Brownian motion, diffusion, entropy and econophysics

J. D. A. Islas-García, A. R. Villagómez-Manrique, Marcelo Del Castillo-Mussot, P. G. Soriano-Hernandez

Abstract


To model wealth distributions there exist models based on the Boltzmann-Gibbs distribution (BGD), which is obtained by simulating binary economic interactions or exchanges that are similar to particle collisions in physics with conserved
energy (or money in econophysics). Also, BGD can be reproduced by numerical simulations of diffusion for many particles which experience energy fluctuations. This latter case is analogous to non-interacting pollen particles performing Brownian motion. In order to decrease inequality, we also modify the energy-conserved diffusion by taxing the richest agent. In all cases, we calculate the corresponding Gini inequality index and the time evolution of the entropy to show the stability of the statistical distributions.

Keywords


Diffusion, entropy, econophysics, Gini index.

Full Text:

PDF


DOI: https://doi.org/10.31349/RevMexFisE.65.1

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física E

ISSN: 1870-3542

Semiannual publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52-55) 5622-4946, (52-55) 5622-4840. rmf@ciencias.unam.mx