Simulation of breakthrough curves of selenium absorbed in two biomass filters using a dispersion and sorption model. Use for a hypothetical case

C. E, E. Rodríguez-Martínez, J. Klapp-Escribano, R. Duarte-Pérez, M. Teresa-Olguín, A. F, I. Cano-Aguilera, Z. González-Acevedo

Abstract


A fixed bed study was carried out using the non-living biomasses Eichhornia crassipes and Lemna minor as a biosorbent for the removal of selenium from an aqueous solution. A 3D model, capable to represent the real system, was configured using the Navier Stokes, Brinkman and mass transport equations. Experimental and numerical results were compared to validate the model. Correlation factors up to R$^{2}$=0.95 were obtained in the validation model. Using the model, different systems were simulated obtaining relations between feed concentration and sorption capacity which increases when the inlet selenium concentration increases. A serial system of columns was configured with a flow rate of 2500 L/day and an inlet selenium concentration of 100 ppm capable of keeping an outlet concentration below 10 ppb during 27 days.

Keywords


Selenium; sorption capacity; inactive biomasses; breakthrough curves; modeling; simulation

Full Text:

PDF

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx