Casimir Energy in a Bounded Gross-Neveu model

Juan Cristóbal Rojas

Abstract


In this letter, we study some relevant parameters of the massless Gross-Neveu (GN) model in a
finite spatial dimension for different boundary conditions. It is considered the standard homogeneousHartree-Fock solution using zeta function regularization for the study the mass dynamically generated and its respective beta function. It is found that the beta function does not depend on the boundary conditions. On the other hand, it was considered the Casimir effect of the resulting effective theory. There appears a complex picture where the sign of the generated forces depends on the parameters used in the study.


Keywords


Renormalization, Casimir effect, Gross- Neveu, Zeta function.

Full Text:

PDF


DOI: https://doi.org/10.31349/RevMexFis.64.577

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física

ISSN: 0035-001X

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52-55) 5622-4946, (52-55) 5622-4840. rmf@ciencias.unam.mx