transport properties, particularly conductance by constructing a symmetric junction with Ni<sub>2</sub>P acting as the spacer between two gold electrodes (Au/Ni<sub>2</sub>P/Au). We considered both phosphorus-rich and phosphorus-poor terminated interface and we show that the transmission coefficients depends on the nature of Ni<sub>2</sub>P/Au interface. Furthermore, we mimic experimental junction, by analyzing the impact of phosphorus deficiency. We show that Ni<sub>2</sub>P’s conductance is altered differently depending on whether the defect is located at the interface or deep within the spacer.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 Y. Bendakmousse, N. Baadji, K. Zanat https://rmf.smf.mx/ojs/index.php/rmf/article/view/7780 K2AgInCl6: A promising material for optoelectronic and thermoelectric applications 2025-01-14T00:35:26+00:00 Soumia Benchikh soumibens22@gmail.com MOHAMED MATOUGUI matouguimohamed@hotmail.com Abdelkarim Messaoudi messaoudiabdelkarim@yahoo.fr Bouabdellah Bouadjemi bbouadjemi@yahoo.fr Abdelhak Khatar khatar.abdelhak85@gmail.com Slimane Haid haid.slimane91@gmail.com Heythem Bentahar heythembentahar@gmail.com Mohammed Houari mhhoua@gmail.com Tayeb Lantri lantri_tayeb@yahoo.fr samir Bentata sam_bentata@yahoo.com <p>Using the FP-LAPW method with the exchange and correlation potentials of the GGA and mBJ-GGA approximations, we have studied the structural, electronic, thermoelectric, and optical properties of the double perovskite halide compound K<sub>2</sub>AgInCl<sub>6</sub>. Our results indicate that this compound is stable in the nonmagnetic phase and exhibits structural stability according to the normative values ​​of the Goldsmith factor (t) and octahedral factor (μ). It is thermodynamically stable, as evidenced by negative formation energy. K<sub>2</sub>AgInCl<sub>6</sub> acts as a semiconductor, displaying a direct band gap of 1.162 eV in GGA and 2.944 eV in mBJ-GGA. Thermoelectric analysis reveals excellent properties, with ZT values ​​close to unity, but nevertheless, the GGA approximation performs well at medium and high temperatures (300-800 K), while mBJ-GGA is more efficient at lower temperatures (50-100 K), with ZTs ranging from 0.73 to 0.7 for the latter approximation. In addition, K<sub>2</sub>AgInCl<sub>6</sub> shows transparency in the infrared and visible spectrums, as well as strong absorption and reflectivity in the UV spectrum, making it suitable for various applications, including in broadband solar cells to improve efficiency through extended absorption. In optoelectronics, it can serve as a UV light emitter in high-power LEDs and potentially as a UV filter to protect materials and people from harmful radiation.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 S. M. Benchikh, M. Matougui, A. Messaoudi, B. Bouadjemi, A. Khatar, S. Haid, H. Bentahar, M. Houari, T. Lantri, S. Bentata https://rmf.smf.mx/ojs/index.php/rmf/article/view/7746 Electrical conductivity behavior of various ionic liquids 2025-02-02T16:55:29+00:00 Jesús Gómez-Santana jesusgomezsantana@yahoo.com.mx Andrés F. Estrada-Alexanders afea@xanum.uam.mx Iván Dávila-Ortega idavila375@gmail.com Pedro Díaz-Leyva pdleyva@xanum.uam.mx Rodrigo Sánchez rodrigosg005@gmail.com <p>The present work examines the experimental electrical conductivities as a function of temperature for a variety of ionic liquids near room temperature. Three analytic models are used to describe them, the simple Arrhenius equation, the Vogel-Tamman-Fulcher equation and a novel semi-empirical modified form based on precedents for electrolyte solutions. Patterns are determined that relate the model that best describes the experimental conductivity of a given ionic liquid and its specific chemical structure.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 J. Gómez-Santana, A. F. Estrada-Alexanders, I. Dávila-Ortega, P. Díaz-Leyva, R. Sánchez https://rmf.smf.mx/ojs/index.php/rmf/article/view/7844 Exploiting the spatial extension of impurity for regulation of a few electrical properties of GaAs quantum dot: Role of noise 2025-02-18T23:15:53+00:00 Bhaskar Bhakti bhaskarbhakti2016@gmail.com Manas Ghosh manasghosh.chem@visva-bharati.ac.in <p>The study uncovers the role of delicate interplay between spatial dispersion of impurity and Gaussian white noise on a few electrical properties of the doped GaAs quantum dot (QD). The electrical properties involve static dipole polarizability (SDP), dynamic dipole polarizability (DDP), quadrupole oscillator strength (QOS) and static quadrupole polarizability (SQP). The interplay between noise and the impurity spread depends on the pathway (additive/multiplicative) by which noise is applied. It has been found that, a gradual modulation of impurity spread, in conjunction with the mode of entry of noise, can effectively regulate the above electrical properties.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 B. Bhakti, M. Ghosh https://rmf.smf.mx/ojs/index.php/rmf/article/view/7515 Scaled propagation invariant Bessel beams 2025-01-21T19:29:53+00:00 Francisco Soto feguibar@inaoep.mx I. Ramos-Prieto feguibar@inaoep.mx D. Sánchez-de-la-Llave dsanchez@inaoep.mx U. Ruíz feguibar@inaoep.mx J. A. Anaya-Contreras feguibar@inaoep.mx A. Zúñiga-Segundo azuniga@esfm.ipn.mx H. M. Moya-Cessa hmmc@inaoep.mx <p>We present a new family of Bessel solutions of the paraxial equation. Such solutions keep their form during propagation because of a quadratic phase factor that makes them scaled propagation invariant fields. When a Gaussian support is incorporated, the solution loses its invariant properties, although, over some volume, it closely resembles a scaled propagation invariant field. The Bessel beams we introduce have the particularity that they present a very strong focusing effect and do not necessarily require a Gaussian support.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 F. Soto-Eguibar, I. Ramos-Prieto, D. Sánchez-de-la-Llave, U. Ruíz, J. A. Anaya-Contreras, A. Zúñiga-Segundo, H. M. Moya-Cessa https://rmf.smf.mx/ojs/index.php/rmf/article/view/7847 Optical soliton and travelling wave solutions for the wick-type stochastic Fokas-Lenells equation 2025-01-21T18:25:07+00:00 Esma Ulutaş eulutas1986@gmail.com <p>In this study, we investigate the perturbed Fokas-Lenells equation with conformable fractional derivatives in the presence of white noise, employing two advanced methodologies. The analysis utilizes Hermite and inverse Hermite transformations within the framework of white noise theory to derive solutions to the model. We also construct traveling wave solutions, optical soliton solutions, and their respective stochastic counterparts.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 Esma Ulutaş https://rmf.smf.mx/ojs/index.php/rmf/article/view/7561 Study of all-pass optical micro-ring resonators using titanium- and zinc oxides on an insulating platform via atomic layer deposition 2024-12-13T01:39:45+00:00 Jose Daniel Castro Toscano jdcastro@cicese.edu.mx Rafael Salas Montiel rafael.salas_montiel@utt.fr Daniel Jauregui Vazquez djauregui@cicese.mx Hugo Tiznado Vazquez tiznado@ens.cnyn.unam.mx Eder German Lizarraga Medina eder.lizarraga@uabc.edu.mx Alma Georgina Navarrete Alcala gnavarre@cicese.mx Heriberto Marquez Becerra hmarquez@cicese.mx <p>Atomic layer deposition (ALD) is a versatile technique to grow thin films for a wide range of applications including energy conversion and electronics. Materials deposited on insulating platforms through ALD can expand their use in optics and photonics. In this work, we present the design of an integrated optics all-pass micro-ring resonators based on measured optical properties of ALD materials, particularly, titanium- and zinc oxides (TiO2 and ZnO on insulator). For optical communication applications, zinc oxide on an insulator (ZOI) provides mode confinement of 46%, an evanescent decay of 855 nm, and a quality factor of up to 104 at 1550 nm. Atomic layer deposited core materials on an insulator provide an effective alternative for optics and photonics.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 J. D. Castro-Toscano, R. Salas-Montiel, D. Jauregui-Vazquez, H. Tiznado, E. G. Lizarraga-Medina, A. G. Navarrete-Alcala, H. Marquez-Becerra https://rmf.smf.mx/ojs/index.php/rmf/article/view/7619 Enhancing detectivity in multi-barrier Ag2Se-PbS CQD photodetector through numerical optimization of design parameters 2025-01-15T19:29:27+00:00 Mehdi Khodaverdizadeh m.khodaverdi@uut.ac.ir Asghar asgari asgari@tabrizu.ac.ir <p>Colloidal quantum dots (CQDs) with variable narrow bandgaps have emerged as powerful competitors to epitaxially grown semiconductors in the domain of infrared light transitions. This class of materials holds great promise for the development of next-generation optoelectronic devices, especially photodetectors. In recent developments, the use of silver chalcogenide CQDs has extended into biomedical applications of quantum dots. This expansion is attributed to their advantageous properties, such as low toxicity and tunable intraband transitions reaching the mid-infrared window. In this research, we investigate a structure for mid-infrared photon detection in the form of an intraband Ag<sub>2</sub>Se-PbS colloidal quantum dot (CQD) photodetector. Detectivity, a crucial performance parameter, is enhanced through numerical optimization by manipulating key design parameters such as Ag<sub>2</sub>Se CQD diameter, Ag<sub>2</sub>Se film doping density, and the number of PbS CQD layers in the barrier layer of the device's active region. This optimization process is conducted at various temperatures and biases. The results reveal that, under conditions of a 1 V bias and 80 K, the designed Ag<sub>2</sub>Se-PbS CQD infrared photodetector achieves peak detectivities. Specifically, observed peak detectivities of 13.13×10<sup>9</sup> Jones for Ag<sub>2</sub>Se CQDs with a diameter of 3.7 nm, and 11.01×10<sup>9</sup> Jones for a film doping density of 6.7×10<sup>18</sup> cm<sup>-3</sup> of Ag<sub>2</sub>Se CQDs.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 M. Khodverdizadeh, A. Asgari https://rmf.smf.mx/ojs/index.php/rmf/article/view/7815 X-ray diffraction extinction in strongly textured Ag, studied through the comparison of different order of reflections 2024-11-08T19:39:28+00:00 Jesús Palacios Gómez jpalaciosg@ipn.mx Dirk Berger dirk.berger@tu-berlin.de Jörg Nissen joerg.nissen@tu-berlin.de Antonio Silvio De Ita De la Torre add@azc.uam.mx <p>Integrated intensity ratios of second- to first-order X-ray reflections were measured from a strongly textured pure silver sample, oriented at the maximum pole density, using several wavelengths. This was done to determine whether extinction exists in strongly textured polycrystals, as suggested by pole figure measurements, where pole density maxima of the second-order reflection often exceeds those of the first-order reflection. The integrated intensities of the reflections were normalized using the corresponding integrated intensities from a powder sample. The dominant texture of the silver sample was [110]&lt; 011 &gt;, and the ratios were measured for the 111 and 222 reflection pairs. All resulting ratios were larger than 1, indicating the presence of extinction, which affects first-order reflections more significantly than second-order reflections. Considering the larger number of possible reflections of a polycrystal compared to the few number of reflections of a single crystal, double diffraction between different grains is proposed here as the cause of the observed effect, similar to the well-known secondary extinction in single crystals. To investigate whether a texture gradient could influence the results, EBSD observations were conducted on the sample. A heterogeneous texture was revealed at the edges, but these heterogeneities were not found to affect the results.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 J. Palacios Gómez, D. Berger, J. Nissen, A. S. De Ita De la Torre https://rmf.smf.mx/ojs/index.php/rmf/article/view/7760 Computational analysis as a tool for the study of the porosity system and the mechanical properties of fractal metal foams 2024-10-29T20:19:17+00:00 Luis Perez Luis.perez@usm.cl Pablo Perez enreek_95@hotmail.com Luis Enrique Carranza lecarranza@iim.unam.mx M. Rivero ialfonso@unam.mx Ismeli Alfonso ialfonso@unam.mx <p>This work studies possible morphologies present in fractal foams with dual pore distribution, focalizing the analysis in features characterizing the pore network. These studies were conducted using foams modelled through the combined use of Discrete and Finite Element Methods (DEM and FEM, respectively). DEM was used to generate pore coordinates, for in a second step modelling pores of varied sizes using FEM. These models allowed to obtain fractal foams with morphologies closer to real experimental foams, which is essential for the subsequent estimation of their mechanical properties through FEM. Using different measurement methods, some analyzes were carried out, such as the effect of the dimension of the Representative Volume Element (RVE) on the porosity percentage, the number of nodes until a convergent behavior, the interconnectivity of the pores, the importance of the pore wall thickness and the fractal dimension determination. The effect of these parameters on the simulated mechanical properties of the foams was analyzed throw the use of FEM.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 L. Pérez, P. Pérez, L. E. Carranza, M. Rivero, I. Alfonso https://rmf.smf.mx/ojs/index.php/rmf/article/view/6916 ZnO and ZnO-nanorods thin films as supported catalysts for enhanced dye degradation 2024-04-25T00:31:13+00:00 C. Valero-Luna malfaroc@uanl.edu.mx Maria Alfaro malfaroc@uanl.edu.mx A. Bañuelos-Frias malfaroc@uanl.edu.mx G. Ortega-Zarzosa malfaroc@uanl.edu.mx <p>Zinc oxide (ZnO) thin films and ZnO nanorod thin films were prepared via sol-gel and chemical bath deposition methods at low temperatures, respectively, and tested for their ability to photocatalytically degrade Methylene Blue. Both films were oriented in the c-axis in the (002) plane, but the crystallinity of the ZnO nanorod film was better than the ZnO seed layer. The surface morphology of the ZnO film was in ripple form, allowing the ZnO-nanorods to grow around the ripples and increase the contact area with the solution. The ZnO nanorod film enhances the adsorption process. After 2.49 hours of irradiation, 50% of the dye degrades, and 80% degrades after 6 hours. The structural properties, such as good crystallinity and the orientation in the (002) plane, help improve the films’ photocatalytic efficiency. ZnO and ZnO-nanorod films could be considered efficient and green options for the photocatalytic process of decomposing organic pollutants in an aqueous medium.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 C. Valero-Luna, M.R. Alfaro Cruz, A. Bañuelos-Frias, G. Ortega-Zarzosa https://rmf.smf.mx/ojs/index.php/rmf/article/view/7838 Structural and optical studies on sliver nitrate doped polymer blend and effect on some pathogenic bacteria 2025-01-29T23:54:02+00:00 Salma S. Abdullah saifalaosy@gmail.com Faisal L. Ahmed saifalaosy@gmail.com saif Jasim saifalaosy@gmail.com <p>In this paper, we report the effect of poly (vinyl alcohol) (PVA)/poly (vinyl pyrrolidone) (PVP) blend with different concentration (10, 20, 30 and 40) wt % of AgNO<sub>3</sub> preparation using the casting method . We conducted the characterization of Ag nanoparticles using Fourier transform infrared spectroscopy (FTIR) and (UV-VIS) spectroscopy. We specifically investigated the nanoparticles using UV-Vis spectroscopy in the spectral range of 200–900 nm. We established the energy gap of indirect permitted transitions and observed a decrease in their values as the concentration of nanoparticles increased. This study prepared a nanopolymer composite solution consisting of PVA-PVP-AgNO<sub>3</sub>. We tested the sensitivity of the bacteria <em>S. aureus, S. epidermidis, E. coli, P. aeruginosa, </em>and <em>C. albicans</em> to this solution. Practical results have shown that the nanopolymer composite solution is highly effective in eliminating and restricting the growth of these bacteria.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 Salma S. Abdullah, Faisal L. Ahmed, Saif Khalel Jasim https://rmf.smf.mx/ojs/index.php/rmf/article/view/7690 Structural and electrical characteristics of low doped polyacetylene composites 2025-03-07T01:55:21+00:00 Y. Wu mirfanphysics@gmail.com W. Abbas Dr.waseemabbas@bzu.edu.pk M. K. Okla malokla@ksu.edu.sa Y. A. Bin Jardan mirfanphysics@gmail.com J. Ahmad mirfanphysics@gmail.com A. Shakoor mirfanphysics@gmail.com M. Imran mirfanphysics@gmail.com muhammad irfan mirfanphysics@gmail.com <p>Polyacetylene was synthesized by using Ziegler-Natta catalyst with chemical polymerization method and doped it with 10% iodine and 10% bromine to prepared the composites. The samples were characterized by XRD, SEM and temperature dependent DC electrical conductivity. The XRD pattern of doped polyacetylene displayed that the crystallinity was improved. The SEM morphology of doped polyacetylene demonstrated that granularity was increased. The calculated electrical conductivity shows the low electric conductivity of pure polyacetylene but when we doped polyacetylene with iodine and bromine the electrical conductivity was improved. This study explored that the improvement in the electrical conductivity which may confirm the doped polyacetylene behave as semiconductor and can by helpful for the potential application of devices and related fields.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 Y. Wu, W. Abbas, M. K. Okla, Y. A. Bin Jardan, J. Ahmad, A. Shakoor, M. Imran, M. Irfan https://rmf.smf.mx/ojs/index.php/rmf/article/view/7857 Structural and optoelectronic properties of rock salt magnesium cadmium oxygen ternary alloys: For ultraviolet applications 2025-02-07T22:01:50+00:00 Nadir HASSANI nadir902017@gmail.com Miloud Benchehima mbenchehima@yahoo.fr Hamza ABID abid_hamza@yahoo.fr <p>In this work, we present a comprehensive investigation regarding the physical properties of Mg<sub>x</sub>Cd<sub>1-x</sub>O ternary alloys for different concentrations (0≤x≤1), in rock salt phase. These properties, including structural, electronic, and optical properties, were studied using the full-potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT) with the Wien2k code. The structural parameters of RS Mg<sub>x</sub>Cd<sub>1-x</sub>O are studied in detail as a function of Mg concentration using the generalized gradient approximation (GGA–PBEsol). The calculated structural parameters of both binaries are in good agreement with their corresponding theoretical and experimental data. The results show that the value of the lattice parameter of RS Mg<sub>x</sub>Cd<sub>1-x</sub>O decreases almost linearly with the increasing Mg concentration and exhibits a small deviation from the linear composition dependence (LCD). Both approximations (LDA) and (TB-mBJ) were used to explore the electronic properties. It is found that the increasing Mg concentration leads to increasing energy band gap. Our obtained results demonstrate that the RS CdO has an indirect band gaps and RS MgO has a direct band gap, while RS Mg<sub>x</sub>Cd<sub>1-x</sub>O ternaries (0.125 ≤ x ≤ 0.875) exhibit an indirect band gap semiconductors. Additionally, the linear optical properties including, complex dielectric function, complex refractive index, absorption coefficient, optical conductivity and absorption coefficient, are calculated and discussed in detail. Our obtained results are discussed in detail and compared with existing data in the literature. These results confirm that the RS Mg<sub>x</sub>Cd<sub>1-x</sub>O ternary alloys are a promising candidate for ultraviolet photo electronic devices.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 N. Hassani, M. Benchehima, H. Abid https://rmf.smf.mx/ojs/index.php/rmf/article/view/7734 A quantum particle in a circle; an informational approach revisited 2025-01-21T14:29:28+00:00 E. Cruz naa@xanum.uam.mx Norberto Aquino naa@xanum.uam.mx C. R. Estañón naa@xanum.uam.mx H. Yee-Madeira naa@xanum.uam.mx <p>We study the localization-delocalization of a particle moving within a circular region of radius r<sub>0</sub> from a theoretical information point of view. We computed the Shannon entropy, Fisher information and disequilibrium in configuration and momentum spaces for a collection of stationary states. Comparing our results of Shannon entropies with those previously published we found good agreement with those. Shannon entropy, Fisher information and the disequilibrium offer complementary results for the description of the particle localization-delocalization.</p> <pre><br /><br /><br /></pre> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 E. Cruz, N. Aquino, C. R. Estañón, H. Yee-Madeira https://rmf.smf.mx/ojs/index.php/rmf/article/view/8049 MPD physics performance studies in Bi+Bi collisions at √sNN = 9.2 GeV 2025-04-24T17:04:48+00:00 R. Abdulin ayala@nucleares.unam.mx Vahagn Abgaryan vahagnab@gmail.com Rivu Adhikary adhikary@jinr.ru Konstantin Afanaciev k.afanaciev@gmail.com Sergey Afanaciev afanasev@lhe.jinr.ru Geydar Agakishiev hejdar@jinr.ru Evgeny Alexandrov aleksand@jinr.ru Igor Alexandrov alexand@jinr.ru Mauricio Alvarado Hernández mauricio.alvarado@correo.nucleares.unam.mx Denis Andreev andreevd@jinr.ru Svetlana Andreeva andreeva@jinr.ru Tatyana Andreeva tandreeva72@yandex.ru Evgeny Andronov evgeny.andronov@cern.ch Nikolai Anfimov anphimov@jinr.ru Artem Anikeev anikeev@ut.mephi.ru Anton Anufriev st133347@student.spbu.ru Alexey Aparin aparin@jinr.ru Raúl Arteche Díaz radias@jinr.ru Valery Astaxov astakhov@hvsys.ru Tagir Aushev aushev@phystech.edu Sergei Avdeev avdeyev@jinr.ru George Averichev averichevg@mail.ru Alexander Averyanov avaava@yandex.ru Alejandro Ayala ayala@nucleares.unam.mx Vitaly Azorskij azorskij@jinr.ru Leonid Babichev babichev@sosny.bas-net.by Vadim Babkin babkin@jinr.ru Pavel Bakhtin backtinpavel@gmail.com Anton Balandin anton.balandin@jinr.ru Nikita Balashov balashov@jinr.ru Alexander Baranov gus.mp2@yandex.ru Dmitry Baranov dbaranov@jinr.ru Natalia Baranova baranova@ilab.sinp.msu.ru Ruslan Baratov baratov@jinr.ru Natalya Barbashina nsbarbashina@mephi.ru Veronika Barbasová veronika.barbasova@student.upjs.sk Victor Baryshnikov baryshnikov@jinr.ru Kseniya Basharina basharina@jinr.ru Alexey Baskakov baskakov@jinr.ru Vadim Bayev bayev@hep.by Alexei Bazhazhin bajajin@jinr.ru Sergey Bazylev bsn6255@mail.ru Pavel Beletsky belecky@ispras.ru Svetlana Belokurova sveta.1596@mail.ru Alexander Belyaev belyaev.bljv@yandex.ru Evgeniya Belyaeva belyaeva@jinr.ru Dmitry Belyakov dmitry@jinr.ru Yaroslav Berdnikov berdnikov@spbstu.ru Artur Berezov berartvlad@mail.ru Maharnab Bhattacharjee maharnabb@jinr.ru Wolfgang Bietenholz wolbi@nucleares.unam.mx Dmitry Blau Dmitry.Blau@cern.ch Galina Bogdanova bogdanov@mail.desy.de Dmitry Bogoslovsky bogoslovski@mail.ru Igor Boguslavski ivb@jinr.ru Ekaterina Bondar bondar@sci.kz Edward Boos boos@theory.sinp.msu.ru Alexander Botvina botvina@inr.ru Andrei Brandin AVBrandin@mephi.ru Sergey Bulychjov pat@itep.ru Veronika Burdelnaya nika.burdelnaya@mail.ru Nazar Burmasov nazar.burmasov@cern.ch Mikhail Buryakov mikhail466@gmail.com Jan Busa Jr. busa@jinr.ru Andrey Butenko butenko@jinr.ru Sviatoslav Buzin s.g.buzin@gmail.com Alexander Bychkov abychkov@jinr.ru Zhe Cao caozhe@ustc.edu.cn Cesar Ceballos Sánсhez ceballos@jinr.ru Vyacheslav Chalyshev tchalysh@jinr.ru Victor Chepurnov chepurnov@jinr.ru Vladislav Chepurnov chepurnovvlad@jinr.ru Galina Cheremukhina cherem@jinr.ru Alexey Chernyshov ach1999@yandex.ru Eleazar Cuautle ecuautle@nucleares.unam.mx A.E. Demanov Demanov1997@mail.ru Dmitry Dementiev d.dementev@gmail.com Denis Derkach dderkach@hse.ru Alexander Dmitriev avdmit@outlook.com Ekaterina Dolbilina dolbilina@jinr.ru Valery Dodokhov dodokhov@jinr.ru Andrey Dolbilov dolbilov@jinr.ru Isabel Domínguez isadoji@uas.edu.mx Denis Donetz donec@jinr.ru Vitaly Dronik 1031546@bsu.edu.ru Artem Dubrovin dubrovin@jinr.ru Petar Dulov dulov@jinr.ru Vladimir Dunin dunin@list.ru Alexander Dyachenko dyachenko_a@mail.ru Alexander Efremov aefremov391@jinr.ru Dmitry Egorov egorov.dmitry@list.ru Vladimir Elsha elsha@jinr.ru Nikita Emelianov Nick1600@jinr.ru Jamilya Erkenova erkenovaj@gmail.com Gulnara Eyyubova teplov@lav01.sinp.msu.ru Aleksei Ezhilov ezhilov_ae@pnpi.nrcki.ru Deqing Fang fangdeqing@sinap.ac.cn Oleg Fateev fateev@jinr.ru Oleg Fedin Oleg.Fedin@cern.ch Anastasiya Fedosimova a.fedossimova@sci.kz Yuri Fedotov fedotovyury@rambler.ru Alexander Fedotov fedotov.alehandro@gmail.com Julia Fedotova julia@hep.by Alexander Fedunin fediunin@jinr.ru Shengqin Feng fengsq@ctgu.edu.cn Grigory Feofilov grigory-feofilov@yandex.ru Ivan Filippov ifilippov@jinr.ru Gleb Fomenko gleb@mail.ru Maria Gaganova gaganova@jinr.ru Kirill Galaktionov st067889@student.spbu.ru Yaroslav Galkin galkinyaroslav@gmail.com Aida Galoyan galoyan@lxpub01.jinr.ru Chaosong Gao chaosonggao@ccnu.edu.cn Pedro García González 0450582b@umich.mx Oleg Gavrishuk Oleg.gavrishchuk@cern.ch Nikolay Geraksiev geraksiev@jinr.ru Sergey Gerasimov gerasimov@jinr.ru Konstantin Gertsenberger gertsen@jinr.ru Narine Gevorgyan gnarine@gmail.com Youmna Sami Mahmoud Khalil Ghoneim Ghoneim@jinr.ru Oleg Golosov oleg.golosov@gmail.com Viacheslav Golovatyuk slava.golovatyuk@gmail.com Marina Golubeva marina@inr.ru Alexey Golunov golunov@jinr.ru Igor Goncharov goncharov-scgtu@mail.ru Nikolai Gorbunov gorbunov@jinr.ru Pavel Gordeev pavel.gordeev@cern.ch Ilya Gorelikov igorelikov@jinr.ru Hovik Grigorian hovik.grigorian@gmail.com Pavel Grigoriev grigoryev@jinr.ru Fedor Guber guber@inr.ru Di Guo diguo@mail.ccnu.edu.cn Alexey Guskov avg@jinr.ru Dong Han handong@mail.tsinghua.edu.cn Weijia Han weijiahan@impcas.ac.cn Wanbing He hewanbing@fudan.edu.cn Luis Alberto Hernández Rosas inlhernandez.rosas@izt.uam.mx Maribel Herrera herrera.maribel@outlook.com Slavomir Hnatic hnatics@jinr.ru Michal Hnatic michal.hnatic@upjs.sk Mei Huang huangmei@ucas.ac.cn Sayora Ibraimova s.ibraimova@sci.kz Dim Idrisov idrisov.dim@mail.ru Tunyk Idrissova t.idrissova@sci.kz Zafar Igamkulov gamkulo@lhe.jinr.ru Sergey Igolkin s.igolkin@spbu.ru Alexander Isupov isupov@moonhe.jinr.ru Dmitrii Ivanishchev ivanishchev_da@pnpi.nrcki.ru Alexander Ivanov laps24@tmpk.ru Alexander Ivashkin ivashkin@inr.ru Jianbin Jiao jiaojb@sdu.edu.cn Ivan Kadochnikov kadivas@jinr.ru Sergei Kakurin tcefei@mail.ru Nikolai Kalinichenko st054932@student.spbu.ru Alexander Kamkin kamkin@ispras.ru Mikhail Kapishin kapishin@jinr.ru Dmitry Karmanov karmanov68@mail.ru Nikolay Karpushkin nkarpushkin@mail.ru Ivan Kashunin miramir@jinr.ru Yuri Kasumov kasumov60@mail.ru Armen Kechechyan kechechyan@jinr.ru George Kekelidze kgd@sunse.jinr.ru Vladimir Kekelidze kekelidze@jinr.ru Alexey Khanzadeev khanzadeev_av@pnpi.nrcki.ru Petr Kharlamov pkharlamov93@yandex.ru Gamlet Khodzhibagiyan gamlet@jinr.ru Andrey Khvorostukhin hvorost@jinr.ru E. Yu. Kidanova 28kidanova28@gmail.com Viktar Kireyeu vkireyeu@jinr.ru Yuri Kiriushin yuri.kiryushin@gmail.com Leonid Kochenda kochenda_lm@pnpi.nrcki.ru Olga Kodolova Olga.Kodolova@cern.ch Aleksandr Kokorev kaa@jinr.ru Alexander Kolesnikov kolesn@jinr.ru Vadim Kolesnikov kolesnik@jinr.ru Natalia Kolomoyets nkolomoyets@jinr.ru Anatoly Kolozhvari kolozhvari@jinr.ru Valery Kondtratiev v.kondtratiev@spbu.ru Vladimir Korenkov korenkov@jinr.ru Mikhail Korolev korolev@ilab.sinp.msu.ru Vladimir Korotkikh Vladimir.Korotkikh@cern.ch Anton Kostylev kostylev-a@bk.ru Dmitry Kotov dm_kotov@phmf.spbstu.ru Vladimir Kovalenko v.kovalenko@spbu.ru.ch Marina Kozhevnikova kozhevnikova@jinr.ru Ilia Kozmin ilya24624864@gmail.com Victor Kramarenko Viktor.Kramarenko@cern.ch Adela Kravčáková adela.kravcakova@upjs.sk Petr Kravtsov pkravt@gmail.com Yuri Krechetov krechetov@jinr.ru Irina Kruglova kruglova@jinr.ru Victor Krylov kryman@jinr.ru Alexander Krylov avkrylov@jinr.ru Evgeny Kryshen Evgeny.Kryshen@cern.ch Alexander Kryukov kryukov@theory.sinp.msu.ru Sergey Kuklin snkuklin@jinr.ru Viacheslav Kulikov kulikov@itep.ru Anna Kulikovskaya annkull316@mail.ru Aliaksei Kunts alexeykunts97@gmail.com Eugene Kurbatov ekurbatov@jinr.ru Alexey Kurepin kurepin@inr.ru Vladislav Kuskov vladislav.kuskov@cern.ch Valentin Kuzmin kuzmin@sinp.msu.ru Anna Kyrianova kirianova_as@pnpi.nrcki.ru Dmitry Lanskoy lanskoy@sinp.msu.ru Nikita Lashmanov lashmanov@jinr.ru Rihard Lednicky lednicky@fzu.cz Vladimir Leontev leon@jinr.ru Igor Lebedev lebedev692007@yandex.ru Linmao Li llm20@mails.tsinghua.edu.cn Pengcheng Li lipch@zjhu.edu.cn Shuang Li lish@ctgu.edu.cn T.Z. Ligdenova igdenova@jinr.ru Aliaksandr Litomin litomin@hep.by Elena Litvinenko litvin@nf.jinr.ru Dong Liu dliu@email.sdu.edu.cn Victor Lobanov vlobanov@jinr.ru Yuri Lobanov lobanov@jinr.ru Sergey Lobastov lsp1967@mail.ru Igor Lokhtin igor.lokhtin@cern.ch Juris Lukstins juris@sunhe.jinr.ru Daria Larionova dashalario@gmail.com Andrey Lobanov lobanov2.aa@edu.spbstu.ru Pengzhong Lu lupz@mail.ustc.edu.cn Israel Luna israel.luna@umich.mx Xiaofeng Luo xfluo@ccnu.edu.cn Yugang Ma mayugang@fudan.edu.cn Dmitry Madigozhin Dmitri.Madigojine@cern.ch Alexander Makarov makarov@jinr.ru Vera Maksimenkova maksimenkova@jinr.ru Alexander Malakhov malakhov@jinr.ru Mikhail Malayev mikhail.malaev@cern.ch Ivonne Alicia Maldonado Cervantes ivonne.alicia.maldonado@gmail.com Victor Maleev maleev_vp@pnpi.nrcki.ru Ivan Malikov vampir_malik@mail.ru Nikolay Maltsev namaltsev@gmail.com Mikhail Mamaev mam.mih.val@gmail.com Nikodim Makarov nim@math.nw.ru Maksim Maksimov maximov_mv@pnpi.nrcki.ru Maxim Martemianov mmartemi@gmail.com Pablo Martínez-Torres pablo.martinez@umich.mx Mikhail Matsyuk matsyuk@itep.ru Maryia Miadzvedzeva miha3272727@gmail.com Dmitry Melikov dmitri_melikhov@gmx.de Denis Melnikov dmelnikov@jinr.ru Mikhail Merkin merkinm@silab.sinp.msu.ru Sergey Mertz sergey.merts@gmail.com Igor Meshkov meshkov@jinr.ru Vladimir Mialkovski vmialkov@jinr.ru Irina Migulina migulina@moonhe.jinr.ru Konstantin Mikhaylov Konstantin.Mikhaylov@cern.ch Genady Milnov milnov@jinr.ru Jovan Milosevic Jovan.Milosevic@cern.ch Yuri Minaev minaev@jinr.ru Sergey Mituxin mituksin@jinr.ru Gleb Mescheriakov glebvlm@gmail.com Natalya Molokanova Natalia.Molokanova@jinr.ru Sergey Morozov morozovs@inr.ru Andrey Moshkin amoshkin@jinr.ru Sergey Movchan movchansa@yandex.ru Alexander Moybenko moibenko@jinr.ru Konstantin Mukhin mka@jinr.ru Yuri Murin murin@jinr.ru Sultan Musin musin.sa@phystech.edu Genis Musulmanbekov genis@jinr.ru Valery Mytsin vvm@jinr.ru Egor Muravkin muravkin@jinr.ru Laslo Nadderd mappy@vin.bg.ac.rs Roman Nagdasev nagdasev@jinr.ru Yuri Naryshkin naryshkin_yg@pnpi.nrcki.ru Andrey Nechaevskiy nechav@jinr.ru Vladimiк Nikitin nikitin@sunse.jinr.ru Vladislav Novoselov novoselov@jinr.ru Irina Olexs olex@jinr.ru Alexander Olshevski olshevsk@jinr.ru Oleg Orlov orlov@jinr.ru Vladimir Papoyan vlpapoyan@jinr.ru Petr Parfenov terrylapard@gmail.com Stanislav Pargicky pss@jinr.ru Miguel Enrique Patiño miguel.patino@nucleares.unam.mx Svetlana Patronova patronova@jinr.ru Valery Pavlyukevich pavlyukevich@jinr.ru Igor Pelevanyuk pelevanyuk@jinr.ru Vladimir Penkin VAP_48@mail.ru Dmitri Peresunko Dmitri.Peressounko@cern.ch Dmitry Peshekhonov peshekhonov@jinr.ru Vladimir Petrov petrov.vladimir25@yahoo.com Vitaliy Petrov v.v.petrov@spbu.ru Alexander Piliar pilyar@list.ru Arpine Piloyan arpine.piloyan@gmail.com Semen Piyadin piyadin@jinr.ru Maria Platonova platonova@nucl-th.sinp.msu.ru Dmitry Podgainy podgainy@jinr.ru Marina Pokidova pokidova_mv@pnpi.nrcki.ru Vladimir Popov mr.vovapopow@yandex.ru Denis Potapov dpotapov@jinr.ru Daria Prokhorova daria.prokhorova@cern.ch Nikita Prokofiev n.prokofyev@yandex.ru Daria Pryahina pryahinad@jinr.ru Igor Pshenichnov pshenich@inr.ru Andrey Puchkov putchkov@mail.ru Nelli Pukhaeva nelli.pukhaeva@gmail.com Artem Pyatigor srmemphis322@gmail.com Jiajun Qin jjqin@ustc.edu.cn Fedor Ratnikov fedor.ratnikov@gmail.com Alfredo Raya drraya@gmail.com Vladimir Rekovic Vladimir.Rekovic@cern.ch Mauricio Reyes mauricio.reyes@umich.mx Solne Reyes Peña solnerp95@gmail.com Andrei Riabov andrei.riabov@cern.ch Sudhir Pandurang Rode sudhir@jinr.ru Alejandro Rodríguez Álvarez arodrigoez@jinr.ru Oleg Rogachevsky rogachevsky@jinr.ru Victor Rogov rogovictor@gmail.com Vladimir Rudnev v.rudnev@spbu.ru Igor Rufanov roufanov@gmail.com Mikhail Rumyantsev rumyantsev@jinr.ru Ivanton Rudziankou ivanton.rudziankou@gmail.com Yury Rusak wevelyura@gmail.com Alexander Rybakov ribakov@jinr.ru Zeradin Sadygov zsadygov@gmail.com Ulises Sáenz ulises.saenz@umich.mx Viatcheslav Samsonov slasam@list.ru Andrey Savenkov savenkov@jinr.ru Savva Savenkov savenkov.sd@phystech.edu Sergey Sedykh sedykh@jinr.ru Tatyana Semchukova pushok_tatyana@mail.ru Andrei Semenov Semenov_andrei@yahoo.com Roman Semenov semenov@jinr.ru Irina Semenova stepi@jlab.org Valery Serdyuk serdyuk@jinr.ru Sergey Sergeev serguei.sergueev@mail.ru Abay Serikkanov a.serikkanov@sci.kz Evgeny Serochkin serochkin@jinr.ru Yulia Shafarevich uliasafarevic@gmail.com Dmitry Shapaev dima.shapaev@yandex.ru Olga Shaposhnikova shaposhnikova.om23@physics.msu.ru Lydia Shcheglova lydia.shcheglova@desy.de Mariana Filipova Shopova Mariana.Vutova@cern.ch Denis Shchegolev shchegolev@jinr.ru Andrey Shchipunov andrey.shchipunov@gmail.com Yifan Shen shenyifan20@mails.ucas.ac.cn Aleksey Sheremetiev sheremetiev@jinr.ru Anastasia Sheremetieva anashafronovskaya@mail.ru Shusu Shi shiss@mail.ccnu.edu.cn Mikhail Shitenkov shitenkow@gmail.com Yahor Shmanay ouik9970@gmail.com Sergei Shmatov shmatov@jinr.ru Ilya Shmyrev shmyrev@jinr.ru Alexander Shunko shunko@jinr.ru Alexey Shutov avshutov@mail.ru Vitaly Shutov shutov@jinr.ru Anatoly Sidorin sidorin@jinr.ru Svetlana Simak s.simak@spbu.ru Ilya Slepnev islepnev@jinr.ru Vyacheslav Slepnev vmslepnev@gmail.com Ivan Slepov slepov@jinr.ru Ivan Smelyansky sia@jinr.ru Alexandre Snigirev snigirev@lav01.sinp.msu.ru Olga Sobol o-sobol@mail.ru Anatoly Solomin anatoly.solomin@jinr.ru Alexander Sorin sorin@theor.jinr.ru Gleb Stiforov stiforov@jinr.ru Larisa Stolypina stolypina@jinr.ru Ekaterina Streletskaya estreletskaya@bk.ru Oksana Streltsova strel@jinr.ru Mikhail Strikhanov MNStrikhanov@mephi.ru Tatyana Strizh Tatyana.Strizh@jinr.ru Alexander Strizhak strijakao@mail.ru Xiangming Sun sphy2007@126.com Dilyana Suvarieva dilyanasuvarieva@mail.bg Alexander Svetlichnyi aleksandr.svetlichnyy@phystech.edu Zebo Tang zbtang@ustc.edu.cn Maria Elena Tejeda-Yeomans matejeda@ucol.mx Arkadiy Taranenko avtaranenko@mephi.ru Vladimir Tchekhovski vtchek@hep.by Dmitriy Tereshin dtereshin@jinr.ru Andrey Terletskiy terletskiy@jinr.ru Oleg Teryaev teryaev@theor.jinr.ru Vladimir Tikhomirov vtikhomirov@mail.ru Alexander Timoshenko atimoshenko@jinr.ru Galileo Tinoco galileo.tinoco@umich.mx Vyacheslav Toneev toneev@theor.jinr.ru Nikolai Topilin topilin@jinr.ru Tatiana Tretyakova tretyakova@sinp.msu.ru Vladimir Trofimov tvv@jinr.ru Valery Troshin valerytrosh@gmail.com Grigory Trubnikov trubnikov@jinr.ru Anton Trutse AATruttse@mephi.ru Ekaterina Tsapulina tsapulina@jinr.ru Itzhak Tserruya itzhak.tserruya@weizmann.ac.il Igor Tyapkin igor5255@mail.ru Svetlana Udovenko vudos@mail.ru Vladimir Uzhinsky uzhinsky@jinr.ru Martin Vala martin.vala@upjs.sk Farhat Valiev valiev07@list.ru Veronika Vasendina vasveron@mail.ru Alexander Vasilyev vasillie@gmail.com Vladimir Vechernin v.vechernin@spbu.ru Valyo Velichkov v.k.velichkov@jinr.ru Stepan Vereschagin vereschagin@jinr.ru Alexander Vodopyanov alexander.vodopyanov@cern.ch Kristina Vokhmyanina kristinav2005@yandex.ru Vadim Volkov volkov@inr.ru Aleksey Voronin voroninal@jinr.ru Alexey Vorontsov vorontsov@jinr.ru Vadim Voronyuk vadimv@jinr.ru Janka Vrlakova janka.vrlakova@upjs.sk Jian-Song Wang wjs@zjhu.edu.cn Xiaodong Wang wangxd@usc.edu.cn Yi Wang yiwang@mail.tsinghua.edu.cn Yonghong Wang 202016988@mail.sdu.edu.cn Yulin Wang 202016989@mail.sdu.edu.cn Yaping Wang wangyaping@mail.ccnu.edu.cn Kejun Wu wukj@ctgu.edu.cn Le Xiao lxiao@mail.ccnu.edu.cn Min Xiao minxiao@usc.edu.cn Guannan Xie xieguannan@ucas.ac.cn Chi Yang chiyang@sdu.edu.cn Haibo Yang yanghaibo@impcas.ac.cn Zilin Yuan yuanzilin20@mails.ucas.ac.cn Vladimir Yurevich yurevich@jinr.ru Semyon Yurchenko sem2600@mail.ru Evgeny Zabrodin zabrodin@fys.uio.no Georgy Zalite goshaza1995@gmail.com Nikolay Zamyatin zamiatin@sunse.jinr.ru Sergei Zaporojez zaporozh@cern.ch Andrey Zarochentsev andrey.zar@gmail.com Wangmei Zha first@ustc.edu.cn Mikhail Zhalov m.zhalov@gmail.com Honglin Zhang zhl1994@impcas.ac.cn Yapeng Zhang y.p.zhang@impcas.ac.cn Zhi Zhang zhangz@mail.tsinghua.edu.cn Cheng Xin Zhao chengxin.zhao@impcas.ac.cn Irina Zhavoronkova irina.calv.45@gmail.com Vladimir Zherebchevsky v.zherebchevsky@spbu.ru Wei Zhou weizhou@impcas.ac.cn Xianglei Zhu zhux@tsinghua.edu.cn Xiangrong Zhu xrongzhu@zjhu.edu.cn Alexander Zinchenko alexander.zinchenko@jinr.ru Dmitriy Zinchenko zinchenk1994@gmail.com Vladislav Zruyev vlad@jinr.ru Maxim Zuev zuevmax@jinr.ru Ilya Zur zur.ilya01@gmail.com Agniia Zviaygina agniyazviagina@mail.ru <p>TheMulti-Purpose Detector (MPD) is one of the three experiments of the Nuclotron Ion Collider-fAcility (NICA) complex, which is currently under construction at the Joint Institute for Nuclear Research in Dubna. With collisions of heavy ions in the collider mode, the MPD will cover the energy range √sNN = 4 − 11 GeV to scan the high baryon-density region of the QCD phase diagram. With expected statistics of 50–100 million events collected during the first run, MPD will be able to study a number of observables, including measurements of light hadrons and (hyper)nuclei production, particle flow, correlations and fluctuations, have a first look at dielectron production, and modification of vector-meson properties in dense matter. In this paper, we present selected results of the physics feasibility studies for theMPD experiment in Bi+Bi collisions at √sNN = 9.2 GeV, the system considered as one of the first available at the NICA collider.</p> 2025-07-01T00:00:00+00:00 Copyright (c) 2025 R. Abdulin, V. Abgaryan, R. Adhikary, K. G. Afanaciev, S. Afanaciev, G. Agakishiev, E. I. Alexandrov, I. N. Alexandrov, M. Alvarez-Ramírez, D. Andreev, S. V. Andreeva, T. V. Andreeva, E. V. Andronov, N. V. Anfimov, A. Anikeev, A. V. Anufriev, A. A. Aparin, R. Arteche Díaz, V. I. Astaxov, T. Aushev, S. P. Avdeev, S. G. Averichev, A. V. Averyanov, A. Ayala, V. N. Azorskij, L. Babichev, V. A. Babkin, P. Bakhtin, A. I. Balandin, N. A. Balashov, A. Baranov, D. A. Baranov, N. V. Baranova, R. V. Baratov, N. Barbashina, V. Barbasová, V. M. Baryshnikov, K. D. Basharina, A. E. Baskakov, V. G. Bayev, A. G. Bazhazhin, S. N. Bazylev, P. Beletsky, S. V. Belokurova, A. V. Belyaev, E. V. Belyaeva, D. V. Belyakov, Y. Berdnikov, F. Berezov, M. Bhattacharjee, W. Bietenholz, D. Blau, G. A. Bogdanova, D. N. Bogoslovsky, I. V. Boguslavski, E. A. Bondar, E. E. Boos, A. Botvina, A. Brandin, S. A. Bulychjov, V. Burdelnaya, N. Burmasov, M. G. Buryakov, J. Busa Jr., A. V. Butenko, S. G. Buzin, A. V. Bychkov, Z. Cao, C. Ceballos Sánсhez, V. V. Chalyshev, V. F. Chepurnov, VI. V. Chepurnov, G. A. Cheremukhina, A. S. Chernyshov, E. Cuautle, A.E. Demanov, D. V. Dementiev, D. Derkach, A. V. Dmitriev, E. V. Dolbilina, V. H. Dodokhov, A. G. Dolbilov, I. Domínguez, D. E. Donetz, V. I. Dronik, A. Yu. Dubrovin, P. O. Dulov, V. B. Dunin, A. Dyachenko, A. A. Efremov, D. S. Egorov, V. V. Elsha, N. E. Emelianov, J. Erkenova, G. H. Eyyubova, A. Ezhilov, D. Fang, O. V. Fateev, O. Fedin, A. I. Fedosimova, Yu. I. Fedotov, A. S. Fedotov, J. A. Fedotova, A. A. Fedunin, S. Feng, G. A. Feofilov, I. A. Filippov, G. Fomenko, M. A. Gaganova, K. A. Galaktionov, Ya. D. Galkin, A. S. Galoyan, Ch. Gao, P. E. García-González, O. P. Gavrishuk, N. S. Geraksiev, S. E. Gerasimov, K. V. Gertsenberger, N. Gevorgyan, Y. Ghoneim, O. Golosov, V. M. Golovatyuk, M. Golubeva, A. O. Golunov, I. Goncharov, N. V. Gorbunov, P. Gordeev, I. P. Gorelikov, H. Grigorian, P. N. Grigoriev, F. Guber, D. Guo, A. V. Guskov, D. Han, W. Han, W. He, L. A. Hernández-Rosas, M. Herrera, S. Hnatic, M. Hnatic, M. Huang, S. A. Ibraimova, D. M. Idrisov, T. K. Idrissova, Z. A. Igamkulov, S. N. Igolkin, A. Yu. Isupov, D. Ivanishchev, A. V. Ivanov, A. Ivashkin, J. Jiao, I. Jadochnikov, S. I. Kakurin, N. I. Kalinichenko, A. Kamkin, M. N. Kapishin, D. E. Karmanov, N. Karpushkin, I. A. Kashunin, Y. Kasumov, A. O. Kechechyan, G. D. Kekelidze, V. D. Kekelidze, A. Khanzadeev, P. I. Kharlamov, G. G. Khodzhibagiyan, A. S. Khvorostukhin, E. Kidanova, V. A. Kireyeu, Yu. T. Kiriushin, L. Kochenda, O. L. Kodolova, A. A. Kokorev, A. O. Kolesnikov, V. I. Kolesnikov, N. Kolomoyets, A. A. Kolozhvari, V. Kondtratiev, V. V. Korenkov, M. G. Korolev, V. L. Korotkikh, A. I. Kostylev, D. Kotov, V. N. Kovalenko, M. E. Kozhevnikova, I. Kozmin, V. A. Kramarenko, A. Kravčáková, P. Kravtsov, Yu. F. Krechetov, I. V. Kruglova, V. A. Krylov, A. V. Krylov, E. Kryshen, A. P. Kryukov, S. N. Kuklin, V. V. Kulikov, A. A. Kulikovskaya, A. V. Kunts, E. Kurbatov, A. Kurepin, V. Kuskov, V. A. Kuzmin, A. Kyrianova, D. E. Lanskoy, N. A. Lashmanov, R. Lednicky, V. V. Leontev, I. A. Lebedev, L. Li, P. Li, S. Li, T.Z. Ligdenova, A. V. Litomin, E. I. Litvinenko, D. Liu, V. I. Lobanov, Yu. Yu. Lobanov, S. P. Lobastov, I. P. Lokhtin, J. R. Lukstins, D. Larionova, A. Lobanov, P. Lu, I. Luna-Reyes, X. Luo, Y. Ma, D. T. Madigozhin, A. A. Makarov, V. I. Maksimenkova, A. I. Malakhov, M. Malayev, I. A. Maldonado-Cervantes, V. Maleev, I. Malikov, N. A. Maltsev, M. V. Mamaev, N. A. Makarov, M. Maksimov, M. A. Martemianov, P. Martínez-Torres, M. A. Matsyuk, M. Miadzvedzeva, D. I. Melikov, D. G. Melnikov, M. M. Merkin, S. P. Mertz, I. N. Meshkov, V. V. Mialkovski, I. I. Migulina, K. R. Mikhaylov, G. D. Milnov, J. Milosevic, Yu. I. Minaev, S. A. Mituxin, G. V. Mescheriakov, N. A. Molokanova, S. Morozov, A. A. Moshkin, S. A. Movchan, A. N. Moybenko, K. A. Mukhin, Yu. A. Murin, S. Musin, G. G. Musulmanbekov, V. V. Mytsin, E. E. Muravkin, L. Nadderd, R. V. Nagdasev, Yu. Naryshkin, A. V. Nechaevskiy, V. A. Nikitin, V. A. Novoselov, I. A. Olexs, A. G. Olshevski, O. E. Orlov, V. Papoyan, P. E. Parfenov, S. S. Pargicky, M. E. Patiño-Salazar, S. V. Patronova, V. A. Pavlyukevich, I. S. Pelevanyuk, V. A. Penkin, D. Peresunko, D. V. Peshekhonov, V. A. Petrov, V. V. Petrov, A. V. Piliar, A. Piloyan, S. M. Piyadin, M. N. Platonova, D. V. Podgainy, M. Pokidova, V. N. Popov, D. S. Potapov, D. S. Prokhorova, N. A. Prokofiev, D. I. Pryahina, I. Pshenichnov, A. M. Puchkov, N. Pukhaeva, A. Pyatigor, J. Qin, F. Ratnikov, A. Raya, V. Rekovic, M. Reyes-Gutiérrez, S. Reyes-Peña, A. Riabov, S. P. Rode, A. Rodríguez-Álvarez, O. V. Rogachevsky, V. Yu. Rogov, V. A. Rudnev, I. A. Rufanov, M. M. Rumyantsev, I. Rudziankou, Yu. Rusak, A. A. Rybakov, Z. Sadygov, A. U. Sáenz-Trujillo, V. A. Samsonov, A. A. Savenkov, S. Savenkov, S. A. Sedykh, T. V. Semchukova, A. Yu. Semenov, R. N. Semenov, I. A. Semenova, V. Z. Serdyuk, S. V. Sergeev, A. S. Serikkanov, E. V. Serochkin, Yu. Shafarevich, D. Shapaev, O. M. Shaposhnikova, L. M. Shcheglova, M. F. Shopova, D. V. Shchegolev, A. V. Shchipunov, Y. Shen, A. D. Sheremetiev, A. I. Sheremetieva, S. Shi, M. O. Shitenkov, E. E. Shmanay, S. V. Shmatov, I. A. Shmyrev, A. A. Shunko, A. V. Shutov, V. B. Shutov, A. O. Sidorin, S. V. Simak, I. V. Slepnev, V. M. Slepnev, I. P. Slepov, I. A. Smelyansky, A. M. Snigirev, O. V. Sobol, A. N. Solomin, A. S. Sorin, G. G. Stiforov, L. Yu. Stolypina, E. A. Streletskaya, O. I. Streltsova, M. Strikhanov, T. A. Strizh, A. Strizhak, X. Sun, D. A. Suvarieva, A. Svetlichnyi, Z. Tang, M. E. Tejeda-Yeomans, A. Taranenko, V. A. Tchekhovski, D. A. Tereshin, A. V. Terletskiy, O. V. Teryaev, V. V. Tikhomirov, A. A. Timoshenko, G. Tinoco-Santill, V. D. Toneev, N. D. Topilin, T. Yu. Tretyakova, V. V. Trofimov, V. V. Troshin, G. V. Trubnikov, A. Trutse, E. A. Tsapulina, I. Tserruya, I. A. Tyapkin, S. Yu. Udovenko, V. V. Uzhinsky, M. Val'a, F. F. Valiev, V. A. Vasendina, A. Vasilyev, V. V. Vechernin, V. K. Velichkov , S. V. Vereschagin, A. S. Vodopyanov, K. Vokhmyanina, V. Volkov, A. L. Voronin, A. N. Vorontsov, V. Voronyuk, J. Vrláková, J. Wang, X. Wang, Y. Wang, Y. Wang, Y. Wang, Y. Wang, K. Wu, L. Xiao, M. Xiao, G. Xie, C. Yang, H. Yang, Z. Yuan, V. I. Yurevich, S. V. Yurchenko, E. E. Zabrodin, G. Zalite, N. I. Zamyatin, S. A. Zaporojez, A. K. Zarochentsev, W. Zha, M. Zhalov, H. Zhang, Y. Zhang, Z. Zhang, C. Zhao, I. Zhavoronkova, V. I. Zherebchevsky, W. Zhou, X. Zhu, X. Zhu, A. I. Zinchenko, D. I. Zinchenko, V. N. Zruyev, M. Zuev, I. A. Zur, A. P. Zviaygina