Confined free motion under a dipole potential

R. Sánchez-Martinez, H. N. Nuñez-Yepez, A. L. Salas-Brito

Abstract


The classical motion of a particle in a dipolar potential, $U_{\hbox{dip}}(q) = - {k}/{q^2}$, and free motion along a curve in phase space are proven to be equivalent. We also prove that the singularity at $q=0$ in the dipolar potential is strong enough as to prevent the flow of particles from one side of the singularity to the other. This effect does not depende on whether the dipole potential is regarded as attractive ($k>0$) or as repulsive ($k<0$). All the proofs are given using the Hamitonian formalism, therefore they may be used for illustrating the power the Hamiltonian approach may confer in analysing different mecanical systems. The discussion is keep within the reach of advanced undergraduate or graduate students of Hamiltonian mechanics.

Keywords


inverse square potential, equivalence to free motion, impenetrability of the origin

Full Text:

PDF

References


C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, (Freeman, San Francisco USA, 1977).

L. Landau, E. M. Lifshitz, Mechanics, (Pergamon Press, Oxford UK, 1978).

V. I. Arnold, Mathematical Methods of Classical Mechanics, (Springer Verlag, New York USA, 1980).

H. Goldstein, Ch. Poole, J. Safko, (Addison-Wesley,

San Francisco USA, 2010).

R. Talman, Geometric MechanicsGeometric Mechanics, (John Wiley, New York USA, 2000).

J. Moser, Comm. Pure Applied Math. XXIII, 609 (1970).

E. N. Glass, J. J. G. Scanio, Am. J. Phys. 45, 344 (1977).

A. G'omez-Trapote, Rev. Mex. Fis. 48, 4 (2002).

R. J. Finkelstein, J. Math. Phys. 8, 443 (1967).

R. S'anchez-Martínez, H. N. Núñez-Yépez, A. L. Salas-Brito, Rev. Mex. Fis. 17, 6 (2020).

R. Loudon, Proc. R. Soc. A 472, 20150534 (2016).

Phys. Rev. A 37, 356 (1988).

J. M. L'evy-Leblond, Phys. Rev. 153, 286 (1967).

H. N. N'u~nez-Y'epez, A. L. Salas-Brito, D. Solís, Phys. Rev. A 83, 064101 (2011).

U. Oseguera, M. de Llano, J. Math. Phys. 34, 4575 (1993).

C. Zhu, J. R. Klauder, Am. J. Phys. 61, 605 (1993).

Jean-Marc L'evy-Leblond, Phys. Rev. 153, 1 (1967).

M. 'Avila-Aoki, C. Cisneros, H.N. N'u~nez-Y'epez, A. L. Salas-Brito, Phys. Lett. A 373, 418 (2009).




DOI: https://doi.org/10.31349/RevMexFisE.17.272

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física E

ISSN: 2683-2216 (on line), 1870-3542 (print)

Semiannual publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx