Liquid metal MHD flow and heat transfer in a rectangular duct with perfectly conducting walls perpendicular to the applied magnetic field

V. Solano-Olivares, S. Cuevas, A. Figueroa

Abstract


Several technological applications involve the flow of liquid metals in ducts under a magnetic field, for instance, the coolants of fusion reactors. In this paper, using a magnetohydrodynamic MHD formulation based on the electric potential, we obtain an analytical solution for the flow of a liquid metal in a rectangular duct with two insulating walls and two perfectly conducting walls perpendicular to the applied uniform magnetic field. As the Hartmann number increases, the flow displays high velocities in the boundary layers attached to the insulating walls and a quasi-stagnant flow at the core. The effect of this flow pattern on the forced convection heat transfer is then explored numerically considering a uniform heat flux on either the conducting or insulating walls. Compared to the hydrodynamic case, the MHD flow enhances the heat transfer as the Hartmann number increases only in the case when the heat flux is applied at the insulating walls where high velocities are present. The increase of the local Nusselt number as the Péclet number grows indicates an efficient heat removal from the heated wall.

Keywords


Heat transfer, liquid metal MHD flow, analytical solution, perfectly conducting Hartmann walls, Nusselt number.

Full Text:

PDF

References


P. A. Davidson, Magnetohydrodynamics in materials processing.

Ann. Rev. Fluid Mech. 31 (1999) 273. https://doi.org/10.1146/annurev.fluid.31.1.273

L. B¨uhler, Liquid metal magnetohydrodynamics for fusion blankets. Magnetohydrodynamics (2007) 171-194.

M. J. Ni, R. Munipalli, N. B. Morley, P. Huang, and M. A. Abdou, (2007). Validation case results for 2D and 3D MHD simulations. Fusion Sci. Tech. 52 587. https://doi.org/10.13182/FST07-A1552

T. Zhou, Z. Yang, M. Ni, and H. Chen, Code development and validation for analyzing liquid metal MHD flow in rectangular ducts. Fusion Eng. Design, 85 (2010) 1736. https: //doi.org/10.1016/j.fusengdes.2010.05.034

J. Mao, and H. Pan, Three-dimensional numerical simulation for magnetohydrodynamic duct flows in a staggered grid system. Fusion Eng. Design 88 (2013) 145. https://doi.org/10.1016/j.fusengdes.2013.01.092

S. Sahu, and R. Bhattacharyay, Validation of COMSOL code for analyzing liquid metal magnetohydrodynamic flow. Fusion Eng. Design, 127 (2018)151. https://doi.org/10.1016/j.fusengdes.2018.01.009

W. F. Hughes, and F. J. Young, The electromagnetodynamics of fluids. (New York: Wiley, 1966).

Müller, and L. B¨uhler, Magnetofuiddynamics in channels and containers. (Springer, Berlin, 2001).

J. C. R. Hunt, Magnetohydrodynamic flow in rectangular ducts. J. Fluid Mech., 21 (1965) 577. https://doi.org/10.1017/S0022112065000344

J. C. R. Hunt, and K. Stewartson, Magnetohydrodynamic flow in rectangular ducts II. J. Fluid Mech. 23 (1965) 563. https://doi.org/10.1017/S0022112065001544

S. Smolentsev, N. Vetcha, and M. Abdou, Effect of a magnetic field on stability and transitions in liquid breeder flows in a blanket. Fusion Eng. Design 88 (2013) 607. https://doi.org/10.1016/j.fusengdes.2013.04.001

T. Arlt, J. Priede, and L. B¨uhler, The effect of finiteconductivity Hartmann walls on the linear stability of Hunt’s flow. J. Fluid Mech. 822 (2017) 880. https://doi.org/10.1017/jfm.2017.322

S. Cuevas, B. F. Picologlou, J. S. Walker, and G. Talmage, Liquid-metal MHD flow in rectangular ducts with thin conducting or insulating walls: laminar and turbulent solutions. Int. J. Eng. Sci., 35 (1997) 485. https://doi.org/10.1016/S0020-7225(96)00126-7

S. Cuevas, B. F. Picologlou, J. S. Walker, G. Talmage, and T. Hua, Heat transfer in laminar and turbulent liquid-metal MHD flows in square ducts with thin conducting or insulating walls. Int. J. Eng. Sci. 35 (1997) 505. https://doi.org/10.1016/S0020-7225(96)00127-9

S. Smolentsev, S. Cuevas, and A. Beltr´an, Induced electric current based formulation in computations of low magnetic Reynolds number magnetohydrodynamic flows. J. Comput. Phys 229 (2010) 1558. https://doi.org/10.1016/j.jcp.2009.10.044

M. J. Bluck, and M. J. Wolfendale, An analytical solution to the heat transfer problem in thick-walled Hunt flow. Int. J. Heat Fluid Flow 64 (2017) 103. https://doi.org/10.1016/j.ijheatfluidflow.2017.03.002

Z. Li, J. Li, X. Li, and M. J. Ni, Free surface flow and heat transfer characteristics of liquid metal Galinstan at low flow velocity. Exp. Thermal and Fluid Sci. 82 (2017) 240-248. https://doi.org/10.1016/j.expthermflusci.2016.11.021

H. K. Versteg, andW. Malalasekera, An introduction to computational

fluid dynamics. The finite volume method, (Longman, New York 1995).


Refbacks

  • There are currently no refbacks.


Suplemento de la Revista Mexicana de Física

 ISSN: In Process

  Online non-periodical journal published by Socie­dad Mexicana de Física, A. C.

Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52-55) 5622-4946, (52-55) 5622-4840

e-mail:  rmf@ciencias.unam.mx

https://rmf.smf.mx/ojs/rmf-s