Observation and verification of the Fresnel and Arago interference laws using adaptive photodetectors

P. Rodríguez Montero

Abstract


The Fresnel and Arago interference laws relate the polarization of the electromagnetic field to the interference phenomenon. Different methods and interferometers have been reported to verify these laws; most of them rely on visual inspection to determine the positions of maximum and minimum interference. In this report, the observation and verification of the Fresnel and Arago interference laws using adaptive photodetectors are presented. These photodetectors generate an electrical current proportional to the square of the visibility of the interference pattern; thus the gradual change from the appearance of the interference pattern (maximum visibility) to its disappearance (minimum or null visibility) is detected as an electrical current. The extreme values of the interference pattern visibility can be accurately assessed, in real time and without any signal processing using. A difference of 3 orders of magnitude between the signals measured in the positions of maximum and minimum interference is demonstrated. Due to the adaptive properties of the adaptive photodetectors (compensation of the irregularities of the interfering beams and suppression environmental fluctuations), the proposed method can be suitable for teaching purposes in undergraduate laboratories.

Keywords


polarization; interference; adaptive photodetectors

Full Text:

PDF

References


D. F. J. Arago, and A. J. Fresnel, “On the action of rays of polarized light upon each other”, Ann. Chim. Phys. 2, pp 288-304 (1819).

E. Collet, “Polarized light: fundamentals and applications”, New York, Marcel Dekker, 1993, pp 255-277.

H. J. Tiziani, N. Kerwien, and G. Pedrini, “9.1 Interferometry” in Vol 1: Laser Physics and Applications. Subvolume A: Laser Fundamentals. Part 2, H. Weber, G. Herziger, and R. Poprawe, Eds., (Springer-Verlag 2006), pp 221-284.

R. Hanau, “Interference of linearly polarized light with perpendicular polarizations”, Am. J. Phys. 31, Issue 4, pp 303-304 (1963). https://doi.org/10.1119/1.1969459

E. Fortin, “Direct demonstration of the Fresnel-Arago law”, Am. J. Phys. 38, Issue 7, pp 917-918 (1970). https://doi.org/10.1119/1.1976495

B. Kanseri, N. S. Biasht, S. Rath, and H. C. Kandpal, “A modified version of Young´s interferometer to study the Fresnel and Arago interference laws”, Eur. J. Phys. 30, pp 835-844 (2009). https://doi.org/10.1088/0143-0807/30/4/016

B. Kanseri, N.S. Bisht, and H.C. Kandpal, “Observation of the Fresnel and Arago laws using the Mach-Zehnder interferometer”, Am. J. Phys. 76, Issue 1, pp 39-42 (2008). https//doi.org/10.1119/1.2794349

B. Kanseri, and H. C. Kandpal, “Mathematical formulation for verification of the Fresnel and Arago interference laws using a Mach-Zehnder interferometer”, Optik 121, pp 1019-1026 (2008). https://doi.org/10.1016/j.ijleo.2008.12.003

M. Henry, “Fresnel-Arago laws for interference in polarized light: a demonstration experiment”, Am. J. Phys. 49, Issue 7, pp 690-691 (1981). https://doi.org/10.1119/1.12429

J.L. Ferguson, “A simple, bright demonstration of the interference of polarized light”, Am. J. Phys. 52, Issue 12, pp 1141-1142 (1984). https://doi.org/10.1119/1.13744

Richard Barakat, “Analytic proofs of the Arago-Fresnel laws for the interference of polarized light”, J. Opt. Soc. Am. A 10, No.1 (1993). https://doi.org/10.1364/JOSAA.10.000180

Emil Wolf, “Unified theory of coherence and polarization of random electromagnetic beams”, Physics Letters A 312, pp 263-267 (2003). https://doi.org/10.1016.S0375-9601(03)00684-4

S. Stepanov, in Handbook of Advanced Electronic and Photonics Materials and Devices, H. S. Nalwa, ed. (Academic 2001) Vol 2, pp. 205–272.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors”, J. Appl. Phys. 68, pp 2216-2225 (1990). https://doi.org/10.1063/1.346525

E. Hecht, Optics, 5th edition (Pearson Education Limited 2017), pp 593-603.

M. L. Arroyo Carrasco, P. Rodríguez Montero, and S. Stepanov, “Measurement of the coherence length of diffusely scattered laser beams with adaptive photodetectors”, Optics Commun. 157, pp. 105-110 (1998). https://doi.org/10.1016/S0030-4018(98)00537-9

S. Stepanov, P. Rodríguez, S. Trivedi, and C. C. Wang, “Effective broadband detection of nanometer laser-induced ultrasonic surface displacements by CdTe:V adaptive photoelectromotive force detector”, Appl. Phys. Lett. 84, Number 3, pp 446-448 (2003). https://doi.org/10.1063/1.1640466

Y. Ding, I. Lahiri, D, D, Nolte, G. J. Dunning, and D. Pepper, “Electric-field correlation of femtosecond pulses by use of a photoelectromotive-force detector”, J. Opt. Soc. Am. B 15, Issue 7, pp 2013-2017 (1998). https://doi.org/10.1364/JOSAB.15.002013

C. C. Wang, S. B. Trivedi, F. Jin, S. Stepanov, Z. Chen, J. Khurgin, P. Rodríguez, N. S. Prasad, “Human life signs detection using high-sensitivity pulsed laser vibrometer”, IEEE Sensors Journal 7, Issue 9, pp 1370-1376 (2007). https://doi.org/10.1109/JSEN.2007.905041




DOI: https://doi.org/10.31349/RevMexFisE.18.44

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física E

ISSN: 2683-2216 (on line), 1870-3542 (print)

Semiannual publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx