Analysis of high school student’s concept mastery in light wave using structured inquiry learning assisted by a virtual laboratory

E. Puspitaningtyas, E Fandira Nasera Putri, Umrotul Umrotul, Sutopo Sutopo

Abstract


Structured inquiry-based learning assisted by a virtual laboratory is necessary for senior high students to help their conceptual understanding of wave optics. Experimental mixed-method design with one group pretest-posttest model used for physics class. Data collected from an interview, observation, pretest, and posttest in quantitative and qualitative data. The result is structured inquiry-based learning assisted by virtual laboratory effective improving students' conceptual mastery of wave optics. Furthermore, it also has been found that students still have some difficulties with interference and diffraction after learning.


Keywords


Structured inquiry, virtual laboratory, conceptual mastery, light wave, physics education

Full Text:

PDF

References


C. A. Hapsoro and H. Susanto, “Penerapan pembelajaran problem based instruction berbantuan alat peraga pada materi cahaya di SMP,” J. Pendidik. Fis. Indones., vol. 7, no. 1, 2011.

S. Sutopo, “Students’ Understanding of Fundamental Concepts of Mechanical Wave,” Indones. J. Phys. Educ., vol. 12, no. 1, pp. 41–53, 2016.

L. Jumadin, A. Hidayat, and S. Sutopo, “Perlunya pembelajaran modelling instruction pada materi gelombang,” J. Pendidik. Teor. Penelitian, dan Pengemb., vol. 2, no. 3, pp. 325–330, 2017.

N. Gultepe, A. Yalcin Celik, and Z. Kilic, “Exploring effects of high school students’ mathematical processing skills and conceptual understanding of chemical concepts on algorithmic problem solving,” Aust. J. Teach. Educ., vol. 38, no. 10, p. 7, 2013.

A. Istyowati, S. Kusairi, and S. K. Handayanto, “Analisis pembelajaran dan kesulitan siswa SMA kelas xi terhadap penguasaan konsep Fisika,” Res. Rep., 2017.

S. K. Şengören, “How do Turkish high school graduates use the wave theory of light to explain optics phenomena?,” Phys. Educ., vol. 45, no. 3, p. 253, 2010.

B. S. Ambrose, P. S. Shaffer, R. N. Steinberg, and L. C. McDermott, “An investigation of student understanding of single-slit diffraction and double-slit interference,” Am. J. Phys., vol. 67, no. 2, pp. 146–155, 1999.

T. Rabe and H. F. Mikelskis, “The Role of Language in Learning Physics with Computer-based Multimedia,” in Contributions from Science Education Research, Springer, 2007, pp. 489–502.

V. Mešić, E. Hajder, K. Neumann, and N. Erceg, “Comparing different approaches to visualizing light waves: An experimental study on teaching wave optics,” Phys. Rev. Phys. Educ. Res., vol. 12, no. 1, p. 10135, 2016.

R. Lestari and W. Ahdinirwanto, “Ashari.(2013). Peningkatan pemecahan masalah melalui model pembelajaran cooperative integrated reading and composition (CIRC) pada SMP Negeri 4 Wadaslintang,” J. Radiasi, vol. 4, no. 2, pp. 178–181.

S. B. McKagan et al., “Developing and researching PhET simulations for teaching quantum mechanics,” Am. J. Phys., vol. 76, no. 4, pp. 406–417, 2008.

B. Atasoy, H. Akkus, and H. Kadayifci, “The effect of a conceptual change approach on understanding of students’ chemical equilibrium concepts,” Res. Sci. Technol. Educ., vol. 27, no. 3, pp. 267–282, 2009.

F. B. Fernandez, “Action research in the physics classroom: the impact of authentic, inquiry based learning or instruction on the learning of thermal physics,” Asia-Pacific Sci. Educ., vol. 3, no. 1, pp. 1–20, 2017.

S. C. J. Long and Y. Bae, “Action research: First-year primary school science teachers’ conceptions on and enactment of science inquiry in Singapore,” Asia-Pacific Sci. Educ., vol. 4, no. 1, pp. 1–20, 2018.

H. Banchi and R. Bell, “The many levels of inquiry,” Sci. Child., vol. 46, no. 2, p. 26, 2008.

D. Llewellyn, Teaching high school science through inquiry and argumentation. Corwin Press, 2013.

R. L. Bell, L. Smetana, and I. Binns, “Simplifying inquiry instruction,” Sci. Teach., vol. 72, no. 7, pp. 30–33, 2005.

A. Colburn, “An inquiry primer,” Sci. scope, vol. 23, no. 6, pp. 42–44, 2000.

S. Schmid and F. X. Bogner, “Effects of students’ effort scores in a structured inquiry unit on long-term recall abilities of content knowledge,” Educ. Res. Int., vol. 2015, 2015.

J. Creswell, “Riset pendidikan: Perencanaan, pelaksanaan, dan evaluasi riset kualitatif & kuantitatif,” Yogyakarta: Pustaka Pelajar, 2015.

R. R. Hake, “Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses,” Am. J. Phys., vol. 66, no. 1, pp. 64–74, 1998.

G. A. Morgan, N. L. Leech, G. W. Gloeckner, and K. C. Barrett, SPSS for introductory statistics: Use and interpretation. Psychology Press, 2004.

B. G. Glaser and A. L. Strauss, Discovery of grounded theory: Strategies for qualitative research. Routledge, 2017.

T. Jaakkola, S. Nurmi, and K. Veermans, “A comparison of students’ conceptual understanding of electric circuits in simulation only and simulation‐laboratory contexts,” J. Res. Sci. Teach., vol. 48, no. 1, pp. 71–93, 2011.

H. H. Yolcu and A. Gürses, “A Demonstration of the Sublimation Process and its Effect on Students’ Conceptual Understanding of the Sublimation Concept,” Turkiye Kim. Dern. Derg. Kısım C Kim. Egit., vol. 1, no. 2, pp. 67–74.

J. L. Docktor and J. P. Mestre, “Synthesis of discipline-based education research in physics,” Phys. Rev. Spec. Top. - Phys. Educ. Res., vol. 10, no. 2, pp. 1–58, 2014, doi: 10.1103/PhysRevSTPER.10.020119.

K. Wosilait, P. R. L. Heron, P. S. Shaffer, and L. C. McDermott, “Addressing student difficulties in applying a wave model to the interference and diffraction of light,” Am. J. Phys., vol. 67, no. S1, pp. S5–S15, 1999.

C. E. Wieman, W. K. Adams, P. Loeblein, and K. K. Perkins, “Teaching physics using PhET simulations,” Phys. Teach., vol. 48, no. 4, pp. 225–227, 2010.




DOI: https://doi.org/10.31349/RevMexFisE.18.10

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física E

ISSN: 2683-2216 (on line), 1870-3542 (print)

Semiannual publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx