Characterization of an interstitial current model around a cancer nodule using optical tweezers.

O. L. Torres-Saucedo, B. Morales-Cruzado, F. G. Pérez-Gutiérrez

Abstract


Currently, the process of diagnosis and treatment of a patient with metastatic cancer is highly inefficient due to the complexity of the disease (metastasis is the spread of cancer cells from a primary tumor to secondary tumors at distant sites [1]). However, recent studies have shown that shear stress, caused by natural microfluidic currents, causes cancer cells to break away, spreading them to secondary sites [2] and aggravating the disease. The extent of shear stress on nodules due to microfluidic currents has not been experimentally proven. In the present study, a methodology developed to induce local shear stresses on a cancer nodule model from velocity field measurements is presented. Such methodology is based on the use of the optical tweezers velocimetry technique reported by Eom, et al. [3] and Almendarez, et al. [4]. The methodology consists on using the holographic optical tweezers velocimetry technique (i.e. multiple trapping in one domain), in order to measure, in a discretized way, the flow field at different positions, and approximate through least squares the velocity profiles; with such information, the shear stresses on the surface of the nodule model will be approximated. The methodology contributes to the understanding of metastasis process and other applications, such as: the development of thrombosis, tumor formation, stopping bleeding, etc.

Keywords


Optical tweezers; shear stress; intertitial current

Full Text:

PDF

References


A. Schroeder, D. A. Heller, M. M. Winslow, J. E. Dahlman, G. W. Pratt, R. Langer, T. Jacks y D. . G. Anderson, «Treating metastatic cancer with,» Nature Reviews Cancer, vol. 12, nº 1, p. 39, 2012.

I. Rizvi, U. A. Gurkan, S. Tasaglu, N. Alegic, J. P. Celli, L. B. Mensah, Z. Mai, U. Demirci y T. Hasan, «Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules,» Proceedings of the National Academy of Sciences, vol. 110, nº 22, pp. E1974-E1983, 2013.

N. Eom, V. Stevens, A. B. Wedding, R. Sedev y J. N. Connor, «Probing fluid flow using the force measurement capability of optical trapping.,» Advanced Powder Technology, vol. 25, nº 4, pp. 1249-1253, 2014.

P. Almendarez-Rangel, et al. «A microflow velocity mesurement system based on optical tweezers: A comparision using particle tracking velocimetry» European Journal of Mechanics/B Fluids, vol. 72, pp. 561-566, 2018.

Y. Harada y T. Asakura, «Radiation forces on a dielectric sphere in the Rayleigh scattering regime,» Optics communications, vol. 124, nº 5-6, pp. 529-241, 1996.

J. D. Shields, M. E. Fleury, C. Yong, A. A. Tomei, G. J. Randolph y M. A. Swartz, «Auntologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling,» Cancer cell, vol. 11, nº 6, pp. 526-538, 2007.

W. J. Polacheck, J. L. Charest y R. D. Kamm, «Interstitial flow influences direction of tumor cell migration through competing mechanisms,» Proceedings of the National Academy of Sciences, vol. 108, nº 27, pp. 11115-11120, 2011.

C. K. Ip, S. S. Li, M. Y. Tang, H. C. Shum y A. S. Wong, «Stemness and chemoresistance in epithelial ovarian carcinoma cells under shear stress.,» Scientific reports, vol. 6, p. 26788, 2016.

H. Lu, L. Y. Koo, W. M. Wang, D. A. Lauffenburger, L. G. Griffith y K. F. Jensen, «Microfluidic shear devices for quantitive analysis of cell adhesion,» Analytical chemestry, vol. 76, nº 18, pp. 5257-5264., 2004.

E. Gutiérrez, B. G. Petrich, S. J. Shattil, M. H. Ginsberg, A. Groisman y A. Kasirer-Friede, «Microfluidic devices for studies of shear-dependent platelet adhesion,» Lab on a chip, vol. 8, nº 9, pp. 1486-1495, 2008.

S. S. Kohles, N. Nève, J. D. Zimmerman y D. C. Tretheway, «Mechanical stress analysis of microfluidic enviroments designed for isolated biological cell investigations,» Journal of biomechanical engineering, vol. 131, nº 12, p. 121006, 2009.

N. Nève, S. S. Kohles, S. R. Winn y D. C. Tretheway, «Manipulation of suspended single cells by microfluidics and optical tweezers,» Cellular and molecular bioengineering, vol. 3, nº 3, pp. 213-228, 2010.

J. Wu, D. Day y M. Gu, «Shear stress maping in microfluidic devices by optical tweezers,» Optics express, vol. 18, nº 8, pp. 7611-7616, 2010.


Refbacks

  • There are currently no refbacks.


Suplemento de la Revista Mexicana de Física

 ISSN: In Process

  Online non-periodical journal published by Socie­dad Mexicana de Física, A. C.

Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52-55) 5622-4946, (52-55) 5622-4840

e-mail:  rmf@ciencias.unam.mx

https://rmf.smf.mx/ojs/rmf-s