Tip optical fiber refractive index sensor based on a thin copper film

Y. Lopez-Dieguez, J. M. Estudillo-Ayala, D. Jáuregui Vázquez, L. A. Herrera-Piad, J. A. Martín-Vela, J. M. Sierra-Hernandez, J. C. Hernandez-Garcia, M. Bianchetti, M. Avazpour, R. Rojas-Laguna

Abstract


 

We report a refractive index tip fiber optic sensor based on a modal interferometer coated with a thin copper film. This device can be used for solute concentration in aqueous mixture measurement. The copper film increases the device reflectivity and, as a result, increases the multimodal interference pattern visibility. To validate the sensor device, different water-glycerol weight concentrations were used in the range from 0 to 45 Glycerol %. The recorded spectral responses show a redshifting, and a sensitivity of 19 pm / (Glycerol % by weight) from 0 to 18 % and 4.7 pm / (Glycerol % by weight) from 18 to 45 % was achieved. Besides, using a phase analysis we calculated a sensitivity of -15 rad/RIU.


Keywords


Fiber optic sensor, Modal Fiber Optic Interferometer, Liquid Concentration Measurement

Full Text:

PDF

References


W.P. Chen, D.N. Wang, B. Xu, C.L. Zhao, H.F. Chen, Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement, Sci. Rep. 7 (2017) 1–6. doi:10.1038/s41598-017-00300-x.

W. Wang, Z. Mai, Y. Chen, J. Wang, L. Li, Q. Su, X. Li, X. Hong, A label-free fiber optic SPR biosensor for specific detection of C-reactive protein, Sci. Rep. 7 (2017) 1–8. doi:10.1038/s41598-017-17276-3.

N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, R. Chen, Temperature-independent polymer optical fiber evanescent wave sensor, Sci. Rep. 5 (2015) 1–10. doi:10.1038/srep11508.

T. Okazaki, T. Orii, A. Ueda, A. Ozawa, H. Kuramitz, Fiber Optic Sensor for Real-Time Sensing of Silica Scale Formation in Geothermal Water, Sci. Rep. 7 (2017) 1–7. doi:10.1038/s41598-017-03530-1.

Z. Lin, R. Lv, Y. Zhao, H. Zheng, High-sensitivity salinity measurement sensor based on no-core fiber, Sensors Actuators A Phys. (2020) 111947. doi:10.1016/j.sna.2020.111947.

F. Zhao, J. Wang, Y. Xiao, K. Zhang, R. Chen, S. Liu, Curvature monitoring of power grid wires based on anti-resonant reflecting guidance in hollow core fibers, Optik (Stuttg). 213 (2020) 164785. doi:10.1016/j.ijleo.2020.164785.

E. Vorathin, Z.M. Hafizi, N. Ismail, M. Loman, Review of high sensitivity fibre-optic pressure sensors for low pressure sensing, Opt. Laser Technol. 121 (2020). doi:10.1016/j.optlastec.2019.105841.

J. Hribar, D. Donlagic, Fiber-Optic Boiling Point Sensor for Characterization of Liquids, IEEE Sens. J. 20 (2020) 7731–7739. doi:10.1109/JSEN.2020.2982420.

M.H. Jali, H.R.A. Rahim, M.A.M. Johari, S.S. Hamid, H.H.M. Yusof, S. Thokchom, P. Wang, S.W. Harun, Optical characterization of different waist diameter on microfiber loop resonator humidity sensor, Sensors Actuators A Phys. 285 (2019) 200–209. doi:10.1016/j.sna.2018.11.025.

N. De Acha, C. Elosúa, J.M. Corres, F.J. Arregui, Fluorescent sensors for the detection of heavy metal ions in aqueous media, Sensors (Switzerland). 19 (2019). doi:10.3390/s19030599.

J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, J. Zhao, Intensity modulated refractive index sensor based on optical fiber Michelson interferometer, Sensors Actuators, B Chem. 208 (2015) 315–319. doi:10.1016/j.snb.2014.11.014.

P. Chen, X. Shu, H. Cao, K. Sugden, Ultra-sensitive refractive index sensor based on an extremely simple femtosecond-laser-induced structure, Opt. Lett. 42 (2017) 1157. doi:10.1364/OL.42.001157.

Y. Lopez-Dieguez, J.M. Estudillo-Ayala, D. Jauregui-Vazquez, L.A. Herrera-Piad, J.M. Sierra-Hernandez, J.C. Hernandez-Garcia, M. Bienchetti, J.R. Reyes-Ayona, R. Rojas-Laguna, Tip fiber-optic intermodal interferometer for refractive index sensing, IEEE Photonics Technol. Lett. 30 (2018) 15–18. doi:10.1109/LPT.2017.2771409.

S.S.J.R.C. Yee;, A fiber optic chemical sensor based on surface plasmon resonance, Sensors Actuators B Chem. 12 (1993) 213–220. doi:10.1016/0925-4005(93)80021-3.

D. Jauregui-Vazquez, J.W. Haus, A.B.H. Negari, J.M. Sierra-Hernandez, K. Hansen, Bitapered fiber sensor: Signal analysis, Sensors Actuators B Chem. 218 (2015) 105–110. doi:10.1016/j.snb.2015.04.109.

M. V. Hernández-Arriaga, M.A. Bello-Jiménez, A. Rodríguez-Cobos, M. V. Andrés, Experimental Investigation of Fused Biconical Fiber Couplers for Measuring Refractive Index Changes in Aqueous Solutions, IEEE Sens. J. 16 (2016) 132–136. doi:10.1109/JSEN.2015.2475320.

Y. Zhao, L. Cai, X.G. Li, F.C. Meng, Liquid concentration measurement based on SMS fiber sensor with temperature compensation using an FBG, Sensors Actuators, B Chem. 196 (2014) 518–524. doi:10.1016/j.snb.2014.01.075.

Y. Zhao, Z.Q. Deng, Q. Wang, Fiber optic SPR sensor for liquid concentration measurement, Sensors Actuators, B Chem. 192 (2014) 229–233. doi:10.1016/j.snb.2013.10.108.

H. Su, X.G. Huang, Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions, Sensors Actuators B Chem. 126 (2007) 579–582. doi:10.1016/j.snb.2007.04.008.

J. Segur, Physical properties of glycerol and its solutions, Aciscience.Org. (1953) 1–27.

B.S. Kawasaki, K.O. Hill, R.G. Lamont, Biconical-taper single-mode fiber coupler, Opt. Lett. 6 (1981) 327. doi:10.1364/OL.6.000327.

T.A. Birks, Y.W. Li, The Shape of Fiber Tapers, J. Light. Technol. 10 (1992) 432–438. doi:10.1109/50.134196.

C. Cobianu, M.F. Stan, I. Bancuta, N. Fidel, INVESTIGATION OF Ni-Cu THIN FILMS MAGNETIC SENSORS DEPOSITED ON SiO 2 SUBSTRATES BY SPUTTERING, J. Sci. Arts. 4 (2019) 1055–1065.

P.B. Johnson, R.W.Christy, Optical Constants of the Noble Metals, Phys. Rev. B. 6 (1972) 4370–4379. doi:10.1016/j.susc.2018.02.016.

Cu Refractive Index Database, (n.d.). https://refractiveindex.info/?shelf=main&book=Cu&page=Johnson (accessed December 11, 2018).

Y. Lopez-Dieguez, J.M.M. Estudillo-Ayala, D. Jauregui-Vazquez, J.M.M. Sierra-Hernandez, L.A.A. Herrera-Piad, J.M.M. Cruz-Duarte, J.C.C. Hernandez-Garcia, R. Rojas-Laguna, Multi-mode all Fiber Interferometer based on Fabry-Perot Multi-cavity and its Temperature Response, Opt. - Int. J. Light Electron Opt. 147 (2017) 232–239. doi:10.1016/j.ijleo.2017.08.091.

G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography, Nano Lett. 7 (2007) 1947–1952. doi:10.1021/nl070648a.


Refbacks

  • There are currently no refbacks.


SUPLEMENTO DE LA REVISTA MEXICANA DE FÍSICA, year 2, issue 1 January-March, 2021. Non-periodical journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf-s, rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado.  INDAUTOR Certificate of Reserve: 04-2019-080216411400-203, ISSN: in process, both granted by Instituto Nacional del Derecho de Autor.  Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, March 29, 2021.

The responsibility of the materials published in Suplemento de la Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

Suplemento de la Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License