The Riemann-Silberstein vector in the Dirac algebra

Shahen Hacyan

Abstract


It is shown that the Riemann-Silberstein vector, defined as ${\bf E} + i{\bf B}$, appears naturally in the $SL(2,C)$ algebraic representation of the electromagnetic field. Accordingly, a compact form of the Maxwell equations is obtained in terms of Dirac matrices, in combination with the null-tetrad formulation of general relativity. The formalism is fully covariant; an explicit form of the covariant derivatives is presented in terms of the Fock coefficients.


Keywords


Maxwell equations; Dirac matrices algebra; spinors

Full Text:

PDF


DOI: https://doi.org/10.31349/RevMexFis.65.65

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física

ISSN: 0035-001X

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52-55) 5622-4946, (52-55) 5622-4840. rmf@ciencias.unam.mx